In DITSpecification.cpp, MaterialAsset.cpp, and ShaderAsset.cpp, lambda predicates were replaced by pointers to member functions because ranges algorithms are able invoke those.
In NetPlayClient.cpp, the non-trivial `NetPlay::Player` elements were being passed by value in `NetPlayClient::DoAllPlayersHaveGame()`. This has been fixed.
In WIABlob.cpp, the second example's predicate was returning the `std::optional` by value instead of implicitly converting it to a bool. This has been fixed.
This reverts the revert commit bc67fc97c39628c76a4dbca411b0e8a9bfaf726a,
except for the changes in BaseConfigLoader.cpp, which caused the bug
that made us revert 72cf2bdb87f09deff22e1085de3290126aa4ad05. PR 12917
contains an improved change to BaseConfigLoader.cpp, which can be merged
(or rejected) independently.
A few changes have also been made based on review comments.
Remove the second of two calls to PopulateBackendInfo during emulation
startup. This call was originally the only one, but b214e0e added an
earlier call to handle the backend being changed by the GameINI.
The PR discussion doesn't explain why the original call was left in; I
suspect it was just overlooked.
As a bonus, this removes one of the extra copies of the "Video Info" On
Screen Display message at startup when using OpenGL.
Change misleading names.
Fix function usage: Intepreter and Step Out will not check breakpoints in their own wrong way anymore (e.g. breaking on log-only breakpoints).
There are two pieces of functionality to be added here. One, we want to disallow pausing too frequently, as it may be used as an artificial slowdown. This is handled within the client, which can tell us if a pause is allowed. Two, we want to call rc_client_idle on a periodic basis so the connection with the server can be maintained even while the emulator is paused.
This reverts commit 72cf2bdb87f09deff22e1085de3290126aa4ad05.
SYSCONF settings are getting cleared when they shouldn't be. Let's
revert the change until I get proper time to figure out why it's broken.
Some pieces of code are calling IsRunning because there's some
particular action that only makes sense when emulation is running, for
instance showing the state of the emulated CPU. IsRunning is appropriate
to use for this. Then there are pieces of code that are calling
IsRunning because there's some particular thing they must avoid doing
e.g. when the CPU thread is running or IOS is running. IsRunning isn't
quite appropriate for this. Such code should also be checking for the
states Starting and Stopping. Keep in mind that:
* When the state is Starting, the state can asynchronously change to
Running at any time.
* When we try to stop the core, the state gets set to Stopping before we
take any action to actually stop things.
This commit adds a new method Core::IsUninitialized, and changes all
callers of IsRunning and GetState that look to me like they should be
changed.
Core::GetState reads from four different pieces of state: s_is_stopping,
s_hardware_initialized, s_is_booting, and CPUManager::IsStepping.
I'm keeping that last one as is for now because there's code in Dolphin
that sets it directly, but we can unify the other three to make things
easier to reason about.
This commit also gets rid of s_is_started. This was previously used in
Core::IsRunningAndStarted to ensure true wouldn't be returned until the
CPU thread was started, but it wasn't used in Core::GetState, so
Core::GetState would happily return State::Running after we had
initialized the hardware but before we had initialized the CPU thread.
As far as I know, there are no callers that have any real need to know
whether the boot process is currently initializing the hardware or the
CPU thread. Perhaps once upon a time there was a desire to make the
apploader debuggable, but a long time has passed without anyone stepping
up to implement it, and the way CBoot::RunApploader is implemented makes
it rather difficult. So this commit makes all the functions in Core.cpp
consider the core to still be starting until the CPU thread is started.
This lets us reduce the number of USE_RETRO_ACHIEVEMENTS ifdefs in the
code base, reducing visual clutter. In particular, needing an ifdef for
each call to IsHardcodeModeActive was annoying to me. This also reduces
the risk that someone writes code that accidentally fails to compile
with USE_RETRO_ACHIEVEMENTS disabled.
We could cut down on ifdefs even further by making HardcodeWarningWidget
always exist, but that would result in non-trivial code ending up in the
binary even with USE_RETRO_ACHIEVEMENTS disabled, so I'm leaving it out
of this PR. It's not a lot of code though, so I might end up revisiting
it at some point.
Enable emulator hotkeys and controller input (when that option is
enabled) when a TAS Input window has focus, as if it was the render
window instead. This allows TASers to use frame advance and the like
without having to switch the focused window or disabling Hotkeys Require
Window Focus which also picks up keypresses while other apps are active.
Cursor updates are disabled when the TAS Input window has focus, as
otherwise the Wii IR widget (and anything else controlled by the mouse)
becomes unusable. The cursor continues to work normally when the render
window has focus.
The client can handle media changes natively so disabling can take place internally. This code uses the same external calls to load data, but will call either BeginLoad or BeginChangeMedia based on whether any media is already loaded.
Due to the client's handling of media changes (it simply disables hardcore if an unknown media is detected) the existing functionality for "disabling" the achievements is no longer necessary and can be deleted.
Most obviously, there is no longer a warning message to the player in the achievement window that achievements are disabled if a game is not currently running.
This reverts commit e86d713600b5e97af9904518b47152c97949c85e.
A proper fix was added in 86c1f6e1e7e2abcc3f42e1182134e632b218b6d3,
so the workaround is no longer necessary.
Given how many member functions make use of the system instance,
it's likely just better to pass the system instance in on construction.
Makes the interface a little less noisy to use.
Frame advancing is easily exploitable for slowing down a game and artificially improving reaction times and is not allowed in RetroAchievements hardcore mode.
Some state changes are meant to be near instantanoues, before switching to something else. By reporting ithe instant switch, the UI will flicker between states (pause/play button) and the debugger will unnecessarily update. Skipping the callback avoids these issues.
This was implemented to prevent UI flickering due to the state rapidly switching between pause/play. Recently, it has been causing issues with debugger windows, which update during frame advance.
While both fastmem and the BLR optimization depend on fault handling,
the BLR optimization doesn't depend on fastmem, and there are cases
where you might want the BLR optimization but not fastmem. For me
personally, it's useful when I try to use a debugger on Android and have
to disable fastmem so I don't get SIGSEGVs all the time, but it would be
especially useful for iOS users.
In theory, our config system supports calling Set from any thread. But
because we have config callbacks that call RunAsCPUThread, it's a lot
more restricted in practice. Calling Set from any thread other than the
host thread or the CPU thread is formally thread unsafe, and calling Set
on the host thread while the CPU thread is showing a panic alert causes
a deadlock. This is especially a problem because 04072f0 made the
"Ignore for this session" button in panic alerts call Set.
Because so many of our config callbacks want their code to run on the
CPU thread, I thought it would make sense to have a centralized way to
move execution to the CPU thread for config callbacks. To solve the
deadlock problem, this new way is non-blocking. This means that threads
other than the CPU thread might continue executing before the CPU thread
is informed of the new config, but I don't think there's any problem
with that.
Intends to fix https://bugs.dolphin-emu.org/issues/13108.
The ExpansionInterfaceManager::PauseAndLock function does nothing but
call other functions that have no effect.
ExpansionInterfaceManager::PauseAndLock calls CEXIChannel::PauseAndLock,
which in turn calls IEXIDevice::PauseAndLock. None of the classes
deriving from IEXIDevice override PauseAndLock, and the implementation
in IEXIDevice does nothing.
Fixing all the places it's used turned out to be a more complicated task than anticipated. So let's remove this for now so we don't confuse users with cryptic error messages...