This particular range is kind of bizarre, and would only interpret
interleave mode 2 as a valid mode, while rejecting interleave mode 1 and
the extension byte mode.
As far as I know, based off the information on Wiibrew, we should be
considering all three values within this range as valid.
texture serialization and deserialization used to involve many memory
allocations and deallocations, along with many copies to and from
those allocations. avoid those by reserving a memory region inside the
output and writing there directly, skipping the allocation and copy to
an intermediate buffer entirely.
This adds a CMake option (DOLPHIN_DEFAULT_UPDATE_TRACK) to allow
configuring SCM_UPDATE_TRACK_STR. This is needed to enable auto-updates
in Windows CMake builds by default.
This adds a function to get the emulated or real Bluetooth device for
an active emulation instance. This lets us deduplicate all the
`ios->GetDeviceByName("/dev/usb/oh1/57e/305")` calls that are currently
scattered in the codebase and ensures Bluetooth passthrough is being
handled correctly.
This also fixes the broken check in WiimoteCommon::UpdateSource.
There was a confusion between "emulated Bluetooth" (as opposed to
"real Bluetooth" aka Bluetooth passthrough) and "emulated Wiimote".
Specifically, 'Scooby-Doo! Mystery Mayhem', 'Scooby-Doo! Unmasked', 'Ed, Edd n Eddy: The Mis-Edventures', and the Wii version of 'Happy Feet'.
The JIT cache causes problems with emulated icache invalidation in these games, resulting in areas failing to load.
This avoids some warnings, which were originally fixed by ignoring loads with a value of zero (see 636bedb207784db2d58b9986464f6a863677b59e / #3242).
Note that FifoCI will report some changes, but only on the first frame; these seem to be timing related as they don't happen if a different write is used to replace skipped ones.
They appear to relate to perf queries, and combining them with truely unknown commands would probably hide useful information. Furthermore, 0x20 is issued by every title, so without this every title would be recorded as using an unknown command, which is very unhelpful.
The swaps are confusing and don't accomplish much.
It was originally written like this:
u32 pte = bswap(*(u32*)&base_mem[pteg_addr]);
then bswap was changed to Common::swap32, and then the array access
was replaced with Memory::Read_U32, leading to the useless swaps.
While 6xx_pem.pdf §7.6.1.1 mentions that the number of trailing
zeros in HTABORG must be equal to the number of trailing ones
in the mask (i.e. HTABORG must be properly aligned), this is actually
not a hard requirement. Real hardware will just OR the base address
anyway. Ignoring SDR changes would lead to incorrect emulation.
Logging a warning instead of dropping the SDR update silently is a
saner behaviour.
debaf63fe8abc4d534c0cac7540eb8607e2c5c91 moved the "Sonic epsilon hack"
to vertex shaders. However, it was only done for targets with depth
clamping. If this is not available, for example the target is OpenGL ES,
the Sonic problem appears (https://bugs.dolphin-emu.org/issues/11897).
A version of the "Sonic epsilon hack" is added for targets without
depth clamping.
This changes FileSystemProxy::Open to return a file descriptor wrapper
that will ensure the FD is closed when it goes out of scope.
By using such a wrapper we make it more difficult to forget to close
file descriptors.
This fixes a leak in ReadBootContent. I should have added such a class
from the beginning... In practice, I don't think this would have caused
any obvious issue because ReadBootContent is only called after an IOS
relaunch -- which clears all FDs -- and most titles do not get close
to the FD limit.
JitArm64::DoJit contains a check where it prints a warning and tries
to pause emulation if instructed to compile code at address 0. I'm
assuming this was done in order to provide a nicer error behavior
in cases where PC was accidentally set to null. Unfortunately, it
has started causing us problems recently, as 688bd61 writes and runs
some code at address 0 to simulate the PPC being held in reset.
What makes this worse is that calling Core::SetState from the CPU
thread is actually not allowed and will cause a deadlock instead of
the intended behavior. I don't believe there is anything on a real
console that would stop you from executing code at address 0 (as
long as the MMU has been set up to allow it), and Jit64::DoJit
doesn't contain any check like this, so let's remove the check.