dolphin/Source/Core/VideoCommon/ShaderCache.cpp
Stenzek 517a977444 ShaderCache: Fix several issues in background shader compiling
- In D3D, shaders could be compiled on the main thread, blocking
startup.
- Reduced the latency between a pipeline being requested and used in all
backends in hybrid ubershader mode, when no shader stages were present.
- Fixed a case where async compilation could cause the same UID to be
appended multiple times to the UID cache.
- Fix incorrect number of threads being used when immediately compile
shaders was enabled.
2018-03-15 01:50:47 +10:00

975 lines
33 KiB
C++

// Copyright 2018 Dolphin Emulator Project
// Licensed under GPLv2+
// Refer to the license.txt file included.
#include "VideoCommon/ShaderCache.h"
#include "Common/Assert.h"
#include "Common/FileUtil.h"
#include "Common/MsgHandler.h"
#include "Core/ConfigManager.h"
#include "Core/Host.h"
#include "VideoCommon/RenderBase.h"
#include "VideoCommon/Statistics.h"
#include "VideoCommon/VertexLoaderManager.h"
#include "VideoCommon/VertexManagerBase.h"
std::unique_ptr<VideoCommon::ShaderCache> g_shader_cache;
namespace VideoCommon
{
ShaderCache::ShaderCache() = default;
ShaderCache::~ShaderCache() = default;
bool ShaderCache::Initialize()
{
m_api_type = g_ActiveConfig.backend_info.api_type;
m_host_config = ShaderHostConfig::GetCurrent();
m_efb_multisamples = g_ActiveConfig.iMultisamples;
// Create the async compiler, and start the worker threads.
m_async_shader_compiler = g_renderer->CreateAsyncShaderCompiler();
m_async_shader_compiler->ResizeWorkerThreads(g_ActiveConfig.GetShaderPrecompilerThreads());
// Load shader and UID caches.
if (g_ActiveConfig.bShaderCache)
{
LoadShaderCaches();
LoadPipelineUIDCache();
}
// Queue ubershader precompiling if required.
if (g_ActiveConfig.UsingUberShaders())
QueueUberShaderPipelines();
// Compile all known UIDs.
CompileMissingPipelines();
if (g_ActiveConfig.bWaitForShadersBeforeStarting)
WaitForAsyncCompiler();
// Switch to the runtime shader compiler thread configuration.
m_async_shader_compiler->ResizeWorkerThreads(g_ActiveConfig.GetShaderCompilerThreads());
return true;
}
void ShaderCache::SetHostConfig(const ShaderHostConfig& host_config, u32 efb_multisamples)
{
if (m_host_config.bits == host_config.bits && m_efb_multisamples == efb_multisamples)
return;
m_host_config = host_config;
m_efb_multisamples = efb_multisamples;
Reload();
}
void ShaderCache::Reload()
{
WaitForAsyncCompiler();
ClosePipelineUIDCache();
InvalidateCachedPipelines();
ClearShaderCaches();
if (g_ActiveConfig.bShaderCache)
LoadShaderCaches();
// Switch to the precompiling shader configuration while we rebuild.
m_async_shader_compiler->ResizeWorkerThreads(g_ActiveConfig.GetShaderPrecompilerThreads());
// We don't need to explicitly recompile the individual ubershaders here, as the pipelines
// UIDs are still be in the map. Therefore, when these are rebuilt, the shaders will also
// be recompiled.
CompileMissingPipelines();
if (g_ActiveConfig.bWaitForShadersBeforeStarting)
WaitForAsyncCompiler();
m_async_shader_compiler->ResizeWorkerThreads(g_ActiveConfig.GetShaderCompilerThreads());
}
void ShaderCache::RetrieveAsyncShaders()
{
m_async_shader_compiler->RetrieveWorkItems();
}
void ShaderCache::Shutdown()
{
// This may leave shaders uncommitted to the cache, but it's better than blocking shutdown
// until everything has finished compiling.
m_async_shader_compiler->StopWorkerThreads();
ClosePipelineUIDCache();
ClearShaderCaches();
ClearPipelineCaches();
}
const AbstractPipeline* ShaderCache::GetPipelineForUid(const GXPipelineUid& uid)
{
auto it = m_gx_pipeline_cache.find(uid);
if (it != m_gx_pipeline_cache.end() && !it->second.second)
return it->second.first.get();
const bool exists_in_cache = it != m_gx_pipeline_cache.end();
std::unique_ptr<AbstractPipeline> pipeline;
std::optional<AbstractPipelineConfig> pipeline_config = GetGXPipelineConfig(uid);
if (pipeline_config)
pipeline = g_renderer->CreatePipeline(*pipeline_config);
if (g_ActiveConfig.bShaderCache && !exists_in_cache)
AppendGXPipelineUID(uid);
return InsertGXPipeline(uid, std::move(pipeline));
}
std::optional<const AbstractPipeline*> ShaderCache::GetPipelineForUidAsync(const GXPipelineUid& uid)
{
auto it = m_gx_pipeline_cache.find(uid);
if (it != m_gx_pipeline_cache.end())
{
// .second is the pending flag, i.e. compiling in the background.
if (!it->second.second)
return it->second.first.get();
else
return {};
}
AppendGXPipelineUID(uid);
QueuePipelineCompile(uid);
return {};
}
const AbstractPipeline* ShaderCache::GetUberPipelineForUid(const GXUberPipelineUid& uid)
{
auto it = m_gx_uber_pipeline_cache.find(uid);
if (it != m_gx_uber_pipeline_cache.end() && !it->second.second)
return it->second.first.get();
std::unique_ptr<AbstractPipeline> pipeline;
std::optional<AbstractPipelineConfig> pipeline_config = GetGXUberPipelineConfig(uid);
if (pipeline_config)
pipeline = g_renderer->CreatePipeline(*pipeline_config);
return InsertGXUberPipeline(uid, std::move(pipeline));
}
void ShaderCache::WaitForAsyncCompiler()
{
while (m_async_shader_compiler->HasPendingWork() || m_async_shader_compiler->HasCompletedWork())
{
m_async_shader_compiler->WaitUntilCompletion([](size_t completed, size_t total) {
Host_UpdateProgressDialog(GetStringT("Compiling shaders...").c_str(),
static_cast<int>(completed), static_cast<int>(total));
});
m_async_shader_compiler->RetrieveWorkItems();
}
Host_UpdateProgressDialog("", -1, -1);
}
template <ShaderStage stage, typename K, typename T>
static void LoadShaderCache(T& cache, APIType api_type, const char* type, bool include_gameid)
{
class CacheReader : public LinearDiskCacheReader<K, u8>
{
public:
CacheReader(T& cache_) : cache(cache_) {}
void Read(const K& key, const u8* value, u32 value_size)
{
auto shader = g_renderer->CreateShaderFromBinary(stage, value, value_size);
if (shader)
{
auto& entry = cache.shader_map[key];
entry.shader = std::move(shader);
entry.pending = false;
switch (stage)
{
case ShaderStage::Vertex:
INCSTAT(stats.numVertexShadersCreated);
INCSTAT(stats.numVertexShadersAlive);
break;
case ShaderStage::Pixel:
INCSTAT(stats.numPixelShadersCreated);
INCSTAT(stats.numPixelShadersAlive);
break;
default:
break;
}
}
}
private:
T& cache;
};
std::string filename = GetDiskShaderCacheFileName(api_type, type, include_gameid, true);
CacheReader reader(cache);
u32 count = cache.disk_cache.OpenAndRead(filename, reader);
INFO_LOG(VIDEO, "Loaded %u cached shaders from %s", count, filename.c_str());
}
template <typename T>
static void ClearShaderCache(T& cache)
{
cache.disk_cache.Sync();
cache.disk_cache.Close();
cache.shader_map.clear();
}
void ShaderCache::LoadShaderCaches()
{
// Ubershader caches, if present.
LoadShaderCache<ShaderStage::Vertex, UberShader::VertexShaderUid>(m_uber_vs_cache, m_api_type,
"uber-vs", false);
LoadShaderCache<ShaderStage::Pixel, UberShader::PixelShaderUid>(m_uber_ps_cache, m_api_type,
"uber-ps", false);
// We also share geometry shaders, as there aren't many variants.
if (m_host_config.backend_geometry_shaders)
LoadShaderCache<ShaderStage::Geometry, GeometryShaderUid>(m_gs_cache, m_api_type, "gs", false);
// Specialized shaders, gameid-specific.
LoadShaderCache<ShaderStage::Vertex, VertexShaderUid>(m_vs_cache, m_api_type, "specialized-vs",
true);
LoadShaderCache<ShaderStage::Pixel, PixelShaderUid>(m_ps_cache, m_api_type, "specialized-ps",
true);
}
void ShaderCache::ClearShaderCaches()
{
ClearShaderCache(m_vs_cache);
ClearShaderCache(m_gs_cache);
ClearShaderCache(m_ps_cache);
ClearShaderCache(m_uber_vs_cache);
ClearShaderCache(m_uber_ps_cache);
SETSTAT(stats.numPixelShadersCreated, 0);
SETSTAT(stats.numPixelShadersAlive, 0);
SETSTAT(stats.numVertexShadersCreated, 0);
SETSTAT(stats.numVertexShadersAlive, 0);
}
void ShaderCache::CompileMissingPipelines()
{
// Queue all uids with a null pipeline for compilation.
for (auto& it : m_gx_pipeline_cache)
{
if (!it.second.second)
QueuePipelineCompile(it.first);
}
for (auto& it : m_gx_uber_pipeline_cache)
{
if (!it.second.second)
QueueUberPipelineCompile(it.first);
}
}
void ShaderCache::InvalidateCachedPipelines()
{
// Set the pending flag to false, and destroy the pipeline.
for (auto& it : m_gx_pipeline_cache)
{
it.second.first.reset();
it.second.second = false;
}
for (auto& it : m_gx_uber_pipeline_cache)
{
it.second.first.reset();
it.second.second = false;
}
}
void ShaderCache::ClearPipelineCaches()
{
m_gx_pipeline_cache.clear();
m_gx_uber_pipeline_cache.clear();
}
std::unique_ptr<AbstractShader> ShaderCache::CompileVertexShader(const VertexShaderUid& uid) const
{
ShaderCode source_code = GenerateVertexShaderCode(m_api_type, m_host_config, uid.GetUidData());
return g_renderer->CreateShaderFromSource(ShaderStage::Vertex, source_code.GetBuffer().c_str(),
source_code.GetBuffer().size());
}
std::unique_ptr<AbstractShader>
ShaderCache::CompileVertexUberShader(const UberShader::VertexShaderUid& uid) const
{
ShaderCode source_code = UberShader::GenVertexShader(m_api_type, m_host_config, uid.GetUidData());
return g_renderer->CreateShaderFromSource(ShaderStage::Vertex, source_code.GetBuffer().c_str(),
source_code.GetBuffer().size());
}
std::unique_ptr<AbstractShader> ShaderCache::CompilePixelShader(const PixelShaderUid& uid) const
{
ShaderCode source_code = GeneratePixelShaderCode(m_api_type, m_host_config, uid.GetUidData());
return g_renderer->CreateShaderFromSource(ShaderStage::Pixel, source_code.GetBuffer().c_str(),
source_code.GetBuffer().size());
}
std::unique_ptr<AbstractShader>
ShaderCache::CompilePixelUberShader(const UberShader::PixelShaderUid& uid) const
{
ShaderCode source_code = UberShader::GenPixelShader(m_api_type, m_host_config, uid.GetUidData());
return g_renderer->CreateShaderFromSource(ShaderStage::Pixel, source_code.GetBuffer().c_str(),
source_code.GetBuffer().size());
}
const AbstractShader* ShaderCache::InsertVertexShader(const VertexShaderUid& uid,
std::unique_ptr<AbstractShader> shader)
{
auto& entry = m_vs_cache.shader_map[uid];
entry.pending = false;
if (shader && !entry.shader)
{
if (g_ActiveConfig.bShaderCache && shader->HasBinary())
{
auto binary = shader->GetBinary();
if (!binary.empty())
m_vs_cache.disk_cache.Append(uid, binary.data(), static_cast<u32>(binary.size()));
}
INCSTAT(stats.numVertexShadersCreated);
INCSTAT(stats.numVertexShadersAlive);
entry.shader = std::move(shader);
}
return entry.shader.get();
}
const AbstractShader* ShaderCache::InsertVertexUberShader(const UberShader::VertexShaderUid& uid,
std::unique_ptr<AbstractShader> shader)
{
auto& entry = m_uber_vs_cache.shader_map[uid];
entry.pending = false;
if (shader && !entry.shader)
{
if (g_ActiveConfig.bShaderCache && shader->HasBinary())
{
auto binary = shader->GetBinary();
if (!binary.empty())
m_uber_vs_cache.disk_cache.Append(uid, binary.data(), static_cast<u32>(binary.size()));
}
INCSTAT(stats.numVertexShadersCreated);
INCSTAT(stats.numVertexShadersAlive);
entry.shader = std::move(shader);
}
return entry.shader.get();
}
const AbstractShader* ShaderCache::InsertPixelShader(const PixelShaderUid& uid,
std::unique_ptr<AbstractShader> shader)
{
auto& entry = m_ps_cache.shader_map[uid];
entry.pending = false;
if (shader && !entry.shader)
{
if (g_ActiveConfig.bShaderCache && shader->HasBinary())
{
auto binary = shader->GetBinary();
if (!binary.empty())
m_ps_cache.disk_cache.Append(uid, binary.data(), static_cast<u32>(binary.size()));
}
INCSTAT(stats.numPixelShadersCreated);
INCSTAT(stats.numPixelShadersAlive);
entry.shader = std::move(shader);
}
return entry.shader.get();
}
const AbstractShader* ShaderCache::InsertPixelUberShader(const UberShader::PixelShaderUid& uid,
std::unique_ptr<AbstractShader> shader)
{
auto& entry = m_uber_ps_cache.shader_map[uid];
entry.pending = false;
if (shader && !entry.shader)
{
if (g_ActiveConfig.bShaderCache && shader->HasBinary())
{
auto binary = shader->GetBinary();
if (!binary.empty())
m_uber_ps_cache.disk_cache.Append(uid, binary.data(), static_cast<u32>(binary.size()));
}
INCSTAT(stats.numPixelShadersCreated);
INCSTAT(stats.numPixelShadersAlive);
entry.shader = std::move(shader);
}
return entry.shader.get();
}
const AbstractShader* ShaderCache::CreateGeometryShader(const GeometryShaderUid& uid)
{
ShaderCode source_code = GenerateGeometryShaderCode(m_api_type, m_host_config, uid.GetUidData());
std::unique_ptr<AbstractShader> shader = g_renderer->CreateShaderFromSource(
ShaderStage::Geometry, source_code.GetBuffer().c_str(), source_code.GetBuffer().size());
auto& entry = m_gs_cache.shader_map[uid];
entry.pending = false;
if (shader && !entry.shader)
{
if (g_ActiveConfig.bShaderCache && shader->HasBinary())
{
auto binary = shader->GetBinary();
if (!binary.empty())
m_gs_cache.disk_cache.Append(uid, binary.data(), static_cast<u32>(binary.size()));
}
entry.shader = std::move(shader);
}
return entry.shader.get();
}
bool ShaderCache::NeedsGeometryShader(const GeometryShaderUid& uid) const
{
return m_host_config.backend_geometry_shaders && !uid.GetUidData()->IsPassthrough();
}
AbstractPipelineConfig ShaderCache::GetGXPipelineConfig(
const NativeVertexFormat* vertex_format, const AbstractShader* vertex_shader,
const AbstractShader* geometry_shader, const AbstractShader* pixel_shader,
const RasterizationState& rasterization_state, const DepthState& depth_state,
const BlendingState& blending_state)
{
AbstractPipelineConfig config = {};
config.usage = AbstractPipelineUsage::GX;
config.vertex_format = vertex_format;
config.vertex_shader = vertex_shader;
config.geometry_shader = geometry_shader;
config.pixel_shader = pixel_shader;
config.rasterization_state = rasterization_state;
config.depth_state = depth_state;
config.blending_state = blending_state;
config.framebuffer_state.color_texture_format = AbstractTextureFormat::RGBA8;
config.framebuffer_state.depth_texture_format = AbstractTextureFormat::D32F;
config.framebuffer_state.per_sample_shading = m_host_config.ssaa;
config.framebuffer_state.samples = m_efb_multisamples;
return config;
}
std::optional<AbstractPipelineConfig> ShaderCache::GetGXPipelineConfig(const GXPipelineUid& config)
{
const AbstractShader* vs;
auto vs_iter = m_vs_cache.shader_map.find(config.vs_uid);
if (vs_iter != m_vs_cache.shader_map.end() && !vs_iter->second.pending)
vs = vs_iter->second.shader.get();
else
vs = InsertVertexShader(config.vs_uid, CompileVertexShader(config.vs_uid));
const AbstractShader* ps;
auto ps_iter = m_ps_cache.shader_map.find(config.ps_uid);
if (ps_iter != m_ps_cache.shader_map.end() && !ps_iter->second.pending)
ps = ps_iter->second.shader.get();
else
ps = InsertPixelShader(config.ps_uid, CompilePixelShader(config.ps_uid));
if (!vs || !ps)
return {};
const AbstractShader* gs = nullptr;
if (NeedsGeometryShader(config.gs_uid))
{
auto gs_iter = m_gs_cache.shader_map.find(config.gs_uid);
if (gs_iter != m_gs_cache.shader_map.end() && !gs_iter->second.pending)
gs = gs_iter->second.shader.get();
else
gs = CreateGeometryShader(config.gs_uid);
if (!gs)
return {};
}
return GetGXPipelineConfig(config.vertex_format, vs, gs, ps, config.rasterization_state,
config.depth_state, config.blending_state);
}
std::optional<AbstractPipelineConfig>
ShaderCache::GetGXUberPipelineConfig(const GXUberPipelineUid& config)
{
const AbstractShader* vs;
auto vs_iter = m_uber_vs_cache.shader_map.find(config.vs_uid);
if (vs_iter != m_uber_vs_cache.shader_map.end() && !vs_iter->second.pending)
vs = vs_iter->second.shader.get();
else
vs = InsertVertexUberShader(config.vs_uid, CompileVertexUberShader(config.vs_uid));
const AbstractShader* ps;
auto ps_iter = m_uber_ps_cache.shader_map.find(config.ps_uid);
if (ps_iter != m_uber_ps_cache.shader_map.end() && !ps_iter->second.pending)
ps = ps_iter->second.shader.get();
else
ps = InsertPixelUberShader(config.ps_uid, CompilePixelUberShader(config.ps_uid));
if (!vs || !ps)
return {};
const AbstractShader* gs = nullptr;
if (NeedsGeometryShader(config.gs_uid))
{
auto gs_iter = m_gs_cache.shader_map.find(config.gs_uid);
if (gs_iter != m_gs_cache.shader_map.end() && !gs_iter->second.pending)
gs = gs_iter->second.shader.get();
else
gs = CreateGeometryShader(config.gs_uid);
if (!gs)
return {};
}
return GetGXPipelineConfig(config.vertex_format, vs, gs, ps, config.rasterization_state,
config.depth_state, config.blending_state);
}
const AbstractPipeline* ShaderCache::InsertGXPipeline(const GXPipelineUid& config,
std::unique_ptr<AbstractPipeline> pipeline)
{
auto& entry = m_gx_pipeline_cache[config];
entry.second = false;
if (!entry.first && pipeline)
entry.first = std::move(pipeline);
return entry.first.get();
}
const AbstractPipeline*
ShaderCache::InsertGXUberPipeline(const GXUberPipelineUid& config,
std::unique_ptr<AbstractPipeline> pipeline)
{
auto& entry = m_gx_uber_pipeline_cache[config];
entry.second = false;
if (!entry.first && pipeline)
entry.first = std::move(pipeline);
return entry.first.get();
}
void ShaderCache::LoadPipelineUIDCache()
{
constexpr u32 CACHE_FILE_MAGIC = 0x44495550; // PUID
constexpr size_t CACHE_HEADER_SIZE = sizeof(u32) + sizeof(u32);
std::string filename =
File::GetUserPath(D_CACHE_IDX) + SConfig::GetInstance().GetGameID() + ".uidcache";
if (m_gx_pipeline_uid_cache_file.Open(filename, "rb+"))
{
// If an existing case exists, validate the version before reading entries.
u32 existing_magic;
u32 existing_version;
if (m_gx_pipeline_uid_cache_file.ReadBytes(&existing_magic, sizeof(existing_magic)) &&
m_gx_pipeline_uid_cache_file.ReadBytes(&existing_version, sizeof(existing_version)) &&
existing_magic == CACHE_FILE_MAGIC && existing_version == GX_PIPELINE_UID_VERSION)
{
// Ensure the expected size matches the actual size of the file. If it doesn't, it means
// the cache file may be corrupted, and we should not proceed with loading potentially
// garbage or invalid UIDs.
const u64 file_size = m_gx_pipeline_uid_cache_file.GetSize();
const size_t uid_count =
static_cast<size_t>(file_size - CACHE_HEADER_SIZE) / sizeof(SerializedGXPipelineUid);
const size_t expected_size = uid_count * sizeof(SerializedGXPipelineUid) + CACHE_HEADER_SIZE;
bool uid_file_valid = file_size == expected_size;
if (uid_file_valid)
{
for (size_t i = 0; i < uid_count; i++)
{
SerializedGXPipelineUid serialized_uid;
if (m_gx_pipeline_uid_cache_file.ReadBytes(&serialized_uid, sizeof(serialized_uid)))
{
// This just adds the pipeline to the map, it is compiled later.
AddSerializedGXPipelineUID(serialized_uid);
}
else
{
uid_file_valid = false;
break;
}
}
}
// We open the file for reading and writing, so we must seek to the end before writing.
if (!uid_file_valid || !m_gx_pipeline_uid_cache_file.Seek(expected_size, SEEK_SET))
{
// Close the file. We re-open and truncate it below.
m_gx_pipeline_uid_cache_file.Close();
}
}
}
// If the file is not open, it means it was either corrupted or didn't exist.
if (!m_gx_pipeline_uid_cache_file.IsOpen())
{
if (m_gx_pipeline_uid_cache_file.Open(filename, "wb"))
{
// Write the version identifier.
m_gx_pipeline_uid_cache_file.WriteBytes(&CACHE_FILE_MAGIC, sizeof(GX_PIPELINE_UID_VERSION));
m_gx_pipeline_uid_cache_file.WriteBytes(&GX_PIPELINE_UID_VERSION,
sizeof(GX_PIPELINE_UID_VERSION));
}
}
INFO_LOG(VIDEO, "Read %u pipeline UIDs from %s",
static_cast<unsigned>(m_gx_pipeline_cache.size()), filename.c_str());
}
void ShaderCache::ClosePipelineUIDCache()
{
// This is left as a method in case we need to append extra data to the file in the future.
m_gx_pipeline_uid_cache_file.Close();
}
void ShaderCache::AddSerializedGXPipelineUID(const SerializedGXPipelineUid& uid)
{
GXPipelineUid real_uid = {};
real_uid.vertex_format = VertexLoaderManager::GetOrCreateMatchingFormat(uid.vertex_decl);
real_uid.vs_uid = uid.vs_uid;
real_uid.gs_uid = uid.gs_uid;
real_uid.ps_uid = uid.ps_uid;
real_uid.rasterization_state.hex = uid.rasterization_state_bits;
real_uid.depth_state.hex = uid.depth_state_bits;
real_uid.blending_state.hex = uid.blending_state_bits;
auto iter = m_gx_pipeline_cache.find(real_uid);
if (iter != m_gx_pipeline_cache.end())
return;
// Flag it as empty with a null pipeline object, for later compilation.
auto& entry = m_gx_pipeline_cache[real_uid];
entry.second = false;
}
void ShaderCache::AppendGXPipelineUID(const GXPipelineUid& config)
{
if (!m_gx_pipeline_uid_cache_file.IsOpen())
return;
// Convert to disk format. Ensure all padding bytes are zero.
SerializedGXPipelineUid disk_uid;
std::memset(&disk_uid, 0, sizeof(disk_uid));
disk_uid.vertex_decl = config.vertex_format->GetVertexDeclaration();
disk_uid.vs_uid = config.vs_uid;
disk_uid.gs_uid = config.gs_uid;
disk_uid.ps_uid = config.ps_uid;
disk_uid.rasterization_state_bits = config.rasterization_state.hex;
disk_uid.depth_state_bits = config.depth_state.hex;
disk_uid.blending_state_bits = config.blending_state.hex;
if (!m_gx_pipeline_uid_cache_file.WriteBytes(&disk_uid, sizeof(disk_uid)))
{
WARN_LOG(VIDEO, "Writing pipeline UID to cache failed, closing file.");
m_gx_pipeline_uid_cache_file.Close();
}
}
void ShaderCache::QueueVertexShaderCompile(const VertexShaderUid& uid)
{
class VertexShaderWorkItem final : public AsyncShaderCompiler::WorkItem
{
public:
VertexShaderWorkItem(ShaderCache* shader_cache_, const VertexShaderUid& uid_)
: shader_cache(shader_cache_), uid(uid_)
{
}
bool Compile() override
{
shader = shader_cache->CompileVertexShader(uid);
return true;
}
void Retrieve() override { shader_cache->InsertVertexShader(uid, std::move(shader)); }
private:
ShaderCache* shader_cache;
std::unique_ptr<AbstractShader> shader;
VertexShaderUid uid;
};
m_vs_cache.shader_map[uid].pending = true;
auto wi = m_async_shader_compiler->CreateWorkItem<VertexShaderWorkItem>(this, uid);
m_async_shader_compiler->QueueWorkItem(std::move(wi));
}
void ShaderCache::QueueVertexUberShaderCompile(const UberShader::VertexShaderUid& uid)
{
class VertexUberShaderWorkItem final : public AsyncShaderCompiler::WorkItem
{
public:
VertexUberShaderWorkItem(ShaderCache* shader_cache_, const UberShader::VertexShaderUid& uid_)
: shader_cache(shader_cache_), uid(uid_)
{
}
bool Compile() override
{
shader = shader_cache->CompileVertexUberShader(uid);
return true;
}
void Retrieve() override { shader_cache->InsertVertexUberShader(uid, std::move(shader)); }
private:
ShaderCache* shader_cache;
std::unique_ptr<AbstractShader> shader;
UberShader::VertexShaderUid uid;
};
m_uber_vs_cache.shader_map[uid].pending = true;
auto wi = m_async_shader_compiler->CreateWorkItem<VertexUberShaderWorkItem>(this, uid);
m_async_shader_compiler->QueueWorkItem(std::move(wi));
}
void ShaderCache::QueuePixelShaderCompile(const PixelShaderUid& uid)
{
class PixelShaderWorkItem final : public AsyncShaderCompiler::WorkItem
{
public:
PixelShaderWorkItem(ShaderCache* shader_cache_, const PixelShaderUid& uid_)
: shader_cache(shader_cache_), uid(uid_)
{
}
bool Compile() override
{
shader = shader_cache->CompilePixelShader(uid);
return true;
}
void Retrieve() override { shader_cache->InsertPixelShader(uid, std::move(shader)); }
private:
ShaderCache* shader_cache;
std::unique_ptr<AbstractShader> shader;
PixelShaderUid uid;
};
m_ps_cache.shader_map[uid].pending = true;
auto wi = m_async_shader_compiler->CreateWorkItem<PixelShaderWorkItem>(this, uid);
m_async_shader_compiler->QueueWorkItem(std::move(wi));
}
void ShaderCache::QueuePixelUberShaderCompile(const UberShader::PixelShaderUid& uid)
{
class PixelUberShaderWorkItem final : public AsyncShaderCompiler::WorkItem
{
public:
PixelUberShaderWorkItem(ShaderCache* shader_cache_, const UberShader::PixelShaderUid& uid_)
: shader_cache(shader_cache_), uid(uid_)
{
}
bool Compile() override
{
shader = shader_cache->CompilePixelUberShader(uid);
return true;
}
void Retrieve() override { shader_cache->InsertPixelUberShader(uid, std::move(shader)); }
private:
ShaderCache* shader_cache;
std::unique_ptr<AbstractShader> shader;
UberShader::PixelShaderUid uid;
};
m_uber_ps_cache.shader_map[uid].pending = true;
auto wi = m_async_shader_compiler->CreateWorkItem<PixelUberShaderWorkItem>(this, uid);
m_async_shader_compiler->QueueWorkItem(std::move(wi));
}
void ShaderCache::QueuePipelineCompile(const GXPipelineUid& uid)
{
class PipelineWorkItem final : public AsyncShaderCompiler::WorkItem
{
public:
PipelineWorkItem(ShaderCache* shader_cache_, const GXPipelineUid& uid_)
: shader_cache(shader_cache_), uid(uid_)
{
// Check if all the stages required for this pipeline have been compiled.
// If not, this work item becomes a no-op, and re-queues the pipeline for the next frame.
if (SetStagesReady())
config = shader_cache->GetGXPipelineConfig(uid);
}
bool SetStagesReady()
{
stages_ready = true;
auto vs_it = shader_cache->m_vs_cache.shader_map.find(uid.vs_uid);
stages_ready &= vs_it != shader_cache->m_vs_cache.shader_map.end() && !vs_it->second.pending;
if (vs_it == shader_cache->m_vs_cache.shader_map.end())
shader_cache->QueueVertexShaderCompile(uid.vs_uid);
auto ps_it = shader_cache->m_ps_cache.shader_map.find(uid.ps_uid);
stages_ready &= ps_it != shader_cache->m_ps_cache.shader_map.end() && !ps_it->second.pending;
if (ps_it == shader_cache->m_ps_cache.shader_map.end())
shader_cache->QueuePixelShaderCompile(uid.ps_uid);
return stages_ready;
}
bool Compile() override
{
if (config)
pipeline = g_renderer->CreatePipeline(*config);
return true;
}
void Retrieve() override
{
if (stages_ready)
{
shader_cache->InsertGXPipeline(uid, std::move(pipeline));
}
else
{
// Re-queue for next frame.
auto wi = shader_cache->m_async_shader_compiler->CreateWorkItem<PipelineWorkItem>(
shader_cache, uid);
shader_cache->m_async_shader_compiler->QueueWorkItem(std::move(wi));
}
}
private:
ShaderCache* shader_cache;
std::unique_ptr<AbstractPipeline> pipeline;
GXPipelineUid uid;
std::optional<AbstractPipelineConfig> config;
bool stages_ready;
};
auto wi = m_async_shader_compiler->CreateWorkItem<PipelineWorkItem>(this, uid);
m_async_shader_compiler->QueueWorkItem(std::move(wi));
m_gx_pipeline_cache[uid].second = true;
}
void ShaderCache::QueueUberPipelineCompile(const GXUberPipelineUid& uid)
{
class UberPipelineWorkItem final : public AsyncShaderCompiler::WorkItem
{
public:
UberPipelineWorkItem(ShaderCache* shader_cache_, const GXUberPipelineUid& uid_)
: shader_cache(shader_cache_), uid(uid_)
{
// Check if all the stages required for this UberPipeline have been compiled.
// If not, this work item becomes a no-op, and re-queues the UberPipeline for the next frame.
if (SetStagesReady())
config = shader_cache->GetGXUberPipelineConfig(uid);
}
bool SetStagesReady()
{
stages_ready = true;
auto vs_it = shader_cache->m_uber_vs_cache.shader_map.find(uid.vs_uid);
stages_ready &=
vs_it != shader_cache->m_uber_vs_cache.shader_map.end() && !vs_it->second.pending;
if (vs_it == shader_cache->m_uber_vs_cache.shader_map.end())
shader_cache->QueueVertexUberShaderCompile(uid.vs_uid);
auto ps_it = shader_cache->m_uber_ps_cache.shader_map.find(uid.ps_uid);
stages_ready &=
ps_it != shader_cache->m_uber_ps_cache.shader_map.end() && !ps_it->second.pending;
if (ps_it == shader_cache->m_uber_ps_cache.shader_map.end())
shader_cache->QueuePixelUberShaderCompile(uid.ps_uid);
return stages_ready;
}
bool Compile() override
{
if (config)
UberPipeline = g_renderer->CreatePipeline(*config);
return true;
}
void Retrieve() override
{
if (stages_ready)
{
shader_cache->InsertGXUberPipeline(uid, std::move(UberPipeline));
}
else
{
// Re-queue for next frame.
auto wi = shader_cache->m_async_shader_compiler->CreateWorkItem<UberPipelineWorkItem>(
shader_cache, uid);
shader_cache->m_async_shader_compiler->QueueWorkItem(std::move(wi));
}
}
private:
ShaderCache* shader_cache;
std::unique_ptr<AbstractPipeline> UberPipeline;
GXUberPipelineUid uid;
std::optional<AbstractPipelineConfig> config;
bool stages_ready;
};
auto wi = m_async_shader_compiler->CreateWorkItem<UberPipelineWorkItem>(this, uid);
m_async_shader_compiler->QueueWorkItem(std::move(wi));
m_gx_uber_pipeline_cache[uid].second = true;
}
void ShaderCache::QueueUberShaderPipelines()
{
// Create a dummy vertex format with no attributes.
// All attributes will be enabled in GetUberVertexFormat.
PortableVertexDeclaration dummy_vertex_decl = {};
dummy_vertex_decl.position.components = 4;
dummy_vertex_decl.position.type = VAR_FLOAT;
dummy_vertex_decl.position.enable = true;
dummy_vertex_decl.stride = sizeof(float) * 4;
NativeVertexFormat* dummy_vertex_format =
VertexLoaderManager::GetUberVertexFormat(dummy_vertex_decl);
auto QueueDummyPipeline = [&](const UberShader::VertexShaderUid& vs_uid,
const GeometryShaderUid& gs_uid,
const UberShader::PixelShaderUid& ps_uid) {
GXUberPipelineUid config;
config.vertex_format = dummy_vertex_format;
config.vs_uid = vs_uid;
config.gs_uid = gs_uid;
config.ps_uid = ps_uid;
config.rasterization_state = RenderState::GetNoCullRasterizationState();
config.depth_state = RenderState::GetNoDepthTestingDepthStencilState();
config.blending_state = RenderState::GetNoBlendingBlendState();
auto iter = m_gx_uber_pipeline_cache.find(config);
if (iter != m_gx_uber_pipeline_cache.end())
return;
auto& entry = m_gx_uber_pipeline_cache[config];
entry.second = false;
};
// Populate the pipeline configs with empty entries, these will be compiled afterwards.
UberShader::EnumerateVertexShaderUids([&](const UberShader::VertexShaderUid& vuid) {
UberShader::EnumeratePixelShaderUids([&](const UberShader::PixelShaderUid& puid) {
// UIDs must have compatible texgens, a mismatching combination will never be queried.
if (vuid.GetUidData()->num_texgens != puid.GetUidData()->num_texgens)
return;
EnumerateGeometryShaderUids([&](const GeometryShaderUid& guid) {
if (guid.GetUidData()->numTexGens != vuid.GetUidData()->num_texgens ||
(!guid.GetUidData()->IsPassthrough() && !m_host_config.backend_geometry_shaders))
{
return;
}
QueueDummyPipeline(vuid, guid, puid);
});
});
});
}
std::string ShaderCache::GetUtilityShaderHeader() const
{
std::stringstream ss;
ss << "#define API_D3D " << (m_api_type == APIType::D3D ? 1 : 0) << "\n";
ss << "#define API_OPENGL " << (m_api_type == APIType::OpenGL ? 1 : 0) << "\n";
ss << "#define API_VULKAN " << (m_api_type == APIType::Vulkan ? 1 : 0) << "\n";
if (m_efb_multisamples > 1)
{
ss << "#define MSAA_ENABLED 1" << std::endl;
ss << "#define MSAA_SAMPLES " << m_efb_multisamples << std::endl;
if (m_host_config.ssaa)
ss << "#define SSAA_ENABLED 1" << std::endl;
}
ss << "#define EFB_LAYERS " << (m_host_config.stereo ? 2 : 1) << std::endl;
return ss.str();
}
} // namespace VideoCommon