dolphin/Source/Core/VideoCommon/TextureConversionShader.cpp
Stenzek 9e798eec94 Implement EFB copy filter and gamma in hardware backends
Also makes y_scale a dynamic parameter for EFB copies, as it doesn't
make sense to keep it as part of the uid, otherwise we're generating
redundant shaders.
2018-04-29 19:05:20 +10:00

1413 lines
46 KiB
C++

// Copyright 2009 Dolphin Emulator Project
// Licensed under GPLv2+
// Refer to the license.txt file included.
#include <array>
#include <cmath>
#include <cstdio>
#include <map>
#include <sstream>
#include "Common/CommonFuncs.h"
#include "Common/CommonTypes.h"
#include "Common/MathUtil.h"
#include "Common/MsgHandler.h"
#include "VideoCommon/RenderBase.h"
#include "VideoCommon/TextureCacheBase.h"
#include "VideoCommon/TextureConversionShader.h"
#include "VideoCommon/VideoCommon.h"
#define WRITE p += sprintf
static char text[16384];
static bool IntensityConstantAdded = false;
namespace TextureConversionShaderTiled
{
u16 GetEncodedSampleCount(EFBCopyFormat format)
{
switch (format)
{
case EFBCopyFormat::R4:
return 8;
case EFBCopyFormat::RA4:
return 4;
case EFBCopyFormat::RA8:
return 2;
case EFBCopyFormat::RGB565:
return 2;
case EFBCopyFormat::RGB5A3:
return 2;
case EFBCopyFormat::RGBA8:
return 1;
case EFBCopyFormat::A8:
case EFBCopyFormat::R8_0x1:
case EFBCopyFormat::R8:
case EFBCopyFormat::G8:
case EFBCopyFormat::B8:
return 4;
case EFBCopyFormat::RG8:
case EFBCopyFormat::GB8:
return 2;
case EFBCopyFormat::XFB:
return 2;
default:
PanicAlert("Invalid EFB Copy Format (0x%X)! (GetEncodedSampleCount)", static_cast<int>(format));
return 1;
}
}
static void WriteHeader(char*& p, APIType ApiType)
{
if (ApiType == APIType::OpenGL)
{
// left, top, of source rectangle within source texture
// width of the destination rectangle, scale_factor (1 or 2)
WRITE(p, "uniform int4 position;\n");
WRITE(p, "uniform float y_scale;\n");
WRITE(p, "uniform float gamma_rcp;\n");
WRITE(p, "uniform float2 clamp_tb;\n");
WRITE(p, "uniform int3 filter_coefficients;\n");
WRITE(p, "#define samp0 samp9\n");
WRITE(p, "SAMPLER_BINDING(9) uniform sampler2DArray samp0;\n");
WRITE(p, "FRAGMENT_OUTPUT_LOCATION(0) out vec4 ocol0;\n");
}
else if (ApiType == APIType::Vulkan)
{
WRITE(p, "UBO_BINDING(std140, 1) uniform PSBlock {\n");
WRITE(p, " int4 position;\n");
WRITE(p, " float y_scale;\n");
WRITE(p, " float gamma_rcp;\n");
WRITE(p, " float2 clamp_tb;\n");
WRITE(p, " int3 filter_coefficients;\n");
WRITE(p, "};\n");
WRITE(p, "SAMPLER_BINDING(0) uniform sampler2DArray samp0;\n");
WRITE(p, "FRAGMENT_OUTPUT_LOCATION(0) out vec4 ocol0;\n");
}
else // D3D
{
WRITE(p, "cbuffer PSBlock : register(b0) {\n");
WRITE(p, " int4 position;\n");
WRITE(p, " float y_scale;\n");
WRITE(p, " float gamma_rcp;\n");
WRITE(p, " float2 clamp_tb;\n");
WRITE(p, " int3 filter_coefficients;\n");
WRITE(p, "};\n");
WRITE(p, "sampler samp0 : register(s0);\n");
WRITE(p, "Texture2DArray Tex0 : register(t0);\n");
}
// D3D does not have roundEven(), only round(), which is specified "to the nearest integer".
// This differs from the roundEven() behavior, but to get consistency across drivers in OpenGL
// we need to use roundEven().
if (ApiType == APIType::D3D)
WRITE(p, "#define roundEven(x) round(x)\n");
// Alpha channel in the copy is set to 1 the EFB format does not have an alpha channel.
WRITE(p, "float4 RGBA8ToRGB8(float4 src)\n");
WRITE(p, "{\n");
WRITE(p, " return float4(src.xyz, 1.0);\n");
WRITE(p, "}\n");
WRITE(p, "float4 RGBA8ToRGBA6(float4 src)\n");
WRITE(p, "{\n");
WRITE(p, " int4 val = int4(roundEven(src * 255.0)) >> 2;\n");
WRITE(p, " return float4(val) / 63.0;\n");
WRITE(p, "}\n");
WRITE(p, "float4 RGBA8ToRGB565(float4 src)\n");
WRITE(p, "{\n");
WRITE(p, " int4 val = int4(roundEven(src * 255.0));\n");
WRITE(p, " val = int4(val.r >> 3, val.g >> 2, val.b >> 3, 1);\n");
WRITE(p, " return float4(val) / float4(31.0, 63.0, 31.0, 1.0);\n");
WRITE(p, "}\n");
}
static void WriteSampleFunction(char*& p, const EFBCopyParams& params, APIType ApiType)
{
auto WriteSampleOp = [&](int yoffset) {
if (!params.depth)
{
switch (params.efb_format)
{
case PEControl::RGB8_Z24:
WRITE(p, "RGBA8ToRGB8(");
break;
case PEControl::RGBA6_Z24:
WRITE(p, "RGBA8ToRGBA6(");
break;
case PEControl::RGB565_Z16:
WRITE(p, "RGBA8ToRGB565(");
break;
default:
WRITE(p, "(");
break;
}
}
else
{
// Handle D3D depth inversion.
if (ApiType == APIType::D3D || ApiType == APIType::Vulkan)
WRITE(p, "1.0 - (");
else
WRITE(p, "(");
}
if (ApiType == APIType::OpenGL || ApiType == APIType::Vulkan)
WRITE(p, "texture(samp0, float3(");
else
WRITE(p, "Tex0.Sample(samp0, float3(");
WRITE(p, "uv.x + xoffset * pixel_size.x, ");
// Reverse the direction for OpenGL, since positive numbers are distance from the bottom row.
if (yoffset != 0)
{
if (ApiType == APIType::OpenGL)
WRITE(p, "clamp(uv.y - float(%d) * pixel_size.y, clamp_tb.x, clamp_tb.y)", yoffset);
else
WRITE(p, "clamp(uv.y + float(%d) * pixel_size.y, clamp_tb.x, clamp_tb.y)", yoffset);
}
else
{
WRITE(p, "uv.y");
}
WRITE(p, ", 0.0)))");
};
// The copy filter applies to both color and depth copies. This has been verified on hardware.
// The filter is only applied to the RGB channels, the alpha channel is left intact.
WRITE(p, "float4 SampleEFB(float2 uv, float2 pixel_size, int xoffset)\n");
WRITE(p, "{\n");
WRITE(p, " float4 prev_row = ");
WriteSampleOp(-1);
WRITE(p, ";\n");
WRITE(p, " float4 current_row = ");
WriteSampleOp(0);
WRITE(p, ";\n");
WRITE(p, " float4 next_row = ");
WriteSampleOp(1);
WRITE(p, ";\n");
WRITE(p,
" float3 col = float3(clamp((int3(prev_row.rgb * 255.0) * filter_coefficients[0] +\n"
" int3(current_row.rgb * 255.0) * filter_coefficients[1] +\n"
" int3(next_row.rgb * 255.0) * filter_coefficients[2]) >> 6,\n"
" int3(0, 0, 0), int3(255, 255, 255))) / 255.0;\n");
WRITE(p, " return float4(col, current_row.a);\n");
WRITE(p, "}\n");
}
// block dimensions : widthStride, heightStride
// texture dims : width, height, x offset, y offset
static void WriteSwizzler(char*& p, const EFBCopyParams& params, EFBCopyFormat format,
APIType ApiType)
{
WriteHeader(p, ApiType);
WriteSampleFunction(p, params, ApiType);
if (ApiType == APIType::OpenGL || ApiType == APIType::Vulkan)
{
WRITE(p, "void main()\n");
WRITE(p, "{\n"
" int2 sampleUv;\n"
" int2 uv1 = int2(gl_FragCoord.xy);\n");
}
else // D3D
{
WRITE(p, "void main(\n");
WRITE(p, " out float4 ocol0 : SV_Target, in float4 rawpos : SV_Position)\n");
WRITE(p, "{\n"
" int2 sampleUv;\n"
" int2 uv1 = int2(rawpos.xy);\n");
}
int blkW = TexDecoder_GetEFBCopyBlockWidthInTexels(format);
int blkH = TexDecoder_GetEFBCopyBlockHeightInTexels(format);
int samples = GetEncodedSampleCount(format);
WRITE(p, " int x_block_position = (uv1.x >> %d) << %d;\n", IntLog2(blkH * blkW / samples),
IntLog2(blkW));
WRITE(p, " int y_block_position = uv1.y << %d;\n", IntLog2(blkH));
if (samples == 1)
{
// With samples == 1, we write out pairs of blocks; one A8R8, one G8B8.
WRITE(p, " bool first = (uv1.x & %d) == 0;\n", blkH * blkW / 2);
samples = 2;
}
WRITE(p, " int offset_in_block = uv1.x & %d;\n", (blkH * blkW / samples) - 1);
WRITE(p, " int y_offset_in_block = offset_in_block >> %d;\n", IntLog2(blkW / samples));
WRITE(p, " int x_offset_in_block = (offset_in_block & %d) << %d;\n", (blkW / samples) - 1,
IntLog2(samples));
WRITE(p, " sampleUv.x = x_block_position + x_offset_in_block;\n");
WRITE(p, " sampleUv.y = y_block_position + y_offset_in_block;\n");
WRITE(p,
" float2 uv0 = float2(sampleUv);\n"); // sampleUv is the sample position in (int)gx_coords
WRITE(p, " uv0 += float2(0.5, 0.5);\n"); // move to center of pixel
WRITE(p, " uv0 *= float(position.w);\n"); // scale by two if needed (also move to pixel borders
// so that linear filtering will average adjacent
// pixel)
WRITE(p, " uv0 += float2(position.xy);\n"); // move to copied rect
WRITE(p, " uv0 /= float2(%d, %d);\n", EFB_WIDTH, EFB_HEIGHT); // normalize to [0:1]
WRITE(p, " uv0 /= float2(1, y_scale);\n"); // apply the y scaling
if (ApiType == APIType::OpenGL) // ogl has to flip up and down
{
WRITE(p, " uv0.y = 1.0-uv0.y;\n");
}
WRITE(p, " float2 pixel_size = position.ww / float2(%d, %d);\n", EFB_WIDTH, EFB_HEIGHT);
}
static void WriteSampleColor(char*& p, const char* colorComp, const char* dest, int xoffset,
APIType ApiType, const EFBCopyParams& params)
{
WRITE(p, " %s = SampleEFB(uv0, pixel_size, %d).%s;\n", dest, xoffset, colorComp);
}
static void WriteColorToIntensity(char*& p, const char* src, const char* dest)
{
if (!IntensityConstantAdded)
{
WRITE(p, " float4 IntensityConst = float4(0.257f,0.504f,0.098f,0.0625f);\n");
IntensityConstantAdded = true;
}
WRITE(p, " %s = dot(IntensityConst.rgb, %s.rgb);\n", dest, src);
// don't add IntensityConst.a yet, because doing it later is faster and uses less instructions,
// due to vectorization
}
static void WriteToBitDepth(char*& p, u8 depth, const char* src, const char* dest)
{
WRITE(p, " %s = floor(%s * 255.0 / exp2(8.0 - %d.0));\n", dest, src, depth);
}
static void WriteEncoderEnd(char*& p)
{
WRITE(p, "}\n");
IntensityConstantAdded = false;
}
static void WriteI8Encoder(char*& p, APIType ApiType, const EFBCopyParams& params)
{
WriteSwizzler(p, params, EFBCopyFormat::R8, ApiType);
WRITE(p, " float3 texSample;\n");
WriteSampleColor(p, "rgb", "texSample", 0, ApiType, params);
WriteColorToIntensity(p, "texSample", "ocol0.b");
WriteSampleColor(p, "rgb", "texSample", 1, ApiType, params);
WriteColorToIntensity(p, "texSample", "ocol0.g");
WriteSampleColor(p, "rgb", "texSample", 2, ApiType, params);
WriteColorToIntensity(p, "texSample", "ocol0.r");
WriteSampleColor(p, "rgb", "texSample", 3, ApiType, params);
WriteColorToIntensity(p, "texSample", "ocol0.a");
WRITE(p, " ocol0.rgba += IntensityConst.aaaa;\n"); // see WriteColorToIntensity
WriteEncoderEnd(p);
}
static void WriteI4Encoder(char*& p, APIType ApiType, const EFBCopyParams& params)
{
WriteSwizzler(p, params, EFBCopyFormat::R4, ApiType);
WRITE(p, " float3 texSample;\n");
WRITE(p, " float4 color0;\n");
WRITE(p, " float4 color1;\n");
WriteSampleColor(p, "rgb", "texSample", 0, ApiType, params);
WriteColorToIntensity(p, "texSample", "color0.b");
WriteSampleColor(p, "rgb", "texSample", 1, ApiType, params);
WriteColorToIntensity(p, "texSample", "color1.b");
WriteSampleColor(p, "rgb", "texSample", 2, ApiType, params);
WriteColorToIntensity(p, "texSample", "color0.g");
WriteSampleColor(p, "rgb", "texSample", 3, ApiType, params);
WriteColorToIntensity(p, "texSample", "color1.g");
WriteSampleColor(p, "rgb", "texSample", 4, ApiType, params);
WriteColorToIntensity(p, "texSample", "color0.r");
WriteSampleColor(p, "rgb", "texSample", 5, ApiType, params);
WriteColorToIntensity(p, "texSample", "color1.r");
WriteSampleColor(p, "rgb", "texSample", 6, ApiType, params);
WriteColorToIntensity(p, "texSample", "color0.a");
WriteSampleColor(p, "rgb", "texSample", 7, ApiType, params);
WriteColorToIntensity(p, "texSample", "color1.a");
WRITE(p, " color0.rgba += IntensityConst.aaaa;\n");
WRITE(p, " color1.rgba += IntensityConst.aaaa;\n");
WriteToBitDepth(p, 4, "color0", "color0");
WriteToBitDepth(p, 4, "color1", "color1");
WRITE(p, " ocol0 = (color0 * 16.0 + color1) / 255.0;\n");
WriteEncoderEnd(p);
}
static void WriteIA8Encoder(char*& p, APIType ApiType, const EFBCopyParams& params)
{
WriteSwizzler(p, params, EFBCopyFormat::RA8, ApiType);
WRITE(p, " float4 texSample;\n");
WriteSampleColor(p, "rgba", "texSample", 0, ApiType, params);
WRITE(p, " ocol0.b = texSample.a;\n");
WriteColorToIntensity(p, "texSample", "ocol0.g");
WriteSampleColor(p, "rgba", "texSample", 1, ApiType, params);
WRITE(p, " ocol0.r = texSample.a;\n");
WriteColorToIntensity(p, "texSample", "ocol0.a");
WRITE(p, " ocol0.ga += IntensityConst.aa;\n");
WriteEncoderEnd(p);
}
static void WriteIA4Encoder(char*& p, APIType ApiType, const EFBCopyParams& params)
{
WriteSwizzler(p, params, EFBCopyFormat::RA4, ApiType);
WRITE(p, " float4 texSample;\n");
WRITE(p, " float4 color0;\n");
WRITE(p, " float4 color1;\n");
WriteSampleColor(p, "rgba", "texSample", 0, ApiType, params);
WRITE(p, " color0.b = texSample.a;\n");
WriteColorToIntensity(p, "texSample", "color1.b");
WriteSampleColor(p, "rgba", "texSample", 1, ApiType, params);
WRITE(p, " color0.g = texSample.a;\n");
WriteColorToIntensity(p, "texSample", "color1.g");
WriteSampleColor(p, "rgba", "texSample", 2, ApiType, params);
WRITE(p, " color0.r = texSample.a;\n");
WriteColorToIntensity(p, "texSample", "color1.r");
WriteSampleColor(p, "rgba", "texSample", 3, ApiType, params);
WRITE(p, " color0.a = texSample.a;\n");
WriteColorToIntensity(p, "texSample", "color1.a");
WRITE(p, " color1.rgba += IntensityConst.aaaa;\n");
WriteToBitDepth(p, 4, "color0", "color0");
WriteToBitDepth(p, 4, "color1", "color1");
WRITE(p, " ocol0 = (color0 * 16.0 + color1) / 255.0;\n");
WriteEncoderEnd(p);
}
static void WriteRGB565Encoder(char*& p, APIType ApiType, const EFBCopyParams& params)
{
WriteSwizzler(p, params, EFBCopyFormat::RGB565, ApiType);
WRITE(p, " float3 texSample0;\n");
WRITE(p, " float3 texSample1;\n");
WriteSampleColor(p, "rgb", "texSample0", 0, ApiType, params);
WriteSampleColor(p, "rgb", "texSample1", 1, ApiType, params);
WRITE(p, " float2 texRs = float2(texSample0.r, texSample1.r);\n");
WRITE(p, " float2 texGs = float2(texSample0.g, texSample1.g);\n");
WRITE(p, " float2 texBs = float2(texSample0.b, texSample1.b);\n");
WriteToBitDepth(p, 6, "texGs", "float2 gInt");
WRITE(p, " float2 gUpper = floor(gInt / 8.0);\n");
WRITE(p, " float2 gLower = gInt - gUpper * 8.0;\n");
WriteToBitDepth(p, 5, "texRs", "ocol0.br");
WRITE(p, " ocol0.br = ocol0.br * 8.0 + gUpper;\n");
WriteToBitDepth(p, 5, "texBs", "ocol0.ga");
WRITE(p, " ocol0.ga = ocol0.ga + gLower * 32.0;\n");
WRITE(p, " ocol0 = ocol0 / 255.0;\n");
WriteEncoderEnd(p);
}
static void WriteRGB5A3Encoder(char*& p, APIType ApiType, const EFBCopyParams& params)
{
WriteSwizzler(p, params, EFBCopyFormat::RGB5A3, ApiType);
WRITE(p, " float4 texSample;\n");
WRITE(p, " float color0;\n");
WRITE(p, " float gUpper;\n");
WRITE(p, " float gLower;\n");
WriteSampleColor(p, "rgba", "texSample", 0, ApiType, params);
// 0.8784 = 224 / 255 which is the maximum alpha value that can be represented in 3 bits
WRITE(p, "if(texSample.a > 0.878f) {\n");
WriteToBitDepth(p, 5, "texSample.g", "color0");
WRITE(p, " gUpper = floor(color0 / 8.0);\n");
WRITE(p, " gLower = color0 - gUpper * 8.0;\n");
WriteToBitDepth(p, 5, "texSample.r", "ocol0.b");
WRITE(p, " ocol0.b = ocol0.b * 4.0 + gUpper + 128.0;\n");
WriteToBitDepth(p, 5, "texSample.b", "ocol0.g");
WRITE(p, " ocol0.g = ocol0.g + gLower * 32.0;\n");
WRITE(p, "} else {\n");
WriteToBitDepth(p, 4, "texSample.r", "ocol0.b");
WriteToBitDepth(p, 4, "texSample.b", "ocol0.g");
WriteToBitDepth(p, 3, "texSample.a", "color0");
WRITE(p, "ocol0.b = ocol0.b + color0 * 16.0;\n");
WriteToBitDepth(p, 4, "texSample.g", "color0");
WRITE(p, "ocol0.g = ocol0.g + color0 * 16.0;\n");
WRITE(p, "}\n");
WriteSampleColor(p, "rgba", "texSample", 1, ApiType, params);
WRITE(p, "if(texSample.a > 0.878f) {\n");
WriteToBitDepth(p, 5, "texSample.g", "color0");
WRITE(p, " gUpper = floor(color0 / 8.0);\n");
WRITE(p, " gLower = color0 - gUpper * 8.0;\n");
WriteToBitDepth(p, 5, "texSample.r", "ocol0.r");
WRITE(p, " ocol0.r = ocol0.r * 4.0 + gUpper + 128.0;\n");
WriteToBitDepth(p, 5, "texSample.b", "ocol0.a");
WRITE(p, " ocol0.a = ocol0.a + gLower * 32.0;\n");
WRITE(p, "} else {\n");
WriteToBitDepth(p, 4, "texSample.r", "ocol0.r");
WriteToBitDepth(p, 4, "texSample.b", "ocol0.a");
WriteToBitDepth(p, 3, "texSample.a", "color0");
WRITE(p, "ocol0.r = ocol0.r + color0 * 16.0;\n");
WriteToBitDepth(p, 4, "texSample.g", "color0");
WRITE(p, "ocol0.a = ocol0.a + color0 * 16.0;\n");
WRITE(p, "}\n");
WRITE(p, " ocol0 = ocol0 / 255.0;\n");
WriteEncoderEnd(p);
}
static void WriteRGBA8Encoder(char*& p, APIType ApiType, const EFBCopyParams& params)
{
WriteSwizzler(p, params, EFBCopyFormat::RGBA8, ApiType);
WRITE(p, " float4 texSample;\n");
WRITE(p, " float4 color0;\n");
WRITE(p, " float4 color1;\n");
WriteSampleColor(p, "rgba", "texSample", 0, ApiType, params);
WRITE(p, " color0.b = texSample.a;\n");
WRITE(p, " color0.g = texSample.r;\n");
WRITE(p, " color1.b = texSample.g;\n");
WRITE(p, " color1.g = texSample.b;\n");
WriteSampleColor(p, "rgba", "texSample", 1, ApiType, params);
WRITE(p, " color0.r = texSample.a;\n");
WRITE(p, " color0.a = texSample.r;\n");
WRITE(p, " color1.r = texSample.g;\n");
WRITE(p, " color1.a = texSample.b;\n");
WRITE(p, " ocol0 = first ? color0 : color1;\n");
WriteEncoderEnd(p);
}
static void WriteC4Encoder(char*& p, const char* comp, APIType ApiType, const EFBCopyParams& params)
{
WriteSwizzler(p, params, EFBCopyFormat::R4, ApiType);
WRITE(p, " float4 color0;\n");
WRITE(p, " float4 color1;\n");
WriteSampleColor(p, comp, "color0.b", 0, ApiType, params);
WriteSampleColor(p, comp, "color1.b", 1, ApiType, params);
WriteSampleColor(p, comp, "color0.g", 2, ApiType, params);
WriteSampleColor(p, comp, "color1.g", 3, ApiType, params);
WriteSampleColor(p, comp, "color0.r", 4, ApiType, params);
WriteSampleColor(p, comp, "color1.r", 5, ApiType, params);
WriteSampleColor(p, comp, "color0.a", 6, ApiType, params);
WriteSampleColor(p, comp, "color1.a", 7, ApiType, params);
WriteToBitDepth(p, 4, "color0", "color0");
WriteToBitDepth(p, 4, "color1", "color1");
WRITE(p, " ocol0 = (color0 * 16.0 + color1) / 255.0;\n");
WriteEncoderEnd(p);
}
static void WriteC8Encoder(char*& p, const char* comp, APIType ApiType, const EFBCopyParams& params)
{
WriteSwizzler(p, params, EFBCopyFormat::R8, ApiType);
WriteSampleColor(p, comp, "ocol0.b", 0, ApiType, params);
WriteSampleColor(p, comp, "ocol0.g", 1, ApiType, params);
WriteSampleColor(p, comp, "ocol0.r", 2, ApiType, params);
WriteSampleColor(p, comp, "ocol0.a", 3, ApiType, params);
WriteEncoderEnd(p);
}
static void WriteCC4Encoder(char*& p, const char* comp, APIType ApiType,
const EFBCopyParams& params)
{
WriteSwizzler(p, params, EFBCopyFormat::RA4, ApiType);
WRITE(p, " float2 texSample;\n");
WRITE(p, " float4 color0;\n");
WRITE(p, " float4 color1;\n");
WriteSampleColor(p, comp, "texSample", 0, ApiType, params);
WRITE(p, " color0.b = texSample.x;\n");
WRITE(p, " color1.b = texSample.y;\n");
WriteSampleColor(p, comp, "texSample", 1, ApiType, params);
WRITE(p, " color0.g = texSample.x;\n");
WRITE(p, " color1.g = texSample.y;\n");
WriteSampleColor(p, comp, "texSample", 2, ApiType, params);
WRITE(p, " color0.r = texSample.x;\n");
WRITE(p, " color1.r = texSample.y;\n");
WriteSampleColor(p, comp, "texSample", 3, ApiType, params);
WRITE(p, " color0.a = texSample.x;\n");
WRITE(p, " color1.a = texSample.y;\n");
WriteToBitDepth(p, 4, "color0", "color0");
WriteToBitDepth(p, 4, "color1", "color1");
WRITE(p, " ocol0 = (color0 * 16.0 + color1) / 255.0;\n");
WriteEncoderEnd(p);
}
static void WriteCC8Encoder(char*& p, const char* comp, APIType ApiType,
const EFBCopyParams& params)
{
WriteSwizzler(p, params, EFBCopyFormat::RA8, ApiType);
WriteSampleColor(p, comp, "ocol0.bg", 0, ApiType, params);
WriteSampleColor(p, comp, "ocol0.ra", 1, ApiType, params);
WriteEncoderEnd(p);
}
static void WriteZ8Encoder(char*& p, const char* multiplier, APIType ApiType,
const EFBCopyParams& params)
{
WriteSwizzler(p, params, EFBCopyFormat::G8, ApiType);
WRITE(p, " float depth;\n");
WriteSampleColor(p, "r", "depth", 0, ApiType, params);
WRITE(p, "ocol0.b = frac(depth * %s);\n", multiplier);
WriteSampleColor(p, "r", "depth", 1, ApiType, params);
WRITE(p, "ocol0.g = frac(depth * %s);\n", multiplier);
WriteSampleColor(p, "r", "depth", 2, ApiType, params);
WRITE(p, "ocol0.r = frac(depth * %s);\n", multiplier);
WriteSampleColor(p, "r", "depth", 3, ApiType, params);
WRITE(p, "ocol0.a = frac(depth * %s);\n", multiplier);
WriteEncoderEnd(p);
}
static void WriteZ16Encoder(char*& p, APIType ApiType, const EFBCopyParams& params)
{
WriteSwizzler(p, params, EFBCopyFormat::RA8, ApiType);
WRITE(p, " float depth;\n");
WRITE(p, " float3 expanded;\n");
// byte order is reversed
WriteSampleColor(p, "r", "depth", 0, ApiType, params);
WRITE(p, " depth *= 16777216.0;\n");
WRITE(p, " expanded.r = floor(depth / (256.0 * 256.0));\n");
WRITE(p, " depth -= expanded.r * 256.0 * 256.0;\n");
WRITE(p, " expanded.g = floor(depth / 256.0);\n");
WRITE(p, " ocol0.b = expanded.g / 255.0;\n");
WRITE(p, " ocol0.g = expanded.r / 255.0;\n");
WriteSampleColor(p, "r", "depth", 1, ApiType, params);
WRITE(p, " depth *= 16777216.0;\n");
WRITE(p, " expanded.r = floor(depth / (256.0 * 256.0));\n");
WRITE(p, " depth -= expanded.r * 256.0 * 256.0;\n");
WRITE(p, " expanded.g = floor(depth / 256.0);\n");
WRITE(p, " ocol0.r = expanded.g / 255.0;\n");
WRITE(p, " ocol0.a = expanded.r / 255.0;\n");
WriteEncoderEnd(p);
}
static void WriteZ16LEncoder(char*& p, APIType ApiType, const EFBCopyParams& params)
{
WriteSwizzler(p, params, EFBCopyFormat::GB8, ApiType);
WRITE(p, " float depth;\n");
WRITE(p, " float3 expanded;\n");
// byte order is reversed
WriteSampleColor(p, "r", "depth", 0, ApiType, params);
WRITE(p, " depth *= 16777216.0;\n");
WRITE(p, " expanded.r = floor(depth / (256.0 * 256.0));\n");
WRITE(p, " depth -= expanded.r * 256.0 * 256.0;\n");
WRITE(p, " expanded.g = floor(depth / 256.0);\n");
WRITE(p, " depth -= expanded.g * 256.0;\n");
WRITE(p, " expanded.b = depth;\n");
WRITE(p, " ocol0.b = expanded.b / 255.0;\n");
WRITE(p, " ocol0.g = expanded.g / 255.0;\n");
WriteSampleColor(p, "r", "depth", 1, ApiType, params);
WRITE(p, " depth *= 16777216.0;\n");
WRITE(p, " expanded.r = floor(depth / (256.0 * 256.0));\n");
WRITE(p, " depth -= expanded.r * 256.0 * 256.0;\n");
WRITE(p, " expanded.g = floor(depth / 256.0);\n");
WRITE(p, " depth -= expanded.g * 256.0;\n");
WRITE(p, " expanded.b = depth;\n");
WRITE(p, " ocol0.r = expanded.b / 255.0;\n");
WRITE(p, " ocol0.a = expanded.g / 255.0;\n");
WriteEncoderEnd(p);
}
static void WriteZ24Encoder(char*& p, APIType ApiType, const EFBCopyParams& params)
{
WriteSwizzler(p, params, EFBCopyFormat::RGBA8, ApiType);
WRITE(p, " float depth0;\n");
WRITE(p, " float depth1;\n");
WRITE(p, " float3 expanded0;\n");
WRITE(p, " float3 expanded1;\n");
WriteSampleColor(p, "r", "depth0", 0, ApiType, params);
WriteSampleColor(p, "r", "depth1", 1, ApiType, params);
for (int i = 0; i < 2; i++)
{
WRITE(p, " depth%i *= 16777216.0;\n", i);
WRITE(p, " expanded%i.r = floor(depth%i / (256.0 * 256.0));\n", i, i);
WRITE(p, " depth%i -= expanded%i.r * 256.0 * 256.0;\n", i, i);
WRITE(p, " expanded%i.g = floor(depth%i / 256.0);\n", i, i);
WRITE(p, " depth%i -= expanded%i.g * 256.0;\n", i, i);
WRITE(p, " expanded%i.b = depth%i;\n", i, i);
}
WRITE(p, " if (!first) {\n");
// upper 16
WRITE(p, " ocol0.b = expanded0.g / 255.0;\n");
WRITE(p, " ocol0.g = expanded0.b / 255.0;\n");
WRITE(p, " ocol0.r = expanded1.g / 255.0;\n");
WRITE(p, " ocol0.a = expanded1.b / 255.0;\n");
WRITE(p, " } else {\n");
// lower 8
WRITE(p, " ocol0.b = 1.0;\n");
WRITE(p, " ocol0.g = expanded0.r / 255.0;\n");
WRITE(p, " ocol0.r = 1.0;\n");
WRITE(p, " ocol0.a = expanded1.r / 255.0;\n");
WRITE(p, " }\n");
WriteEncoderEnd(p);
}
static void WriteXFBEncoder(char*& p, APIType ApiType, const EFBCopyParams& params)
{
WriteSwizzler(p, params, EFBCopyFormat::XFB, ApiType);
WRITE(p, "float3 color0, color1;\n");
WriteSampleColor(p, "rgb", "color0", 0, ApiType, params);
WriteSampleColor(p, "rgb", "color1", 1, ApiType, params);
// Gamma is only applied to XFB copies.
WRITE(p, " color0 = pow(color0, gamma_rcp.xxx);\n");
WRITE(p, " color1 = pow(color1, gamma_rcp.xxx);\n");
// Convert to YUV.
WRITE(p, " const float3 y_const = float3(0.257, 0.504, 0.098);\n");
WRITE(p, " const float3 u_const = float3(-0.148, -0.291, 0.439);\n");
WRITE(p, " const float3 v_const = float3(0.439, -0.368, -0.071);\n");
WRITE(p, " float3 average = (color0 + color1) * 0.5;\n");
WRITE(p, " ocol0.b = dot(color0, y_const) + 0.0625;\n");
WRITE(p, " ocol0.g = dot(average, u_const) + 0.5;\n");
WRITE(p, " ocol0.r = dot(color1, y_const) + 0.0625;\n");
WRITE(p, " ocol0.a = dot(average, v_const) + 0.5;\n");
WriteEncoderEnd(p);
}
const char* GenerateEncodingShader(const EFBCopyParams& params, APIType api_type)
{
text[sizeof(text) - 1] = 0x7C; // canary
char* p = text;
switch (params.copy_format)
{
case EFBCopyFormat::R4:
if (params.yuv)
WriteI4Encoder(p, api_type, params);
else
WriteC4Encoder(p, "r", api_type, params);
break;
case EFBCopyFormat::RA4:
if (params.yuv)
WriteIA4Encoder(p, api_type, params);
else
WriteCC4Encoder(p, "ar", api_type, params);
break;
case EFBCopyFormat::RA8:
if (params.yuv)
WriteIA8Encoder(p, api_type, params);
else
WriteCC8Encoder(p, "ar", api_type, params);
break;
case EFBCopyFormat::RGB565:
WriteRGB565Encoder(p, api_type, params);
break;
case EFBCopyFormat::RGB5A3:
WriteRGB5A3Encoder(p, api_type, params);
break;
case EFBCopyFormat::RGBA8:
if (params.depth)
WriteZ24Encoder(p, api_type, params);
else
WriteRGBA8Encoder(p, api_type, params);
break;
case EFBCopyFormat::A8:
WriteC8Encoder(p, "a", api_type, params);
break;
case EFBCopyFormat::R8_0x1:
case EFBCopyFormat::R8:
if (params.yuv)
WriteI8Encoder(p, api_type, params);
else
WriteC8Encoder(p, "r", api_type, params);
break;
case EFBCopyFormat::G8:
if (params.depth)
WriteZ8Encoder(p, "256.0", api_type, params); // Z8M
else
WriteC8Encoder(p, "g", api_type, params);
break;
case EFBCopyFormat::B8:
if (params.depth)
WriteZ8Encoder(p, "65536.0", api_type, params); // Z8L
else
WriteC8Encoder(p, "b", api_type, params);
break;
case EFBCopyFormat::RG8:
if (params.depth)
WriteZ16Encoder(p, api_type, params); // Z16H
else
WriteCC8Encoder(p, "rg", api_type, params);
break;
case EFBCopyFormat::GB8:
if (params.depth)
WriteZ16LEncoder(p, api_type, params); // Z16L
else
WriteCC8Encoder(p, "gb", api_type, params);
break;
case EFBCopyFormat::XFB:
WriteXFBEncoder(p, api_type, params);
break;
default:
PanicAlert("Invalid EFB Copy Format (0x%X)! (GenerateEncodingShader)",
static_cast<int>(params.copy_format));
break;
}
if (text[sizeof(text) - 1] != 0x7C)
PanicAlert("TextureConversionShader generator - buffer too small, canary has been eaten!");
return text;
}
// NOTE: In these uniforms, a row refers to a row of blocks, not texels.
static const char decoding_shader_header[] = R"(
#ifdef VULKAN
layout(std140, push_constant) uniform PushConstants {
uvec2 dst_size;
uvec2 src_size;
uint src_offset;
uint src_row_stride;
uint palette_offset;
} push_constants;
#define u_dst_size (push_constants.dst_size)
#define u_src_size (push_constants.src_size)
#define u_src_offset (push_constants.src_offset)
#define u_src_row_stride (push_constants.src_row_stride)
#define u_palette_offset (push_constants.palette_offset)
TEXEL_BUFFER_BINDING(0) uniform usamplerBuffer s_input_buffer;
TEXEL_BUFFER_BINDING(1) uniform usamplerBuffer s_palette_buffer;
IMAGE_BINDING(rgba8, 0) uniform writeonly image2DArray output_image;
#else
uniform uvec2 u_dst_size;
uniform uvec2 u_src_size;
uniform uint u_src_offset;
uniform uint u_src_row_stride;
uniform uint u_palette_offset;
SAMPLER_BINDING(9) uniform usamplerBuffer s_input_buffer;
SAMPLER_BINDING(10) uniform usamplerBuffer s_palette_buffer;
layout(rgba8, binding = 0) uniform writeonly image2DArray output_image;
#endif
uint Swap16(uint v)
{
// Convert BE to LE.
return ((v >> 8) | (v << 8)) & 0xFFFFu;
}
uint Convert3To8(uint v)
{
// Swizzle bits: 00000123 -> 12312312
return (v << 5) | (v << 2) | (v >> 1);
}
uint Convert4To8(uint v)
{
// Swizzle bits: 00001234 -> 12341234
return (v << 4) | v;
}
uint Convert5To8(uint v)
{
// Swizzle bits: 00012345 -> 12345123
return (v << 3) | (v >> 2);
}
uint Convert6To8(uint v)
{
// Swizzle bits: 00123456 -> 12345612
return (v << 2) | (v >> 4);
}
uint GetTiledTexelOffset(uvec2 block_size, uvec2 coords)
{
uvec2 block = coords / block_size;
uvec2 offset = coords % block_size;
uint buffer_pos = u_src_offset;
buffer_pos += block.y * u_src_row_stride;
buffer_pos += block.x * (block_size.x * block_size.y);
buffer_pos += offset.y * block_size.x;
buffer_pos += offset.x;
return buffer_pos;
}
uvec4 GetPaletteColor(uint index)
{
// Fetch and swap BE to LE.
uint val = Swap16(texelFetch(s_palette_buffer, int(u_palette_offset + index)).x);
uvec4 color;
#if defined(PALETTE_FORMAT_IA8)
uint a = bitfieldExtract(val, 8, 8);
uint i = bitfieldExtract(val, 0, 8);
color = uvec4(i, i, i, a);
#elif defined(PALETTE_FORMAT_RGB565)
color.x = Convert5To8(bitfieldExtract(val, 11, 5));
color.y = Convert6To8(bitfieldExtract(val, 5, 6));
color.z = Convert5To8(bitfieldExtract(val, 0, 5));
color.a = 255u;
#elif defined(PALETTE_FORMAT_RGB5A3)
if ((val & 0x8000u) != 0u)
{
color.x = Convert5To8(bitfieldExtract(val, 10, 5));
color.y = Convert5To8(bitfieldExtract(val, 5, 5));
color.z = Convert5To8(bitfieldExtract(val, 0, 5));
color.a = 255u;
}
else
{
color.a = Convert3To8(bitfieldExtract(val, 12, 3));
color.r = Convert4To8(bitfieldExtract(val, 8, 4));
color.g = Convert4To8(bitfieldExtract(val, 4, 4));
color.b = Convert4To8(bitfieldExtract(val, 0, 4));
}
#else
// Not used.
color = uvec4(0, 0, 0, 0);
#endif
return color;
}
vec4 GetPaletteColorNormalized(uint index)
{
uvec4 color = GetPaletteColor(index);
return vec4(color) / 255.0;
}
)";
static const std::map<TextureFormat, DecodingShaderInfo> s_decoding_shader_info{
{TextureFormat::I4,
{BUFFER_FORMAT_R8_UINT, 0, 8, 8, false,
R"(
layout(local_size_x = 8, local_size_y = 8) in;
void main()
{
uvec2 coords = gl_GlobalInvocationID.xy;
// Tiled in 8x8 blocks, 4 bits per pixel
// We need to do the tiling manually here because the texel size is smaller than
// the size of the buffer elements.
uint2 block = coords.xy / 8u;
uint2 offset = coords.xy % 8u;
uint buffer_pos = u_src_offset;
buffer_pos += block.y * u_src_row_stride;
buffer_pos += block.x * 32u;
buffer_pos += offset.y * 4u;
buffer_pos += offset.x / 2u;
// Select high nibble for odd texels, low for even.
uint val = texelFetch(s_input_buffer, int(buffer_pos)).x;
uint i;
if ((coords.x & 1u) == 0u)
i = Convert4To8((val >> 4));
else
i = Convert4To8((val & 0x0Fu));
uvec4 color = uvec4(i, i, i, i);
vec4 norm_color = vec4(color) / 255.0;
imageStore(output_image, ivec3(ivec2(coords), 0), norm_color);
}
)"}},
{TextureFormat::IA4,
{BUFFER_FORMAT_R8_UINT, 0, 8, 8, false,
R"(
layout(local_size_x = 8, local_size_y = 8) in;
void main()
{
uvec2 coords = gl_GlobalInvocationID.xy;
// Tiled in 8x4 blocks, 8 bits per pixel
uint buffer_pos = GetTiledTexelOffset(uvec2(8u, 4u), coords);
uint val = texelFetch(s_input_buffer, int(buffer_pos)).x;
uint i = Convert4To8((val & 0x0Fu));
uint a = Convert4To8((val >> 4));
uvec4 color = uvec4(i, i, i, a);
vec4 norm_color = vec4(color) / 255.0;
imageStore(output_image, ivec3(ivec2(coords), 0), norm_color);
}
)"}},
{TextureFormat::I8,
{BUFFER_FORMAT_R8_UINT, 0, 8, 8, false,
R"(
layout(local_size_x = 8, local_size_y = 8) in;
void main()
{
uvec2 coords = gl_GlobalInvocationID.xy;
// Tiled in 8x4 blocks, 8 bits per pixel
uint buffer_pos = GetTiledTexelOffset(uvec2(8u, 4u), coords);
uint i = texelFetch(s_input_buffer, int(buffer_pos)).x;
uvec4 color = uvec4(i, i, i, i);
vec4 norm_color = vec4(color) / 255.0;
imageStore(output_image, ivec3(ivec2(coords), 0), norm_color);
}
)"}},
{TextureFormat::IA8,
{BUFFER_FORMAT_R16_UINT, 0, 8, 8, false,
R"(
layout(local_size_x = 8, local_size_y = 8) in;
void main()
{
uvec2 coords = gl_GlobalInvocationID.xy;
// Tiled in 4x4 blocks, 16 bits per pixel
uint buffer_pos = GetTiledTexelOffset(uvec2(4u, 4u), coords);
uint val = texelFetch(s_input_buffer, int(buffer_pos)).x;
uint a = (val & 0xFFu);
uint i = (val >> 8);
uvec4 color = uvec4(i, i, i, a);
vec4 norm_color = vec4(color) / 255.0;
imageStore(output_image, ivec3(ivec2(coords), 0), norm_color);
}
)"}},
{TextureFormat::RGB565,
{BUFFER_FORMAT_R16_UINT, 0, 8, 8, false,
R"(
layout(local_size_x = 8, local_size_y = 8) in;
void main()
{
uvec2 coords = gl_GlobalInvocationID.xy;
// Tiled in 4x4 blocks
uint buffer_pos = GetTiledTexelOffset(uvec2(4u, 4u), coords);
uint val = Swap16(texelFetch(s_input_buffer, int(buffer_pos)).x);
uvec4 color;
color.x = Convert5To8(bitfieldExtract(val, 11, 5));
color.y = Convert6To8(bitfieldExtract(val, 5, 6));
color.z = Convert5To8(bitfieldExtract(val, 0, 5));
color.a = 255u;
vec4 norm_color = vec4(color) / 255.0;
imageStore(output_image, ivec3(ivec2(coords), 0), norm_color);
}
)"}},
{TextureFormat::RGB5A3,
{BUFFER_FORMAT_R16_UINT, 0, 8, 8, false,
R"(
layout(local_size_x = 8, local_size_y = 8) in;
void main()
{
uvec2 coords = gl_GlobalInvocationID.xy;
// Tiled in 4x4 blocks
uint buffer_pos = GetTiledTexelOffset(uvec2(4u, 4u), coords);
uint val = Swap16(texelFetch(s_input_buffer, int(buffer_pos)).x);
uvec4 color;
if ((val & 0x8000u) != 0u)
{
color.x = Convert5To8(bitfieldExtract(val, 10, 5));
color.y = Convert5To8(bitfieldExtract(val, 5, 5));
color.z = Convert5To8(bitfieldExtract(val, 0, 5));
color.a = 255u;
}
else
{
color.a = Convert3To8(bitfieldExtract(val, 12, 3));
color.r = Convert4To8(bitfieldExtract(val, 8, 4));
color.g = Convert4To8(bitfieldExtract(val, 4, 4));
color.b = Convert4To8(bitfieldExtract(val, 0, 4));
}
vec4 norm_color = vec4(color) / 255.0;
imageStore(output_image, ivec3(ivec2(coords), 0), norm_color);
}
)"}},
{TextureFormat::RGBA8,
{BUFFER_FORMAT_R16_UINT, 0, 8, 8, false,
R"(
layout(local_size_x = 8, local_size_y = 8) in;
void main()
{
uvec2 coords = gl_GlobalInvocationID.xy;
// Tiled in 4x4 blocks
// We can't use the normal calculation function, as these are packed as the AR channels
// for the entire block, then the GB channels afterwards.
uint2 block = coords.xy / 4u;
uint2 offset = coords.xy % 4u;
uint buffer_pos = u_src_offset;
// Our buffer has 16-bit elements, so the offsets here are half what they would be in bytes.
buffer_pos += block.y * u_src_row_stride;
buffer_pos += block.x * 32u;
buffer_pos += offset.y * 4u;
buffer_pos += offset.x;
// The two GB channels follow after the block's AR channels.
uint val1 = texelFetch(s_input_buffer, int(buffer_pos + 0u)).x;
uint val2 = texelFetch(s_input_buffer, int(buffer_pos + 16u)).x;
uvec4 color;
color.a = (val1 & 0xFFu);
color.r = (val1 >> 8);
color.g = (val2 & 0xFFu);
color.b = (val2 >> 8);
vec4 norm_color = vec4(color) / 255.0;
imageStore(output_image, ivec3(ivec2(coords), 0), norm_color);
}
)"}},
{TextureFormat::CMPR,
{BUFFER_FORMAT_R32G32_UINT, 0, 64, 1, true,
R"(
// In the compute version of this decoder, we flatten the blocks to a one-dimension array.
// Each group is subdivided into 16, and the first thread in each group fetches the DXT data.
// All threads then calculate the possible colors for the block and write to the output image.
#define GROUP_SIZE 64u
#define BLOCK_SIZE_X 4u
#define BLOCK_SIZE_Y 4u
#define BLOCK_SIZE (BLOCK_SIZE_X * BLOCK_SIZE_Y)
#define BLOCKS_PER_GROUP (GROUP_SIZE / BLOCK_SIZE)
layout(local_size_x = GROUP_SIZE, local_size_y = 1) in;
shared uvec2 shared_temp[BLOCKS_PER_GROUP];
uint DXTBlend(uint v1, uint v2)
{
// 3/8 blend, which is close to 1/3
return ((v1 * 3u + v2 * 5u) >> 3);
}
void main()
{
uint local_thread_id = gl_LocalInvocationID.x;
uint block_in_group = local_thread_id / BLOCK_SIZE;
uint thread_in_block = local_thread_id % BLOCK_SIZE;
uint block_index = gl_WorkGroupID.x * BLOCKS_PER_GROUP + block_in_group;
// Annoyingly, we can't precalculate this as a uniform because the DXT block size differs
// from the block size of the overall texture (4 vs 8). We can however use a multiply and
// subtraction to avoid the modulo for calculating the block's X coordinate.
uint blocks_wide = u_src_size.x / BLOCK_SIZE_X;
uvec2 block_coords;
block_coords.y = block_index / blocks_wide;
block_coords.x = block_index - (block_coords.y * blocks_wide);
// Only the first thread for each block reads from the texel buffer.
if (thread_in_block == 0u)
{
// Calculate tiled block coordinates.
uvec2 tile_block_coords = block_coords / 2u;
uvec2 subtile_block_coords = block_coords % 2u;
uint buffer_pos = u_src_offset;
buffer_pos += tile_block_coords.y * u_src_row_stride;
buffer_pos += tile_block_coords.x * 4u;
buffer_pos += subtile_block_coords.y * 2u;
buffer_pos += subtile_block_coords.x;
// Read the entire DXT block to shared memory.
uvec2 raw_data = texelFetch(s_input_buffer, int(buffer_pos)).xy;
shared_temp[block_in_group] = raw_data;
}
// Ensure store is completed before the remaining threads in the block continue.
memoryBarrierShared();
barrier();
// Unpack colors and swap BE to LE.
uvec2 raw_data = shared_temp[block_in_group];
uint swapped = ((raw_data.x & 0xFF00FF00u) >> 8) | ((raw_data.x & 0x00FF00FFu) << 8);
uint c1 = swapped & 0xFFFFu;
uint c2 = swapped >> 16;
// Expand 5/6 bit channels to 8-bits per channel.
uint blue1 = Convert5To8(bitfieldExtract(c1, 0, 5));
uint blue2 = Convert5To8(bitfieldExtract(c2, 0, 5));
uint green1 = Convert6To8(bitfieldExtract(c1, 5, 6));
uint green2 = Convert6To8(bitfieldExtract(c2, 5, 6));
uint red1 = Convert5To8(bitfieldExtract(c1, 11, 5));
uint red2 = Convert5To8(bitfieldExtract(c2, 11, 5));
// Determine the four colors the block can use.
// It's quicker to just precalculate all four colors rather than branching on the index.
// NOTE: These must be masked with 0xFF. This is done at the normalization stage below.
uvec4 color0, color1, color2, color3;
color0 = uvec4(red1, green1, blue1, 255u);
color1 = uvec4(red2, green2, blue2, 255u);
if (c1 > c2)
{
color2 = uvec4(DXTBlend(red2, red1), DXTBlend(green2, green1), DXTBlend(blue2, blue1), 255u);
color3 = uvec4(DXTBlend(red1, red2), DXTBlend(green1, green2), DXTBlend(blue1, blue2), 255u);
}
else
{
color2 = uvec4((red1 + red2) / 2u, (green1 + green2) / 2u, (blue1 + blue2) / 2u, 255u);
color3 = uvec4((red1 + red2) / 2u, (green1 + green2) / 2u, (blue1 + blue2) / 2u, 0u);
}
// Calculate the texel coordinates that we will write to.
// The divides/modulo here should be turned into a shift/binary AND.
uint local_y = thread_in_block / BLOCK_SIZE_X;
uint local_x = thread_in_block % BLOCK_SIZE_X;
uint global_x = block_coords.x * BLOCK_SIZE_X + local_x;
uint global_y = block_coords.y * BLOCK_SIZE_Y + local_y;
// Use the coordinates within the block to shift the 32-bit value containing
// all 16 indices to a single 2-bit index.
uint index = bitfieldExtract(raw_data.y, int((local_y * 8u) + (6u - local_x * 2u)), 2);
// Select the un-normalized color from the precalculated color array.
// Using a switch statement here removes the need for dynamic indexing of an array.
uvec4 color;
switch (index)
{
case 0u: color = color0; break;
case 1u: color = color1; break;
case 2u: color = color2; break;
case 3u: color = color3; break;
default: color = color0; break;
}
// Normalize and write to the output image.
vec4 norm_color = vec4(color & 0xFFu) / 255.0;
imageStore(output_image, ivec3(ivec2(uvec2(global_x, global_y)), 0), norm_color);
}
)"}},
{TextureFormat::C4,
{BUFFER_FORMAT_R8_UINT, static_cast<u32>(TexDecoder_GetPaletteSize(TextureFormat::C4)), 8, 8,
false,
R"(
layout(local_size_x = 8, local_size_y = 8) in;
void main()
{
uvec2 coords = gl_GlobalInvocationID.xy;
// Tiled in 8x8 blocks, 4 bits per pixel
// We need to do the tiling manually here because the texel size is smaller than
// the size of the buffer elements.
uint2 block = coords.xy / 8u;
uint2 offset = coords.xy % 8u;
uint buffer_pos = u_src_offset;
buffer_pos += block.y * u_src_row_stride;
buffer_pos += block.x * 32u;
buffer_pos += offset.y * 4u;
buffer_pos += offset.x / 2u;
// Select high nibble for odd texels, low for even.
uint val = texelFetch(s_input_buffer, int(buffer_pos)).x;
uint index = ((coords.x & 1u) == 0u) ? (val >> 4) : (val & 0x0Fu);
vec4 norm_color = GetPaletteColorNormalized(index);
imageStore(output_image, ivec3(ivec2(coords), 0), norm_color);
}
)"}},
{TextureFormat::C8,
{BUFFER_FORMAT_R8_UINT, static_cast<u32>(TexDecoder_GetPaletteSize(TextureFormat::C8)), 8, 8,
false,
R"(
layout(local_size_x = 8, local_size_y = 8) in;
void main()
{
uvec2 coords = gl_GlobalInvocationID.xy;
// Tiled in 8x4 blocks, 8 bits per pixel
uint buffer_pos = GetTiledTexelOffset(uvec2(8u, 4u), coords);
uint index = texelFetch(s_input_buffer, int(buffer_pos)).x;
vec4 norm_color = GetPaletteColorNormalized(index);
imageStore(output_image, ivec3(ivec2(coords), 0), norm_color);
}
)"}},
{TextureFormat::C14X2,
{BUFFER_FORMAT_R16_UINT, static_cast<u32>(TexDecoder_GetPaletteSize(TextureFormat::C14X2)), 8,
8, false,
R"(
layout(local_size_x = 8, local_size_y = 8) in;
void main()
{
uvec2 coords = gl_GlobalInvocationID.xy;
// Tiled in 4x4 blocks, 16 bits per pixel
uint buffer_pos = GetTiledTexelOffset(uvec2(4u, 4u), coords);
uint index = Swap16(texelFetch(s_input_buffer, int(buffer_pos)).x) & 0x3FFFu;
vec4 norm_color = GetPaletteColorNormalized(index);
imageStore(output_image, ivec3(ivec2(coords), 0), norm_color);
}
)"}},
// We do the inverse BT.601 conversion for YCbCr to RGB
// http://www.equasys.de/colorconversion.html#YCbCr-RGBColorFormatConversion
{TextureFormat::XFB,
{BUFFER_FORMAT_RGBA8_UINT, 0, 8, 8, false,
R"(
layout(local_size_x = 8, local_size_y = 8) in;
void main()
{
uvec2 uv = gl_GlobalInvocationID.xy;
int buffer_pos = int(u_src_offset + (uv.y * u_src_row_stride) + (uv.x / 2u));
vec4 yuyv = vec4(texelFetch(s_input_buffer, buffer_pos));
float y = mix(yuyv.r, yuyv.b, (uv.x & 1u) == 1u);
float yComp = 1.164 * (y - 16.0);
float uComp = yuyv.g - 128.0;
float vComp = yuyv.a - 128.0;
vec4 rgb = vec4(yComp + (1.596 * vComp),
yComp - (0.813 * vComp) - (0.391 * uComp),
yComp + (2.018 * uComp),
255.0);
vec4 rgba_norm = rgb / 255.0;
imageStore(output_image, ivec3(ivec2(uv), 0), rgba_norm);
}
)"}}};
static const std::array<u32, BUFFER_FORMAT_COUNT> s_buffer_bytes_per_texel = {{
1, // BUFFER_FORMAT_R8_UINT
2, // BUFFER_FORMAT_R16_UINT
8, // BUFFER_FORMAT_R32G32_UINT
4, // BUFFER_FORMAT_RGBA8_UINT
}};
const DecodingShaderInfo* GetDecodingShaderInfo(TextureFormat format)
{
auto iter = s_decoding_shader_info.find(format);
return iter != s_decoding_shader_info.end() ? &iter->second : nullptr;
}
u32 GetBytesPerBufferElement(BufferFormat buffer_format)
{
return s_buffer_bytes_per_texel[buffer_format];
}
std::pair<u32, u32> GetDispatchCount(const DecodingShaderInfo* info, u32 width, u32 height)
{
// Flatten to a single dimension?
if (info->group_flatten)
return {(width * height + (info->group_size_x - 1)) / info->group_size_x, 1};
return {(width + (info->group_size_x - 1)) / info->group_size_x,
(height + (info->group_size_y - 1)) / info->group_size_y};
}
std::string GenerateDecodingShader(TextureFormat format, TLUTFormat palette_format,
APIType api_type)
{
const DecodingShaderInfo* info = GetDecodingShaderInfo(format);
if (!info)
return "";
std::stringstream ss;
switch (palette_format)
{
case TLUTFormat::IA8:
ss << "#define PALETTE_FORMAT_IA8 1\n";
break;
case TLUTFormat::RGB565:
ss << "#define PALETTE_FORMAT_RGB565 1\n";
break;
case TLUTFormat::RGB5A3:
ss << "#define PALETTE_FORMAT_RGB5A3 1\n";
break;
}
ss << decoding_shader_header;
ss << info->shader_body;
return ss.str();
}
} // namespace