449 lines
11 KiB
C++

// Copyright 2013 Dolphin Emulator Project
// Licensed under GPLv2+
// Refer to the license.txt file included.
#include "InputCommon/ControllerInterface/CoreDevice.h"
#include <algorithm>
#include <cmath>
#include <memory>
#include <sstream>
#include <string>
#include <tuple>
#include <fmt/format.h>
#include "Common/MathUtil.h"
#include "Common/Thread.h"
namespace ciface::Core
{
// Compared to an input's current state (ideally 1.0) minus abs(initial_state) (ideally 0.0).
// Note: Detect() logic assumes this is greater than 0.5.
constexpr ControlState INPUT_DETECT_THRESHOLD = 0.55;
class CombinedInput final : public Device::Input
{
public:
using Inputs = std::pair<Device::Input*, Device::Input*>;
CombinedInput(std::string name, const Inputs& inputs) : m_name(std::move(name)), m_inputs(inputs)
{
}
ControlState GetState() const override
{
ControlState result = 0;
if (m_inputs.first)
result = m_inputs.first->GetState();
if (m_inputs.second)
result = std::max(result, m_inputs.second->GetState());
return result;
}
std::string GetName() const override { return m_name; }
bool IsDetectable() const override { return false; }
bool IsChild(const Input* input) const override
{
return m_inputs.first == input || m_inputs.second == input;
}
private:
const std::string m_name;
const std::pair<Device::Input*, Device::Input*> m_inputs;
};
Device::~Device()
{
// delete inputs
for (Device::Input* input : m_inputs)
delete input;
// delete outputs
for (Device::Output* output : m_outputs)
delete output;
}
std::optional<int> Device::GetPreferredId() const
{
return {};
}
void Device::AddInput(Device::Input* const i)
{
m_inputs.push_back(i);
}
void Device::AddOutput(Device::Output* const o)
{
m_outputs.push_back(o);
}
std::string Device::GetQualifiedName() const
{
return fmt::format("{}/{}/{}", GetSource(), GetId(), GetName());
}
auto Device::GetParentMostInput(Input* child) const -> Input*
{
for (auto* input : m_inputs)
{
if (input->IsChild(child))
{
// Running recursively is currently unnecessary but it doesn't hurt.
return GetParentMostInput(input);
}
}
return child;
}
Device::Input* Device::FindInput(std::string_view name) const
{
for (Input* input : m_inputs)
{
if (input->IsMatchingName(name))
return input;
}
return nullptr;
}
Device::Output* Device::FindOutput(std::string_view name) const
{
for (Output* output : m_outputs)
{
if (output->IsMatchingName(name))
return output;
}
return nullptr;
}
bool Device::Control::IsMatchingName(std::string_view name) const
{
return GetName() == name;
}
ControlState Device::FullAnalogSurface::GetState() const
{
return (1 + std::max(0.0, m_high.GetState()) - std::max(0.0, m_low.GetState())) / 2;
}
std::string Device::FullAnalogSurface::GetName() const
{
// E.g. "Full Axis X+"
return "Full " + m_high.GetName();
}
bool Device::FullAnalogSurface::IsMatchingName(std::string_view name) const
{
if (Control::IsMatchingName(name))
return true;
// Old naming scheme was "Axis X-+" which is too visually similar to "Axis X+".
// This has caused countless problems for users with mysterious misconfigurations.
// We match this old name to support old configurations.
const auto old_name = m_low.GetName() + *m_high.GetName().rbegin();
return old_name == name;
}
void Device::AddCombinedInput(std::string name, const std::pair<std::string, std::string>& inputs)
{
AddInput(new CombinedInput(std::move(name), {FindInput(inputs.first), FindInput(inputs.second)}));
}
//
// DeviceQualifier :: ToString
//
// Get string from a device qualifier / serialize
//
std::string DeviceQualifier::ToString() const
{
if (source.empty() && (cid < 0) && name.empty())
return "";
std::ostringstream ss;
ss << source << '/';
if (cid > -1)
ss << cid;
ss << '/' << name;
return ss.str();
}
//
// DeviceQualifier :: FromString
//
// Set a device qualifier from a string / unserialize
//
void DeviceQualifier::FromString(const std::string& str)
{
*this = {};
std::istringstream ss(str);
std::getline(ss, source, '/');
// silly
std::getline(ss, name, '/');
std::istringstream(name) >> cid;
std::getline(ss, name);
}
//
// DeviceQualifier :: FromDevice
//
// Set a device qualifier from a device
//
void DeviceQualifier::FromDevice(const Device* const dev)
{
name = dev->GetName();
cid = dev->GetId();
source = dev->GetSource();
}
bool DeviceQualifier::operator==(const Device* const dev) const
{
if (dev->GetId() == cid)
if (dev->GetName() == name)
if (dev->GetSource() == source)
return true;
return false;
}
bool DeviceQualifier::operator!=(const Device* const dev) const
{
return !operator==(dev);
}
bool DeviceQualifier::operator==(const DeviceQualifier& devq) const
{
return std::tie(cid, name, source) == std::tie(devq.cid, devq.name, devq.source);
}
bool DeviceQualifier::operator!=(const DeviceQualifier& devq) const
{
return !operator==(devq);
}
std::shared_ptr<Device> DeviceContainer::FindDevice(const DeviceQualifier& devq) const
{
std::lock_guard lk(m_devices_mutex);
for (const auto& d : m_devices)
{
if (devq == d.get())
return d;
}
return nullptr;
}
std::vector<std::string> DeviceContainer::GetAllDeviceStrings() const
{
std::lock_guard lk(m_devices_mutex);
std::vector<std::string> device_strings;
DeviceQualifier device_qualifier;
for (const auto& d : m_devices)
{
device_qualifier.FromDevice(d.get());
device_strings.emplace_back(device_qualifier.ToString());
}
return device_strings;
}
std::string DeviceContainer::GetDefaultDeviceString() const
{
std::lock_guard lk(m_devices_mutex);
if (m_devices.empty())
return "";
DeviceQualifier device_qualifier;
device_qualifier.FromDevice(m_devices[0].get());
return device_qualifier.ToString();
}
Device::Input* DeviceContainer::FindInput(std::string_view name, const Device* def_dev) const
{
if (def_dev)
{
Device::Input* const inp = def_dev->FindInput(name);
if (inp)
return inp;
}
std::lock_guard lk(m_devices_mutex);
for (const auto& d : m_devices)
{
Device::Input* const i = d->FindInput(name);
if (i)
return i;
}
return nullptr;
}
Device::Output* DeviceContainer::FindOutput(std::string_view name, const Device* def_dev) const
{
return def_dev->FindOutput(name);
}
bool DeviceContainer::HasConnectedDevice(const DeviceQualifier& qualifier) const
{
const auto device = FindDevice(qualifier);
return device != nullptr && device->IsValid();
}
// Wait for inputs on supplied devices.
// Inputs are only considered if they are first seen in a neutral state.
// This is useful for crazy flightsticks that have certain buttons that are always held down
// and also properly handles detection when using "FullAnalogSurface" inputs.
// Multiple detections are returned until the various timeouts have been reached.
auto DeviceContainer::DetectInput(const std::vector<std::string>& device_strings,
std::chrono::milliseconds initial_wait,
std::chrono::milliseconds confirmation_wait,
std::chrono::milliseconds maximum_wait) const
-> std::vector<InputDetection>
{
struct InputState
{
InputState(ciface::Core::Device::Input* input_) : input{input_} { stats.Push(0.0); }
ciface::Core::Device::Input* input;
ControlState initial_state = input->GetState();
ControlState last_state = initial_state;
MathUtil::RunningVariance<ControlState> stats;
// Prevent multiiple detections until after release.
bool is_ready = true;
void Update()
{
const auto new_state = input->GetState();
if (!is_ready && new_state < (1 - INPUT_DETECT_THRESHOLD))
{
last_state = new_state;
is_ready = true;
stats.Clear();
}
const auto difference = new_state - last_state;
stats.Push(difference);
last_state = new_state;
}
bool IsPressed()
{
if (!is_ready)
return false;
// We want an input that was initially 0.0 and currently 1.0.
const auto detection_score = (last_state - std::abs(initial_state));
return detection_score > INPUT_DETECT_THRESHOLD;
}
};
struct DeviceState
{
std::shared_ptr<Device> device;
std::vector<InputState> input_states;
};
// Acquire devices and initial input states.
std::vector<DeviceState> device_states;
for (const auto& device_string : device_strings)
{
DeviceQualifier dq;
dq.FromString(device_string);
auto device = FindDevice(dq);
if (!device)
continue;
std::vector<InputState> input_states;
for (auto* input : device->Inputs())
{
// Don't detect things like absolute cursor positions, accelerometers, or gyroscopes.
if (!input->IsDetectable())
continue;
// Undesirable axes will have negative values here when trying to map a
// "FullAnalogSurface".
input_states.push_back(InputState{input});
}
if (!input_states.empty())
device_states.emplace_back(DeviceState{std::move(device), std::move(input_states)});
}
if (device_states.empty())
return {};
std::vector<InputDetection> detections;
const auto start_time = Clock::now();
while (true)
{
const auto now = Clock::now();
const auto elapsed_time = now - start_time;
if (elapsed_time >= maximum_wait || (detections.empty() && elapsed_time >= initial_wait) ||
(!detections.empty() && detections.back().release_time.has_value() &&
now >= *detections.back().release_time + confirmation_wait))
{
break;
}
Common::SleepCurrentThread(10);
for (auto& device_state : device_states)
{
for (std::size_t i = 0; i != device_state.input_states.size(); ++i)
{
auto& input_state = device_state.input_states[i];
input_state.Update();
if (input_state.IsPressed())
{
input_state.is_ready = false;
// Digital presses will evaluate as 1 here.
// Analog presses will evaluate greater than 1.
const auto smoothness =
1 / std::sqrt(input_state.stats.Variance() / input_state.stats.Mean());
InputDetection new_detection;
new_detection.device = device_state.device;
new_detection.input = input_state.input;
new_detection.press_time = Clock::now();
new_detection.smoothness = smoothness;
// We found an input. Add it to our detections.
detections.emplace_back(std::move(new_detection));
}
}
}
// Check for any releases of our detected inputs.
for (auto& d : detections)
{
if (!d.release_time.has_value() && d.input->GetState() < (1 - INPUT_DETECT_THRESHOLD))
d.release_time = Clock::now();
}
}
return detections;
}
} // namespace ciface::Core