2010-11-05 05:55:33 +01:00
|
|
|
/*
|
2011-06-22 06:18:55 +02:00
|
|
|
* Copyright (C) 2002-2011 The DOSBox Team
|
2010-11-05 05:55:33 +01:00
|
|
|
*
|
|
|
|
* This program is free software; you can redistribute it and/or modify
|
|
|
|
* it under the terms of the GNU General Public License as published by
|
|
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
|
|
* (at your option) any later version.
|
|
|
|
*
|
|
|
|
* This program is distributed in the hope that it will be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
* GNU General Public License for more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU General Public License
|
|
|
|
* along with this program; if not, write to the Free Software
|
|
|
|
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include "dosbox.h"
|
|
|
|
#include "mem.h"
|
|
|
|
#include "inout.h"
|
|
|
|
#include "int10.h"
|
|
|
|
|
|
|
|
#define ACTL_MAX_REG 0x14
|
|
|
|
|
|
|
|
static INLINE void ResetACTL(void) {
|
|
|
|
IO_Read(real_readw(BIOSMEM_SEG,BIOSMEM_CRTC_ADDRESS) + 6);
|
|
|
|
}
|
|
|
|
|
|
|
|
static INLINE void WriteTandyACTL(Bit8u creg,Bit8u val) {
|
|
|
|
IO_Write(VGAREG_TDY_ADDRESS,creg);
|
|
|
|
if (machine==MCH_TANDY) IO_Write(VGAREG_TDY_DATA,val);
|
|
|
|
else IO_Write(VGAREG_PCJR_DATA,val);
|
|
|
|
}
|
|
|
|
|
|
|
|
void INT10_SetSinglePaletteRegister(Bit8u reg,Bit8u val) {
|
|
|
|
switch (machine) {
|
|
|
|
case MCH_PCJR:
|
|
|
|
reg&=0xf;
|
|
|
|
IO_Read(VGAREG_TDY_RESET);
|
|
|
|
WriteTandyACTL(reg+0x10,val);
|
|
|
|
IO_Write(0x3da,0x0); // palette back on
|
|
|
|
break;
|
|
|
|
case MCH_TANDY:
|
|
|
|
// TODO waits for vertical retrace
|
|
|
|
switch(vga.mode) {
|
|
|
|
case M_TANDY2:
|
|
|
|
if (reg >= 0x10) break;
|
|
|
|
else if (reg==1) reg = 0x1f;
|
|
|
|
else reg |= 0x10;
|
|
|
|
WriteTandyACTL(reg+0x10,val);
|
|
|
|
break;
|
|
|
|
case M_TANDY4: {
|
|
|
|
if (CurMode->mode!=0x0a) {
|
|
|
|
// Palette values are kept constand by the BIOS.
|
|
|
|
// The four colors are mapped to special palette values by hardware.
|
|
|
|
// 3D8/3D9 registers influence this mapping. We need to figure out
|
|
|
|
// which entry is used for the requested color.
|
|
|
|
if (reg > 3) break;
|
|
|
|
if (reg != 0) { // 0 is assumed to be at 0
|
|
|
|
Bit8u color_select=real_readb(BIOSMEM_SEG,BIOSMEM_CURRENT_PAL);
|
|
|
|
reg = reg*2+8; // Green Red Brown
|
|
|
|
if (color_select& 0x20) reg++; // Cyan Magenta White
|
|
|
|
}
|
|
|
|
WriteTandyACTL(reg+0x10,val);
|
|
|
|
}
|
|
|
|
// 4-color high resolution mode 0x0a isn't handled specially
|
|
|
|
else WriteTandyACTL(reg+0x10,val);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
default:
|
|
|
|
WriteTandyACTL(reg+0x10,val);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
IO_Write(0x3da,0x0); // palette back on
|
|
|
|
break;
|
|
|
|
case EGAVGA_ARCH_CASE:
|
|
|
|
if (!IS_VGA_ARCH) reg&=0x1f;
|
|
|
|
if(reg<=ACTL_MAX_REG) {
|
|
|
|
ResetACTL();
|
|
|
|
IO_Write(VGAREG_ACTL_ADDRESS,reg);
|
|
|
|
IO_Write(VGAREG_ACTL_WRITE_DATA,val);
|
|
|
|
}
|
|
|
|
IO_Write(VGAREG_ACTL_ADDRESS,32); //Enable output and protect palette
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void INT10_SetOverscanBorderColor(Bit8u val) {
|
|
|
|
switch (machine) {
|
|
|
|
case TANDY_ARCH_CASE:
|
|
|
|
IO_Read(VGAREG_TDY_RESET);
|
|
|
|
WriteTandyACTL(0x02,val);
|
|
|
|
break;
|
|
|
|
case EGAVGA_ARCH_CASE:
|
|
|
|
ResetACTL();
|
|
|
|
IO_Write(VGAREG_ACTL_ADDRESS,0x11);
|
|
|
|
IO_Write(VGAREG_ACTL_WRITE_DATA,val);
|
|
|
|
IO_Write(VGAREG_ACTL_ADDRESS,32); //Enable output and protect palette
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void INT10_SetAllPaletteRegisters(PhysPt data) {
|
|
|
|
switch (machine) {
|
|
|
|
case TANDY_ARCH_CASE:
|
|
|
|
IO_Read(VGAREG_TDY_RESET);
|
|
|
|
// First the colors
|
|
|
|
for(Bit8u i=0;i<0x10;i++) {
|
|
|
|
WriteTandyACTL(i+0x10,mem_readb(data));
|
|
|
|
data++;
|
|
|
|
}
|
|
|
|
// Then the border
|
|
|
|
WriteTandyACTL(0x02,mem_readb(data));
|
|
|
|
break;
|
|
|
|
case EGAVGA_ARCH_CASE:
|
|
|
|
ResetACTL();
|
|
|
|
// First the colors
|
|
|
|
for(Bit8u i=0;i<0x10;i++) {
|
|
|
|
IO_Write(VGAREG_ACTL_ADDRESS,i);
|
|
|
|
IO_Write(VGAREG_ACTL_WRITE_DATA,mem_readb(data));
|
|
|
|
data++;
|
|
|
|
}
|
|
|
|
// Then the border
|
|
|
|
IO_Write(VGAREG_ACTL_ADDRESS,0x11);
|
|
|
|
IO_Write(VGAREG_ACTL_WRITE_DATA,mem_readb(data));
|
|
|
|
IO_Write(VGAREG_ACTL_ADDRESS,32); //Enable output and protect palette
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void INT10_ToggleBlinkingBit(Bit8u state) {
|
|
|
|
if(IS_VGA_ARCH) {
|
|
|
|
Bit8u value;
|
|
|
|
// state&=0x01;
|
|
|
|
if ((state>1) && (svgaCard==SVGA_S3Trio)) return;
|
|
|
|
ResetACTL();
|
|
|
|
|
|
|
|
IO_Write(VGAREG_ACTL_ADDRESS,0x10);
|
|
|
|
value=IO_Read(VGAREG_ACTL_READ_DATA);
|
|
|
|
if (state<=1) {
|
|
|
|
value&=0xf7;
|
|
|
|
value|=state<<3;
|
|
|
|
}
|
|
|
|
|
|
|
|
ResetACTL();
|
|
|
|
IO_Write(VGAREG_ACTL_ADDRESS,0x10);
|
|
|
|
IO_Write(VGAREG_ACTL_WRITE_DATA,value);
|
|
|
|
IO_Write(VGAREG_ACTL_ADDRESS,32); //Enable output and protect palette
|
|
|
|
|
|
|
|
if (state<=1) {
|
|
|
|
Bit8u msrval=real_readb(BIOSMEM_SEG,BIOSMEM_CURRENT_MSR)&0xdf;
|
|
|
|
if (state) msrval|=0x20;
|
|
|
|
real_writeb(BIOSMEM_SEG,BIOSMEM_CURRENT_MSR,msrval);
|
|
|
|
}
|
|
|
|
} else { // EGA
|
|
|
|
// Usually it reads this from the mode list in ROM
|
|
|
|
if (CurMode->type!=M_TEXT) return;
|
|
|
|
|
|
|
|
Bit8u value = (CurMode->cwidth==9)? 0x4:0x0;
|
|
|
|
if (state) value |= 0x8;
|
|
|
|
|
|
|
|
ResetACTL();
|
|
|
|
IO_Write(VGAREG_ACTL_ADDRESS,0x10);
|
|
|
|
IO_Write(VGAREG_ACTL_WRITE_DATA,value);
|
|
|
|
IO_Write(VGAREG_ACTL_ADDRESS,0x20);
|
|
|
|
|
|
|
|
Bit8u msrval=real_readb(BIOSMEM_SEG,BIOSMEM_CURRENT_MSR)& ~0x20;
|
|
|
|
if (state) msrval|=0x20;
|
|
|
|
real_writeb(BIOSMEM_SEG,BIOSMEM_CURRENT_MSR,msrval);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void INT10_GetSinglePaletteRegister(Bit8u reg,Bit8u * val) {
|
|
|
|
if(reg<=ACTL_MAX_REG) {
|
|
|
|
ResetACTL();
|
|
|
|
IO_Write(VGAREG_ACTL_ADDRESS,reg+32);
|
|
|
|
*val=IO_Read(VGAREG_ACTL_READ_DATA);
|
|
|
|
IO_Write(VGAREG_ACTL_WRITE_DATA,*val);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void INT10_GetOverscanBorderColor(Bit8u * val) {
|
|
|
|
ResetACTL();
|
|
|
|
IO_Write(VGAREG_ACTL_ADDRESS,0x11+32);
|
|
|
|
*val=IO_Read(VGAREG_ACTL_READ_DATA);
|
|
|
|
IO_Write(VGAREG_ACTL_WRITE_DATA,*val);
|
|
|
|
}
|
|
|
|
|
|
|
|
void INT10_GetAllPaletteRegisters(PhysPt data) {
|
|
|
|
ResetACTL();
|
|
|
|
// First the colors
|
|
|
|
for(Bit8u i=0;i<0x10;i++) {
|
|
|
|
IO_Write(VGAREG_ACTL_ADDRESS,i);
|
|
|
|
mem_writeb(data,IO_Read(VGAREG_ACTL_READ_DATA));
|
|
|
|
ResetACTL();
|
|
|
|
data++;
|
|
|
|
}
|
|
|
|
// Then the border
|
|
|
|
IO_Write(VGAREG_ACTL_ADDRESS,0x11+32);
|
|
|
|
mem_writeb(data,IO_Read(VGAREG_ACTL_READ_DATA));
|
|
|
|
ResetACTL();
|
|
|
|
}
|
|
|
|
|
|
|
|
void INT10_SetSingleDACRegister(Bit8u index,Bit8u red,Bit8u green,Bit8u blue) {
|
|
|
|
IO_Write(VGAREG_DAC_WRITE_ADDRESS,(Bit8u)index);
|
|
|
|
if ((real_readb(BIOSMEM_SEG,BIOSMEM_MODESET_CTL)&0x06)==0) {
|
|
|
|
IO_Write(VGAREG_DAC_DATA,red);
|
|
|
|
IO_Write(VGAREG_DAC_DATA,green);
|
|
|
|
IO_Write(VGAREG_DAC_DATA,blue);
|
|
|
|
} else {
|
|
|
|
/* calculate clamped intensity, taken from VGABIOS */
|
|
|
|
Bit32u i=(( 77*red + 151*green + 28*blue ) + 0x80) >> 8;
|
|
|
|
Bit8u ic=(i>0x3f) ? 0x3f : ((Bit8u)(i & 0xff));
|
|
|
|
IO_Write(VGAREG_DAC_DATA,ic);
|
|
|
|
IO_Write(VGAREG_DAC_DATA,ic);
|
|
|
|
IO_Write(VGAREG_DAC_DATA,ic);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void INT10_GetSingleDACRegister(Bit8u index,Bit8u * red,Bit8u * green,Bit8u * blue) {
|
|
|
|
IO_Write(VGAREG_DAC_READ_ADDRESS,index);
|
|
|
|
*red=IO_Read(VGAREG_DAC_DATA);
|
|
|
|
*green=IO_Read(VGAREG_DAC_DATA);
|
|
|
|
*blue=IO_Read(VGAREG_DAC_DATA);
|
|
|
|
}
|
|
|
|
|
|
|
|
void INT10_SetDACBlock(Bit16u index,Bit16u count,PhysPt data) {
|
|
|
|
IO_Write(VGAREG_DAC_WRITE_ADDRESS,(Bit8u)index);
|
|
|
|
if ((real_readb(BIOSMEM_SEG,BIOSMEM_MODESET_CTL)&0x06)==0) {
|
|
|
|
for (;count>0;count--) {
|
|
|
|
IO_Write(VGAREG_DAC_DATA,mem_readb(data++));
|
|
|
|
IO_Write(VGAREG_DAC_DATA,mem_readb(data++));
|
|
|
|
IO_Write(VGAREG_DAC_DATA,mem_readb(data++));
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
for (;count>0;count--) {
|
|
|
|
Bit8u red=mem_readb(data++);
|
|
|
|
Bit8u green=mem_readb(data++);
|
|
|
|
Bit8u blue=mem_readb(data++);
|
|
|
|
|
|
|
|
/* calculate clamped intensity, taken from VGABIOS */
|
|
|
|
Bit32u i=(( 77*red + 151*green + 28*blue ) + 0x80) >> 8;
|
|
|
|
Bit8u ic=(i>0x3f) ? 0x3f : ((Bit8u)(i & 0xff));
|
|
|
|
IO_Write(VGAREG_DAC_DATA,ic);
|
|
|
|
IO_Write(VGAREG_DAC_DATA,ic);
|
|
|
|
IO_Write(VGAREG_DAC_DATA,ic);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void INT10_GetDACBlock(Bit16u index,Bit16u count,PhysPt data) {
|
|
|
|
IO_Write(VGAREG_DAC_READ_ADDRESS,(Bit8u)index);
|
|
|
|
for (;count>0;count--) {
|
|
|
|
mem_writeb(data++,IO_Read(VGAREG_DAC_DATA));
|
|
|
|
mem_writeb(data++,IO_Read(VGAREG_DAC_DATA));
|
|
|
|
mem_writeb(data++,IO_Read(VGAREG_DAC_DATA));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void INT10_SelectDACPage(Bit8u function,Bit8u mode) {
|
|
|
|
ResetACTL();
|
|
|
|
IO_Write(VGAREG_ACTL_ADDRESS,0x10);
|
|
|
|
Bit8u old10=IO_Read(VGAREG_ACTL_READ_DATA);
|
|
|
|
if (!function) { //Select paging mode
|
|
|
|
if (mode) old10|=0x80;
|
|
|
|
else old10&=0x7f;
|
|
|
|
//IO_Write(VGAREG_ACTL_ADDRESS,0x10);
|
|
|
|
IO_Write(VGAREG_ACTL_WRITE_DATA,old10);
|
|
|
|
} else { //Select page
|
|
|
|
IO_Write(VGAREG_ACTL_WRITE_DATA,old10);
|
|
|
|
if (!(old10 & 0x80)) mode<<=2;
|
|
|
|
mode&=0xf;
|
|
|
|
IO_Write(VGAREG_ACTL_ADDRESS,0x14);
|
|
|
|
IO_Write(VGAREG_ACTL_WRITE_DATA,mode);
|
|
|
|
}
|
|
|
|
IO_Write(VGAREG_ACTL_ADDRESS,32); //Enable output and protect palette
|
|
|
|
}
|
|
|
|
|
|
|
|
void INT10_GetDACPage(Bit8u* mode,Bit8u* page) {
|
|
|
|
ResetACTL();
|
|
|
|
IO_Write(VGAREG_ACTL_ADDRESS,0x10);
|
|
|
|
Bit8u reg10=IO_Read(VGAREG_ACTL_READ_DATA);
|
|
|
|
IO_Write(VGAREG_ACTL_WRITE_DATA,reg10);
|
|
|
|
*mode=(reg10&0x80)?0x01:0x00;
|
|
|
|
IO_Write(VGAREG_ACTL_ADDRESS,0x14);
|
|
|
|
*page=IO_Read(VGAREG_ACTL_READ_DATA);
|
|
|
|
IO_Write(VGAREG_ACTL_WRITE_DATA,*page);
|
|
|
|
if(*mode) {
|
|
|
|
*page&=0xf;
|
|
|
|
} else {
|
|
|
|
*page&=0xc;
|
|
|
|
*page>>=2;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void INT10_SetPelMask(Bit8u mask) {
|
|
|
|
IO_Write(VGAREG_PEL_MASK,mask);
|
|
|
|
}
|
|
|
|
|
|
|
|
void INT10_GetPelMask(Bit8u & mask) {
|
|
|
|
mask=IO_Read(VGAREG_PEL_MASK);
|
|
|
|
}
|
|
|
|
|
|
|
|
void INT10_SetBackgroundBorder(Bit8u val) {
|
|
|
|
Bit8u color_select=real_readb(BIOSMEM_SEG,BIOSMEM_CURRENT_PAL);
|
|
|
|
color_select=(color_select & 0xe0) | (val & 0x1f);
|
|
|
|
real_writeb(BIOSMEM_SEG,BIOSMEM_CURRENT_PAL,color_select);
|
|
|
|
|
|
|
|
if (machine == MCH_CGA || machine == MCH_TANDY)
|
|
|
|
IO_Write(0x3d9,color_select);
|
|
|
|
else if (machine == MCH_PCJR) {
|
|
|
|
IO_Read(VGAREG_TDY_RESET); // reset the flipflop
|
|
|
|
if (vga.mode!=M_TANDY_TEXT) {
|
|
|
|
IO_Write(VGAREG_TDY_ADDRESS, 0x10);
|
|
|
|
IO_Write(VGAREG_PCJR_DATA, color_select&0xf);
|
|
|
|
}
|
|
|
|
IO_Write(VGAREG_TDY_ADDRESS, 0x2); // border color
|
|
|
|
IO_Write(VGAREG_PCJR_DATA, color_select&0xf);
|
|
|
|
}
|
|
|
|
else if (IS_EGAVGA_ARCH) {
|
|
|
|
val = ((val << 1) & 0x10) | (val & 0x7);
|
|
|
|
/* Aways set the overscan color */
|
|
|
|
INT10_SetSinglePaletteRegister( 0x11, val );
|
|
|
|
/* Don't set any extra colors when in text mode */
|
|
|
|
if (CurMode->mode <= 3)
|
|
|
|
return;
|
|
|
|
INT10_SetSinglePaletteRegister( 0, val );
|
|
|
|
val = (color_select & 0x10) | 2 | ((color_select & 0x20) >> 5);
|
|
|
|
INT10_SetSinglePaletteRegister( 1, val );
|
|
|
|
val+=2;
|
|
|
|
INT10_SetSinglePaletteRegister( 2, val );
|
|
|
|
val+=2;
|
|
|
|
INT10_SetSinglePaletteRegister( 3, val );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void INT10_SetColorSelect(Bit8u val) {
|
|
|
|
Bit8u temp=real_readb(BIOSMEM_SEG,BIOSMEM_CURRENT_PAL);
|
|
|
|
temp=(temp & 0xdf) | ((val & 1) ? 0x20 : 0x0);
|
|
|
|
real_writeb(BIOSMEM_SEG,BIOSMEM_CURRENT_PAL,temp);
|
|
|
|
if (machine == MCH_CGA || machine==MCH_TANDY)
|
|
|
|
IO_Write(0x3d9,temp);
|
|
|
|
else if (machine == MCH_PCJR) {
|
|
|
|
switch(vga.mode) {
|
|
|
|
case M_TANDY2:
|
|
|
|
IO_Write(VGAREG_TDY_ADDRESS, 0x11);
|
|
|
|
IO_Write(VGAREG_PCJR_DATA, val&1? 0xf:0);
|
|
|
|
break;
|
|
|
|
case M_TANDY4:
|
|
|
|
for(Bit8u i = 0x11; i < 0x14; i++) {
|
|
|
|
const Bit8u t4_table[] = {0,2,4,6, 0,3,5,0xf};
|
|
|
|
IO_Write(VGAREG_TDY_ADDRESS, i);
|
|
|
|
IO_Write(VGAREG_PCJR_DATA, t4_table[(i-0x10)+(val&1? 4:0)]);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
// 16-color modes: always write the same palette
|
|
|
|
for(Bit8u i = 0x11; i < 0x20; i++) {
|
|
|
|
IO_Write(VGAREG_TDY_ADDRESS, i);
|
|
|
|
IO_Write(VGAREG_PCJR_DATA, i-0x10);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
IO_Write(VGAREG_TDY_ADDRESS, 0); // enable palette
|
|
|
|
}
|
|
|
|
else if (IS_EGAVGA_ARCH) {
|
|
|
|
if (CurMode->mode <= 3) //Maybe even skip the total function!
|
|
|
|
return;
|
|
|
|
val = (temp & 0x10) | 2 | val;
|
|
|
|
INT10_SetSinglePaletteRegister( 1, val );
|
|
|
|
val+=2;
|
|
|
|
INT10_SetSinglePaletteRegister( 2, val );
|
|
|
|
val+=2;
|
|
|
|
INT10_SetSinglePaletteRegister( 3, val );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void INT10_PerformGrayScaleSumming(Bit16u start_reg,Bit16u count) {
|
|
|
|
if (count>0x100) count=0x100;
|
|
|
|
for (Bitu ct=0; ct<count; ct++) {
|
|
|
|
IO_Write(VGAREG_DAC_READ_ADDRESS,start_reg+ct);
|
|
|
|
Bit8u red=IO_Read(VGAREG_DAC_DATA);
|
|
|
|
Bit8u green=IO_Read(VGAREG_DAC_DATA);
|
|
|
|
Bit8u blue=IO_Read(VGAREG_DAC_DATA);
|
|
|
|
|
|
|
|
/* calculate clamped intensity, taken from VGABIOS */
|
|
|
|
Bit32u i=(( 77*red + 151*green + 28*blue ) + 0x80) >> 8;
|
|
|
|
Bit8u ic=(i>0x3f) ? 0x3f : ((Bit8u)(i & 0xff));
|
|
|
|
INT10_SetSingleDACRegister(start_reg+ct,ic,ic,ic);
|
|
|
|
}
|
|
|
|
}
|