598 lines
14 KiB
C++
Raw Normal View History

// ftpd is a server implementation based on the following:
// - RFC 959 (https://datatracker.ietf.org/doc/html/rfc959)
// - RFC 3659 (https://datatracker.ietf.org/doc/html/rfc3659)
// - suggested implementation details from https://cr.yp.to/ftp/filesystem.html
//
// ftpd implements mdns based on the following:
// - RFC 1035 (https://datatracker.ietf.org/doc/html/rfc1035)
// - RFC 6762 (https://datatracker.ietf.org/doc/html/rfc6762)
//
// Copyright (C) 2024 Michael Theall
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.
#include "mdns.h"
#include "log.h"
#include "platform.h"
#include <arpa/inet.h>
#include <algorithm>
#include <array>
#include <bit>
#include <chrono>
#include <concepts>
#include <cstdlib>
#include <cstring>
#include <string>
#include <type_traits>
#include <vector>
using namespace std::chrono_literals;
static_assert (
std::endian::native == std::endian::big || std::endian::native == std::endian::little);
static_assert (sizeof (in_addr_t) == 4);
namespace
{
constexpr auto MDNS_TTL = 120;
SockAddr const s_multicastAddress{inet_addr ("224.0.0.251"), 5353};
platform::steady_clock::time_point s_lastAnnounce{};
platform::steady_clock::time_point s_lastProbe{};
std::string s_hostname = platform::hostname ();
std::string s_hostnameLocal = s_hostname + ".local";
enum class State
{
Probe1,
Probe2,
Probe3,
Announce1,
Announce2,
Complete,
Conflict,
};
auto s_state = State::Probe1;
#if __has_cpp_attribute(__cpp_lib_byteswap)
template <std::integral T>
using byteswap = std::byteswap<T>;
#else
template <std::integral T>
constexpr T byteswap (T const value_) noexcept
{
static_assert (std::has_unique_object_representations_v<T>, "T may not have padding bits");
auto buffer = std::bit_cast<std::array<std::byte, sizeof (T)>> (value_);
std::ranges::reverse (buffer);
return std::bit_cast<T> (buffer);
}
#endif
template <std::integral T>
constexpr T hton (T const value_) noexcept
{
if constexpr (std::endian::native == std::endian::big)
return value_;
else
return byteswap (value_);
}
template <std::integral T>
constexpr T ntoh (T const value_) noexcept
{
if constexpr (std::endian::native == std::endian::big)
return value_;
else
return byteswap (value_);
}
template <std::integral T, std::integral U>
void const *decode (void const *const buffer_, U &size_, T &out_, bool networkToHost_ = true)
{
if (!buffer_)
return nullptr;
if (size_ < 0 || static_cast<std::make_unsigned_t<T>> (size_) < sizeof (T))
return nullptr;
std::memcpy (&out_, buffer_, sizeof (T));
if (networkToHost_)
out_ = ntoh (out_);
size_ -= sizeof (T);
return static_cast<std::uint8_t const *> (buffer_) + sizeof (T);
}
template <std::integral T>
void const *decode (void const *buffer_, T &size_, std::string &out_)
{
auto p = static_cast<char const *> (buffer_);
auto const end = p + size_;
std::string result;
result.reserve (size_);
while (p < end && *p)
{
auto const len = *p++;
// punt on compressed labels
if (len & 0xC0)
return nullptr;
if (p + len >= end)
return nullptr;
if (!result.empty ())
result.push_back ('.');
result.insert (std::end (result), p, p + len);
p += len;
}
++p;
out_ = std::move (result);
size_ = end - p;
return p;
}
template <std::integral T, std::integral U>
void *encode (void *const buffer_, U &size_, T in_, bool hostToNetwork_ = true)
{
if (!buffer_)
return nullptr;
if (size_ < sizeof (T))
return nullptr;
if (hostToNetwork_)
in_ = hton (in_);
std::memcpy (buffer_, &in_, sizeof (T));
size_ -= sizeof (T);
return static_cast<std::uint8_t *> (buffer_) + sizeof (T);
}
template <std::integral T>
void *encode (void *const buffer_, T &size_, std::string const &in_)
{
// names are limited to 255 bytes
if (in_.size () > 0xFF)
return nullptr;
auto p = static_cast<char *> (buffer_);
auto const end = p + size_;
std::string::size_type prev = 0;
std::string::size_type pos = 0;
while (p < end && pos != std::string::npos)
{
pos = in_.find ('.', prev);
auto const label = std::string_view (in_).substr (prev, pos);
// labels are limited to 63 bytes
if (label.size () >= size_ || label.size () > 0x3F)
return nullptr;
p = static_cast<char *> (encode<std::uint8_t> (p, size_, label.size ()));
if (!p)
return nullptr;
std::memcpy (p, label.data (), label.size ());
p += label.size ();
if (pos != std::string::npos)
prev = pos + 1;
}
if (p == end)
return nullptr;
*p++ = 0;
size_ = end - p;
return p;
}
struct DNSHeader
{
std::uint16_t id{};
std::uint16_t flags{};
std::uint16_t qdCount{};
std::uint16_t anCount{};
std::uint16_t nsCount{};
std::uint16_t arCount{};
template <std::integral T>
void const *decode (void const *const buffer_, T &size_)
{
auto in = ::decode (buffer_, size_, id);
in = ::decode (buffer_, size_, flags);
in = ::decode (buffer_, size_, qdCount);
in = ::decode (buffer_, size_, anCount);
in = ::decode (buffer_, size_, nsCount);
in = ::decode (buffer_, size_, arCount);
return buffer_;
}
template <std::integral T>
void *encode (void *buffer_, T &size_)
{
buffer_ = ::encode (buffer_, size_, id);
buffer_ = ::encode (buffer_, size_, flags);
buffer_ = ::encode (buffer_, size_, qdCount);
buffer_ = ::encode (buffer_, size_, anCount);
buffer_ = ::encode (buffer_, size_, nsCount);
buffer_ = ::encode (buffer_, size_, arCount);
return buffer_;
}
};
struct QueryRecord
{
std::string qname{};
std::uint16_t qtype{};
std::uint16_t qclass{};
template <std::integral T>
void const *decode (void const *buffer_, T &size_)
{
buffer_ = ::decode (buffer_, size_, qname);
buffer_ = ::decode (buffer_, size_, qtype);
buffer_ = ::decode (buffer_, size_, qclass);
return buffer_;
}
template <std::integral T>
void *encode (void *buffer_, T &size_)
{
buffer_ = ::encode (buffer_, size_, qname);
buffer_ = ::encode (buffer_, size_, qtype);
buffer_ = ::encode (buffer_, size_, qclass);
return buffer_;
}
};
struct ResourceRecord
{
std::string rname{};
std::uint16_t rtype{};
std::uint16_t rclass{};
std::uint32_t rttl{};
std::uint16_t rlen{};
std::vector<std::uint8_t> rdata{};
template <std::integral T>
void const *decode (void const *buffer_, T &size_)
{
buffer_ = ::decode (buffer_, size_, rname);
buffer_ = ::decode (buffer_, size_, rtype);
buffer_ = ::decode (buffer_, size_, rclass);
buffer_ = ::decode (buffer_, size_, rttl);
buffer_ = ::decode (buffer_, size_, rlen);
return buffer_;
}
template <std::integral T>
void *encode (void *buffer_, T &size_)
{
if (rttl > std::numeric_limits<std::int32_t>::max ())
return nullptr;
buffer_ = ::encode (buffer_, size_, rname);
buffer_ = ::encode (buffer_, size_, rtype);
buffer_ = ::encode (buffer_, size_, rclass);
buffer_ = ::encode (buffer_, size_, rttl);
buffer_ = ::encode (buffer_, size_, rlen);
if (rlen > size_)
return nullptr;
rdata.resize (rlen);
std::memcpy (rdata.data (), buffer_, rlen);
size_ -= rlen;
return static_cast<std::uint8_t *> (buffer_) + rlen;
}
};
void probe (Socket *const socket_, std::string const &qname_)
{
std::vector<std::uint8_t> response (65536);
auto available = response.size ();
auto out = DNSHeader{.qdCount = 1}.encode (response.data (), available);
out = QueryRecord{.qname = qname_, .qtype = 255, .qclass = 1}.encode (out, available);
if (!out)
return;
info ("Probe mDNS %s\n", qname_.c_str ());
socket_->writeTo (response.data (), response.size () - available, s_multicastAddress);
s_lastProbe = platform::steady_clock::now ();
}
void announce (Socket *const socket_,
SockAddr const *srcAddr_,
std::uint16_t const id_,
std::uint16_t const flags_,
QueryRecord const &record_,
SockAddr const &addr_)
{
std::vector<std::uint8_t> response (65536);
auto available = response.size ();
// header
auto out = encode<std::uint16_t> (response.data (), available, id_);
out =
encode<std::uint16_t> (out, available, flags_ | (1 << 15) | (1 << 10)); // mark response/AA
out = encode<std::uint16_t> (out, available, 0);
out = encode<std::uint16_t> (out, available, 1);
out = encode<std::uint16_t> (out, available, 0);
out = encode<std::uint16_t> (out, available, 0);
// answer section
out = encode (out, available, record_.qname);
out = encode<std::uint16_t> (out, available, record_.qtype);
out = encode<std::uint16_t> (out, available, record_.qclass | (1 << 15)); // mark unique/flush
out = encode<std::uint32_t> (out, available, MDNS_TTL);
out = encode<std::uint16_t> (out, available, sizeof (in_addr_t));
out = encode<in_addr_t> (
out, available, static_cast<sockaddr_in const &> (addr_).sin_addr.s_addr, false);
if (!out)
return;
auto const preferUnicast = srcAddr_ && ((record_.qclass >> 15) & 0x1);
if (preferUnicast)
{
auto const name = std::string (addr_.name ());
info (
"Respond mDNS %s %s to %s\n", record_.qname.c_str (), name.c_str (), srcAddr_->name ());
socket_->writeTo (response.data (), response.size () - available, *srcAddr_);
}
auto const now = platform::steady_clock::now ();
if (!preferUnicast || now - s_lastAnnounce > std::chrono::seconds (MDNS_TTL / 4))
{
info ("Announce mDNS %s %s\n", record_.qname.c_str (), addr_.name ());
socket_->writeTo (response.data (), response.size () - available, s_multicastAddress);
s_lastAnnounce = now;
}
}
}
void mdns::setHostname (std::string hostname_)
{
if (hostname_.empty ())
hostname_ = platform::hostname ();
if (s_hostname == hostname_)
return;
s_hostname = std::move (hostname_);
s_hostnameLocal = s_hostname + ".local";
s_state = State::Probe1;
s_lastProbe = platform::steady_clock::now ();
}
UniqueSocket mdns::createSocket ()
{
auto socket = Socket::create (Socket::eDatagram);
if (!socket)
return nullptr;
if (!socket->setReuseAddress ())
return nullptr;
auto iface = SockAddr::AnyIPv4;
iface.setPort (s_multicastAddress.port ());
if (!socket->bind (iface))
return nullptr;
if (!socket->joinMulticastGroup (s_multicastAddress, iface))
return nullptr;
s_state = State::Probe1;
s_lastProbe = platform::steady_clock::now ();
return socket;
}
void mdns::handleSocket (Socket *socket_, SockAddr const &addr_)
{
if (!socket_)
return;
// only support IPv4 for now
if (addr_.domain () != SockAddr::Domain::IPv4)
return;
auto const now = platform::steady_clock::now ();
switch (s_state)
{
case State::Probe1:
case State::Probe2:
case State::Probe3:
if (now - s_lastProbe > 250ms)
{
probe (socket_, s_hostname);
s_state = static_cast<State> (static_cast<int> (s_state) + 1);
}
break;
case State::Announce1:
case State::Announce2:
if (now - s_lastAnnounce > 1s)
{
announce (socket_,
nullptr,
0,
0,
QueryRecord{.qname = s_hostname, .qtype = 1, .qclass = 1},
addr_);
s_state = static_cast<State> (static_cast<int> (s_state) + 1);
}
default:
break;
}
Socket::PollInfo pollInfo{*socket_, POLLIN, 0};
auto const rc = Socket::poll (&pollInfo, 1, 0ms);
if (rc <= 0 || !(pollInfo.revents & POLLIN))
return;
SockAddr srcAddr;
std::vector<std::uint8_t> buffer (65536);
auto bytes = socket_->readFrom (buffer.data (), buffer.size (), srcAddr);
if (bytes <= 0)
return;
// only support IPv4 for now
if (srcAddr.domain () != SockAddr::Domain::IPv4)
return;
// ignore loopback
if (std::memcmp (&reinterpret_cast<sockaddr_in const &> (srcAddr).sin_addr.s_addr,
&reinterpret_cast<sockaddr_in const &> (addr_).sin_addr.s_addr,
sizeof (in_addr_t)) == 0)
return;
std::uint16_t id;
std::uint16_t flags;
std::uint16_t qdCount;
std::uint16_t anCount;
std::uint16_t nsCount;
std::uint16_t arCount;
// parse header
auto in = decode (buffer.data (), bytes, id);
in = decode (in, bytes, flags);
in = decode (in, bytes, qdCount);
in = decode (in, bytes, anCount);
in = decode (in, bytes, nsCount);
in = decode (in, bytes, arCount);
if (!in)
return;
auto const qr = (flags >> 15) & 0x1;
// ill-formed on queries and responses
auto const opcode = (flags >> 11) & 0xF;
if (opcode != 0)
return;
// ill-formed on queries
if (!qr && ((flags >> 10) & 0x1))
return;
// punt on truncated messages
if ((flags >> 9) & 0x1)
return;
// ill-formed on queries
if (!qr && ((flags >> 7) & 0x1))
return;
// must be zero
if ((flags >> 4) & 0x7)
return;
// ill-formed on queries and responses
if ((flags >> 0) & 0xF)
return;
// std::vector<std::uint8_t> response (65536);
// void *out = response.data ();
// auto available = response.size ();
std::vector<ResourceRecord> answers;
bool announced = false;
for (unsigned i = 0; i < qdCount; ++i)
{
QueryRecord record;
in = record.decode (in, bytes);
if (!in)
return;
// only respond to queries
if (qr)
continue;
// only accept A or ANY type
if (record.qtype != 1 && record.qtype != 255)
continue;
// only accept IN or ANY class
if ((record.qclass & 0x7FFF) != 1 && (record.qclass & 0x7FFF) != 255)
continue;
if (record.qname != s_hostname && record.qname != s_hostnameLocal)
continue;
if (!announced)
{
std::vector<std::uint8_t> data (sizeof (in_addr_t));
auto n = data.size ();
encode (
data.data (), n, static_cast<sockaddr_in const &> (addr_).sin_addr.s_addr, false);
answers.emplace_back (ResourceRecord{// answer
.rname = record.qname,
.rtype = 1,
.rclass = static_cast<std::uint16_t> (1 | (1 << 15)),
.rttl = MDNS_TTL,
.rlen = sizeof (in_addr_t),
.rdata = std::move (data)});
announce (socket_, &srcAddr, id, flags, record, addr_);
announced = true;
}
}
for (unsigned i = 0; i < anCount; ++i)
{
ResourceRecord record;
in = record.decode (in, bytes);
if (!in)
return;
}
}