Files
pico-launcher/arm9/source/json/ArduinoJson.h
2025-11-25 17:41:31 +01:00

7226 lines
216 KiB
C++

// ArduinoJson - https://arduinojson.org
// Copyright © 2014-2022, Benoit BLANCHON
// MIT License
#pragma once
#define ARDUINOJSON_USE_DOUBLE 0
#define ARDUINOJSON_USE_LONG_LONG 0
#define ARDUINOJSON_ENABLE_STD_STREAM 0
#ifdef __cplusplus
#if __cplusplus >= 201103L
# define ARDUINOJSON_HAS_LONG_LONG 1
# define ARDUINOJSON_HAS_RVALUE_REFERENCES 1
#else
# define ARDUINOJSON_HAS_LONG_LONG 0
# define ARDUINOJSON_HAS_RVALUE_REFERENCES 0
#endif
#ifndef ARDUINOJSON_HAS_NULLPTR
# if __cplusplus >= 201103L
# define ARDUINOJSON_HAS_NULLPTR 1
# else
# define ARDUINOJSON_HAS_NULLPTR 0
# endif
#endif
#if defined(_MSC_VER) && !ARDUINOJSON_HAS_LONG_LONG
# define ARDUINOJSON_HAS_INT64 1
#else
# define ARDUINOJSON_HAS_INT64 0
#endif
#ifndef ARDUINOJSON_ENABLE_STD_STREAM
# ifdef __has_include
# if __has_include(<istream>) && \
__has_include(<ostream>) && \
!defined(min) && \
!defined(max)
# define ARDUINOJSON_ENABLE_STD_STREAM 1
# else
# define ARDUINOJSON_ENABLE_STD_STREAM 0
# endif
# else
# ifdef ARDUINO
# define ARDUINOJSON_ENABLE_STD_STREAM 0
# else
# define ARDUINOJSON_ENABLE_STD_STREAM 1
# endif
# endif
#endif
#ifndef ARDUINOJSON_ENABLE_STD_STRING
# ifdef __has_include
# if __has_include(<string>) && !defined(min) && !defined(max)
# define ARDUINOJSON_ENABLE_STD_STRING 1
# else
# define ARDUINOJSON_ENABLE_STD_STRING 0
# endif
# else
# ifdef ARDUINO
# define ARDUINOJSON_ENABLE_STD_STRING 0
# else
# define ARDUINOJSON_ENABLE_STD_STRING 1
# endif
# endif
#endif
#ifndef ARDUINOJSON_ENABLE_STRING_VIEW
# ifdef __has_include
# if __has_include(<string_view>) && __cplusplus >= 201703L
# define ARDUINOJSON_ENABLE_STRING_VIEW 1
# else
# define ARDUINOJSON_ENABLE_STRING_VIEW 0
# endif
# else
# define ARDUINOJSON_ENABLE_STRING_VIEW 0
# endif
#endif
#ifndef ARDUINOJSON_USE_DOUBLE
# define ARDUINOJSON_USE_DOUBLE 1
#endif
#ifndef ARDUINOJSON_USE_LONG_LONG
# if ARDUINOJSON_HAS_LONG_LONG && defined(__SIZEOF_POINTER__) && \
__SIZEOF_POINTER__ >= 4 || \
defined(_MSC_VER)
# define ARDUINOJSON_USE_LONG_LONG 1
# endif
#endif
#ifndef ARDUINOJSON_USE_LONG_LONG
# define ARDUINOJSON_USE_LONG_LONG 0
#endif
#ifndef ARDUINOJSON_DEFAULT_NESTING_LIMIT
# define ARDUINOJSON_DEFAULT_NESTING_LIMIT 10
#endif
#ifndef ARDUINOJSON_SLOT_OFFSET_SIZE
# if defined(__SIZEOF_POINTER__) && __SIZEOF_POINTER__ <= 2
# define ARDUINOJSON_SLOT_OFFSET_SIZE 1
# elif defined(__SIZEOF_POINTER__) && __SIZEOF_POINTER__ >= 8 || \
defined(_WIN64) && _WIN64
# define ARDUINOJSON_SLOT_OFFSET_SIZE 4
# else
# define ARDUINOJSON_SLOT_OFFSET_SIZE 2
# endif
#endif
#ifdef ARDUINO
# ifndef ARDUINOJSON_ENABLE_ARDUINO_STRING
# define ARDUINOJSON_ENABLE_ARDUINO_STRING 1
# endif
# ifndef ARDUINOJSON_ENABLE_ARDUINO_STREAM
# define ARDUINOJSON_ENABLE_ARDUINO_STREAM 1
# endif
# ifndef ARDUINOJSON_ENABLE_ARDUINO_PRINT
# define ARDUINOJSON_ENABLE_ARDUINO_PRINT 1
# endif
# ifndef ARDUINOJSON_ENABLE_PROGMEM
# define ARDUINOJSON_ENABLE_PROGMEM 1
# endif
#else // ARDUINO
# ifndef ARDUINOJSON_ENABLE_ARDUINO_STRING
# define ARDUINOJSON_ENABLE_ARDUINO_STRING 0
# endif
# ifndef ARDUINOJSON_ENABLE_ARDUINO_STREAM
# define ARDUINOJSON_ENABLE_ARDUINO_STREAM 0
# endif
# ifndef ARDUINOJSON_ENABLE_ARDUINO_PRINT
# define ARDUINOJSON_ENABLE_ARDUINO_PRINT 0
# endif
# ifndef ARDUINOJSON_ENABLE_PROGMEM
# define ARDUINOJSON_ENABLE_PROGMEM 0
# endif
#endif // ARDUINO
#ifndef ARDUINOJSON_DECODE_UNICODE
# define ARDUINOJSON_DECODE_UNICODE 1
#endif
#ifndef ARDUINOJSON_ENABLE_COMMENTS
# define ARDUINOJSON_ENABLE_COMMENTS 0
#endif
#ifndef ARDUINOJSON_ENABLE_NAN
# define ARDUINOJSON_ENABLE_NAN 0
#endif
#ifndef ARDUINOJSON_ENABLE_INFINITY
# define ARDUINOJSON_ENABLE_INFINITY 0
#endif
#ifndef ARDUINOJSON_POSITIVE_EXPONENTIATION_THRESHOLD
# define ARDUINOJSON_POSITIVE_EXPONENTIATION_THRESHOLD 1e7
#endif
#ifndef ARDUINOJSON_NEGATIVE_EXPONENTIATION_THRESHOLD
# define ARDUINOJSON_NEGATIVE_EXPONENTIATION_THRESHOLD 1e-5
#endif
#ifndef ARDUINOJSON_LITTLE_ENDIAN
# if defined(_MSC_VER) || \
(defined(__BYTE_ORDER__) && \
__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) || \
defined(__LITTLE_ENDIAN__) || defined(__i386) || defined(__x86_64)
# define ARDUINOJSON_LITTLE_ENDIAN 1
# else
# define ARDUINOJSON_LITTLE_ENDIAN 0
# endif
#endif
#ifndef ARDUINOJSON_ENABLE_ALIGNMENT
# if defined(__AVR)
# define ARDUINOJSON_ENABLE_ALIGNMENT 0
# else
# define ARDUINOJSON_ENABLE_ALIGNMENT 1
# endif
#endif
#ifndef ARDUINOJSON_TAB
# define ARDUINOJSON_TAB " "
#endif
#ifndef ARDUINOJSON_ENABLE_STRING_DEDUPLICATION
# define ARDUINOJSON_ENABLE_STRING_DEDUPLICATION 1
#endif
#ifndef ARDUINOJSON_STRING_BUFFER_SIZE
# define ARDUINOJSON_STRING_BUFFER_SIZE 32
#endif
#ifndef ARDUINOJSON_DEBUG
# ifdef __PLATFORMIO_BUILD_DEBUG__
# define ARDUINOJSON_DEBUG 1
# else
# define ARDUINOJSON_DEBUG 0
# endif
#endif
#if ARDUINOJSON_HAS_NULLPTR && defined(nullptr)
# error nullptr is defined as a macro. Remove the faulty #define or #undef nullptr
#endif
#if ARDUINOJSON_ENABLE_ARDUINO_STRING || ARDUINOJSON_ENABLE_ARDUINO_STREAM || \
ARDUINOJSON_ENABLE_ARDUINO_PRINT || ARDUINOJSON_ENABLE_PROGMEM
#include <Arduino.h>
#endif
#if !ARDUINOJSON_DEBUG
# ifdef __clang__
# pragma clang system_header
# elif defined __GNUC__
# pragma GCC system_header
# endif
#endif
#define ARDUINOJSON_EXPAND6(a, b, c, d, e, f) a, b, c, d, e, f
#define ARDUINOJSON_EXPAND9(a, b, c, d, e, f, g, h, i) a, b, c, d, e, f, g, h, i
#define ARDUINOJSON_EXPAND18(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, \
q, r) \
a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r
#define ARDUINOJSON_CONCAT_(A, B) A##B
#define ARDUINOJSON_CONCAT2(A, B) ARDUINOJSON_CONCAT_(A, B)
#define ARDUINOJSON_CONCAT4(A, B, C, D) \
ARDUINOJSON_CONCAT2(ARDUINOJSON_CONCAT2(A, B), ARDUINOJSON_CONCAT2(C, D))
#define ARDUINOJSON_HEX_DIGIT_0000() 0
#define ARDUINOJSON_HEX_DIGIT_0001() 1
#define ARDUINOJSON_HEX_DIGIT_0010() 2
#define ARDUINOJSON_HEX_DIGIT_0011() 3
#define ARDUINOJSON_HEX_DIGIT_0100() 4
#define ARDUINOJSON_HEX_DIGIT_0101() 5
#define ARDUINOJSON_HEX_DIGIT_0110() 6
#define ARDUINOJSON_HEX_DIGIT_0111() 7
#define ARDUINOJSON_HEX_DIGIT_1000() 8
#define ARDUINOJSON_HEX_DIGIT_1001() 9
#define ARDUINOJSON_HEX_DIGIT_1010() A
#define ARDUINOJSON_HEX_DIGIT_1011() B
#define ARDUINOJSON_HEX_DIGIT_1100() C
#define ARDUINOJSON_HEX_DIGIT_1101() D
#define ARDUINOJSON_HEX_DIGIT_1110() E
#define ARDUINOJSON_HEX_DIGIT_1111() F
#define ARDUINOJSON_HEX_DIGIT_(A, B, C, D) ARDUINOJSON_HEX_DIGIT_##A##B##C##D()
#define ARDUINOJSON_HEX_DIGIT(A, B, C, D) ARDUINOJSON_HEX_DIGIT_(A, B, C, D)
#define ARDUINOJSON_VERSION "6.20.1"
#define ARDUINOJSON_VERSION_MAJOR 6
#define ARDUINOJSON_VERSION_MINOR 20
#define ARDUINOJSON_VERSION_REVISION 1
#ifndef ARDUINOJSON_NAMESPACE
# define ARDUINOJSON_NAMESPACE \
ARDUINOJSON_CONCAT4( \
ARDUINOJSON_CONCAT4(ArduinoJson, ARDUINOJSON_VERSION_MAJOR, \
ARDUINOJSON_VERSION_MINOR, \
ARDUINOJSON_VERSION_REVISION), \
_, \
ARDUINOJSON_HEX_DIGIT( \
ARDUINOJSON_ENABLE_PROGMEM, ARDUINOJSON_USE_LONG_LONG, \
ARDUINOJSON_USE_DOUBLE, ARDUINOJSON_ENABLE_STRING_DEDUPLICATION), \
ARDUINOJSON_HEX_DIGIT( \
ARDUINOJSON_ENABLE_NAN, ARDUINOJSON_ENABLE_INFINITY, \
ARDUINOJSON_ENABLE_COMMENTS, ARDUINOJSON_DECODE_UNICODE))
#endif
namespace ARDUINOJSON_NAMESPACE {
template <typename T, typename Enable = void>
struct Converter;
template <typename T1, typename T2>
class InvalidConversion; // Error here? See https://arduinojson.org/v6/invalid-conversion/
template <typename T>
struct ConverterNeedsWriteableRef;
} // namespace ARDUINOJSON_NAMESPACE
#include <stddef.h>
#include <stdint.h>
namespace ARDUINOJSON_NAMESPACE {
#if ARDUINOJSON_ENABLE_ALIGNMENT
inline bool isAligned(size_t value) {
const size_t mask = sizeof(void*) - 1;
size_t addr = value;
return (addr & mask) == 0;
}
inline size_t addPadding(size_t bytes) {
const size_t mask = sizeof(void*) - 1;
return (bytes + mask) & ~mask;
}
template <size_t bytes>
struct AddPadding {
static const size_t mask = sizeof(void*) - 1;
static const size_t value = (bytes + mask) & ~mask;
};
#else
inline bool isAligned(size_t) {
return true;
}
inline size_t addPadding(size_t bytes) {
return bytes;
}
template <size_t bytes>
struct AddPadding {
static const size_t value = bytes;
};
#endif
template <typename T>
inline bool isAligned(T* ptr) {
return isAligned(reinterpret_cast<size_t>(ptr));
}
template <typename T>
inline T* addPadding(T* p) {
size_t address = addPadding(reinterpret_cast<size_t>(p));
return reinterpret_cast<T*>(address);
}
} // namespace ARDUINOJSON_NAMESPACE
#if ARDUINOJSON_DEBUG
#include <assert.h>
# define ARDUINOJSON_ASSERT(X) assert(X)
#else
# define ARDUINOJSON_ASSERT(X) ((void)0)
#endif
namespace ARDUINOJSON_NAMESPACE {
template <size_t X, size_t Y, bool MaxIsX = (X > Y)>
struct Max {};
template <size_t X, size_t Y>
struct Max<X, Y, true> {
static const size_t value = X;
};
template <size_t X, size_t Y>
struct Max<X, Y, false> {
static const size_t value = Y;
};
template <bool Condition, class TrueType, class FalseType>
struct conditional {
typedef TrueType type;
};
template <class TrueType, class FalseType>
struct conditional<false, TrueType, FalseType> {
typedef FalseType type;
};
template <bool Condition, typename T = void>
struct enable_if {};
template <typename T>
struct enable_if<true, T> {
typedef T type;
};
template <typename T, T v>
struct integral_constant {
static const T value = v;
};
typedef integral_constant<bool, true> true_type;
typedef integral_constant<bool, false> false_type;
template <typename T>
struct is_array : false_type {};
template <typename T>
struct is_array<T[]> : true_type {};
template <typename T, size_t N>
struct is_array<T[N]> : true_type {};
template <typename TBase, typename TDerived>
class is_base_of {
protected: // <- to avoid GCC's "all member functions in class are private"
static int probe(const TBase*);
static char probe(...);
public:
static const bool value =
sizeof(probe(reinterpret_cast<TDerived*>(0))) == sizeof(int);
};
template <typename T>
T declval();
template <typename T>
struct is_class {
protected: // <- to avoid GCC's "all member functions in class are private"
template <typename U>
static int probe(void (U::*)(void));
template <typename>
static char probe(...);
public:
static const bool value = sizeof(probe<T>(0)) == sizeof(int);
};
template <typename T>
struct is_const : false_type {};
template <typename T>
struct is_const<const T> : true_type {};
} // namespace ARDUINOJSON_NAMESPACE
#ifdef _MSC_VER
# pragma warning(push)
# pragma warning(disable : 4244)
#endif
#ifdef __ICCARM__
#pragma diag_suppress=Pa093
#endif
namespace ARDUINOJSON_NAMESPACE {
template <typename From, typename To>
struct is_convertible {
protected: // <- to avoid GCC's "all member functions in class are private"
static int probe(To);
static char probe(...);
static From& _from;
public:
static const bool value = sizeof(probe(_from)) == sizeof(int);
};
} // namespace ARDUINOJSON_NAMESPACE
#ifdef _MSC_VER
# pragma warning(pop)
#endif
#ifdef __ICCARM__
#pragma diag_default=Pa093
#endif
namespace ARDUINOJSON_NAMESPACE {
template <typename T, typename U>
struct is_same : false_type {};
template <typename T>
struct is_same<T, T> : true_type {};
template <typename T>
struct remove_cv {
typedef T type;
};
template <typename T>
struct remove_cv<const T> {
typedef T type;
};
template <typename T>
struct remove_cv<volatile T> {
typedef T type;
};
template <typename T>
struct remove_cv<const volatile T> {
typedef T type;
};
template <class T>
struct is_floating_point
: integral_constant<
bool, //
is_same<float, typename remove_cv<T>::type>::value ||
is_same<double, typename remove_cv<T>::type>::value> {};
template <typename T>
struct is_integral : integral_constant<bool,
is_same<typename remove_cv<T>::type, signed char>::value ||
is_same<typename remove_cv<T>::type, unsigned char>::value ||
is_same<typename remove_cv<T>::type, signed short>::value ||
is_same<typename remove_cv<T>::type, unsigned short>::value ||
is_same<typename remove_cv<T>::type, signed int>::value ||
is_same<typename remove_cv<T>::type, unsigned int>::value ||
is_same<typename remove_cv<T>::type, signed long>::value ||
is_same<typename remove_cv<T>::type, unsigned long>::value ||
#if ARDUINOJSON_HAS_LONG_LONG
is_same<typename remove_cv<T>::type, signed long long>::value ||
is_same<typename remove_cv<T>::type, unsigned long long>::value ||
#endif
#if ARDUINOJSON_HAS_INT64
is_same<typename remove_cv<T>::type, signed __int64>::value ||
is_same<typename remove_cv<T>::type, unsigned __int64>::value ||
#endif
is_same<typename remove_cv<T>::type, char>::value ||
is_same<typename remove_cv<T>::type, bool>::value> {};
template <typename T>
struct is_enum {
static const bool value = is_convertible<T, int>::value &&
!is_class<T>::value && !is_integral<T>::value &&
!is_floating_point<T>::value;
};
template <typename T>
struct is_pointer : false_type {};
template <typename T>
struct is_pointer<T*> : true_type {};
template <typename T>
struct is_signed : integral_constant<bool,
is_same<typename remove_cv<T>::type, char>::value ||
is_same<typename remove_cv<T>::type, signed char>::value ||
is_same<typename remove_cv<T>::type, signed short>::value ||
is_same<typename remove_cv<T>::type, signed int>::value ||
is_same<typename remove_cv<T>::type, signed long>::value ||
#if ARDUINOJSON_HAS_LONG_LONG
is_same<typename remove_cv<T>::type, signed long long>::value ||
#endif
#if ARDUINOJSON_HAS_INT64
is_same<typename remove_cv<T>::type, signed __int64>::value ||
#endif
is_same<typename remove_cv<T>::type, float>::value ||
is_same<typename remove_cv<T>::type, double>::value> {};
template <typename T>
struct is_unsigned : integral_constant<bool,
is_same<typename remove_cv<T>::type, unsigned char>::value ||
is_same<typename remove_cv<T>::type, unsigned short>::value ||
is_same<typename remove_cv<T>::type, unsigned int>::value ||
is_same<typename remove_cv<T>::type, unsigned long>::value ||
#if ARDUINOJSON_HAS_INT64
is_same<typename remove_cv<T>::type, unsigned __int64>::value ||
#endif
#if ARDUINOJSON_HAS_LONG_LONG
is_same<typename remove_cv<T>::type, unsigned long long>::value ||
#endif
is_same<typename remove_cv<T>::type, bool>::value> {};
template <typename T>
struct type_identity {
typedef T type;
};
template <typename T>
struct make_unsigned;
template <>
struct make_unsigned<char> : type_identity<unsigned char> {};
template <>
struct make_unsigned<signed char> : type_identity<unsigned char> {};
template <>
struct make_unsigned<unsigned char> : type_identity<unsigned char> {};
template <>
struct make_unsigned<signed short> : type_identity<unsigned short> {};
template <>
struct make_unsigned<unsigned short> : type_identity<unsigned short> {};
template <>
struct make_unsigned<signed int> : type_identity<unsigned int> {};
template <>
struct make_unsigned<unsigned int> : type_identity<unsigned int> {};
template <>
struct make_unsigned<signed long> : type_identity<unsigned long> {};
template <>
struct make_unsigned<unsigned long> : type_identity<unsigned long> {};
#if ARDUINOJSON_HAS_LONG_LONG
template <>
struct make_unsigned<signed long long> : type_identity<unsigned long long> {};
template <>
struct make_unsigned<unsigned long long> : type_identity<unsigned long long> {};
#endif
#if ARDUINOJSON_HAS_INT64
template <>
struct make_unsigned<signed __int64> : type_identity<unsigned __int64> {};
template <>
struct make_unsigned<unsigned __int64> : type_identity<unsigned __int64> {};
#endif
template <class = void>
struct make_void {
typedef void type;
};
template <typename T>
struct remove_const {
typedef T type;
};
template <typename T>
struct remove_const<const T> {
typedef T type;
};
template <typename T>
struct remove_reference {
typedef T type;
};
template <typename T>
struct remove_reference<T&> {
typedef T type;
};
} // namespace ARDUINOJSON_NAMESPACE
#include <string.h>
namespace ARDUINOJSON_NAMESPACE {
namespace StringStoragePolicy {
struct Link {};
struct Copy {};
struct LinkOrCopy {
bool link;
};
} // namespace StringStoragePolicy
template <typename TString, typename Enable = void>
struct StringAdapter;
template <typename TString, typename Enable = void>
struct SizedStringAdapter;
template <typename TString>
typename StringAdapter<TString>::AdaptedString adaptString(const TString& s) {
return StringAdapter<TString>::adapt(s);
}
template <typename TChar>
typename StringAdapter<TChar*>::AdaptedString adaptString(TChar* p) {
return StringAdapter<TChar*>::adapt(p);
}
template <typename TChar>
typename SizedStringAdapter<TChar*>::AdaptedString adaptString(TChar* p,
size_t n) {
return SizedStringAdapter<TChar*>::adapt(p, n);
}
template <typename T>
struct IsChar
: integral_constant<bool, is_integral<T>::value && sizeof(T) == 1> {};
class ZeroTerminatedRamString {
public:
static const size_t typeSortKey = 3;
ZeroTerminatedRamString(const char* str) : _str(str) {}
bool isNull() const {
return !_str;
}
size_t size() const {
return _str ? ::strlen(_str) : 0;
}
char operator[](size_t i) const {
ARDUINOJSON_ASSERT(_str != 0);
ARDUINOJSON_ASSERT(i <= size());
return _str[i];
}
const char* data() const {
return _str;
}
friend int stringCompare(ZeroTerminatedRamString a,
ZeroTerminatedRamString b) {
ARDUINOJSON_ASSERT(!a.isNull());
ARDUINOJSON_ASSERT(!b.isNull());
return ::strcmp(a._str, b._str);
}
friend bool stringEquals(ZeroTerminatedRamString a,
ZeroTerminatedRamString b) {
return stringCompare(a, b) == 0;
}
StringStoragePolicy::Copy storagePolicy() const {
return StringStoragePolicy::Copy();
}
protected:
const char* _str;
};
template <typename TChar>
struct StringAdapter<TChar*, typename enable_if<IsChar<TChar>::value>::type> {
typedef ZeroTerminatedRamString AdaptedString;
static AdaptedString adapt(const TChar* p) {
return AdaptedString(reinterpret_cast<const char*>(p));
}
};
template <typename TChar, size_t N>
struct StringAdapter<TChar[N], typename enable_if<IsChar<TChar>::value>::type> {
typedef ZeroTerminatedRamString AdaptedString;
static AdaptedString adapt(const TChar* p) {
return AdaptedString(reinterpret_cast<const char*>(p));
}
};
class StaticStringAdapter : public ZeroTerminatedRamString {
public:
StaticStringAdapter(const char* str) : ZeroTerminatedRamString(str) {}
StringStoragePolicy::Link storagePolicy() const {
return StringStoragePolicy::Link();
}
};
template <>
struct StringAdapter<const char*, void> {
typedef StaticStringAdapter AdaptedString;
static AdaptedString adapt(const char* p) {
return AdaptedString(p);
}
};
class SizedRamString {
public:
static const size_t typeSortKey = 2;
SizedRamString(const char* str, size_t sz) : _str(str), _size(sz) {}
bool isNull() const {
return !_str;
}
size_t size() const {
return _size;
}
char operator[](size_t i) const {
ARDUINOJSON_ASSERT(_str != 0);
ARDUINOJSON_ASSERT(i <= size());
return _str[i];
}
const char* data() const {
return _str;
}
StringStoragePolicy::Copy storagePolicy() const {
return StringStoragePolicy::Copy();
}
protected:
const char* _str;
size_t _size;
};
template <typename TChar>
struct SizedStringAdapter<TChar*,
typename enable_if<IsChar<TChar>::value>::type> {
typedef SizedRamString AdaptedString;
static AdaptedString adapt(const TChar* p, size_t n) {
return AdaptedString(reinterpret_cast<const char*>(p), n);
}
};
template <typename T>
class SafeBoolIdom {
protected:
typedef void (T::*bool_type)() const;
void safeBoolHelper() const {}
static bool_type safe_true() {
return &SafeBoolIdom::safeBoolHelper;
}
static bool_type safe_false() {
return 0;
}
};
} // namespace ARDUINOJSON_NAMESPACE
#if ARDUINOJSON_ENABLE_STD_STREAM
#include <ostream>
#endif
namespace ARDUINOJSON_NAMESPACE {
class JsonString : public SafeBoolIdom<JsonString> {
public:
enum Ownership { Copied, Linked };
JsonString() : _data(0), _size(0), _ownership(Linked) {}
JsonString(const char* data, Ownership ownership = Linked)
: _data(data), _size(data ? ::strlen(data) : 0), _ownership(ownership) {}
JsonString(const char* data, size_t sz, Ownership ownership = Linked)
: _data(data), _size(sz), _ownership(ownership) {}
const char* c_str() const {
return _data;
}
bool isNull() const {
return !_data;
}
bool isLinked() const {
return _ownership == Linked;
}
size_t size() const {
return _size;
}
operator bool_type() const {
return _data ? safe_true() : safe_false();
}
friend bool operator==(JsonString lhs, JsonString rhs) {
if (lhs._size != rhs._size)
return false;
if (lhs._data == rhs._data)
return true;
if (!lhs._data)
return false;
if (!rhs._data)
return false;
return memcmp(lhs._data, rhs._data, lhs._size) == 0;
}
friend bool operator!=(JsonString lhs, JsonString rhs) {
return !(lhs == rhs);
}
#if ARDUINOJSON_ENABLE_STD_STREAM
friend std::ostream& operator<<(std::ostream& lhs, const JsonString& rhs) {
lhs.write(rhs.c_str(), static_cast<std::streamsize>(rhs.size()));
return lhs;
}
#endif
private:
const char* _data;
size_t _size;
Ownership _ownership;
};
class JsonStringAdapter : public SizedRamString {
public:
JsonStringAdapter(const JsonString& s)
: SizedRamString(s.c_str(), s.size()), _linked(s.isLinked()) {}
StringStoragePolicy::LinkOrCopy storagePolicy() const {
StringStoragePolicy::LinkOrCopy policy = {_linked};
return policy;
}
private:
bool _linked;
};
template <>
struct StringAdapter<JsonString> {
typedef JsonStringAdapter AdaptedString;
static AdaptedString adapt(const JsonString& s) {
return AdaptedString(s);
}
};
} // namespace ARDUINOJSON_NAMESPACE
#if ARDUINOJSON_ENABLE_STD_STRING
#include <string>
namespace ARDUINOJSON_NAMESPACE {
template <typename TCharTraits, typename TAllocator>
struct StringAdapter<std::basic_string<char, TCharTraits, TAllocator>, void> {
typedef SizedRamString AdaptedString;
static AdaptedString adapt(
const std::basic_string<char, TCharTraits, TAllocator>& s) {
return AdaptedString(s.c_str(), s.size());
}
};
} // namespace ARDUINOJSON_NAMESPACE
#endif
#if ARDUINOJSON_ENABLE_STRING_VIEW
#include <string_view>
namespace ARDUINOJSON_NAMESPACE {
template <>
struct StringAdapter<std::string_view, void> {
typedef SizedRamString AdaptedString;
static AdaptedString adapt(const std::string_view& s) {
return AdaptedString(s.data(), s.size());
}
};
} // namespace ARDUINOJSON_NAMESPACE
#endif
#if ARDUINOJSON_ENABLE_ARDUINO_STRING
namespace ARDUINOJSON_NAMESPACE {
template <typename T>
struct StringAdapter<
T, typename enable_if<is_same<T, ::String>::value ||
is_same<T, ::StringSumHelper>::value>::type> {
typedef SizedRamString AdaptedString;
static AdaptedString adapt(const ::String& s) {
return AdaptedString(s.c_str(), s.length());
}
};
} // namespace ARDUINOJSON_NAMESPACE
#endif
#if ARDUINOJSON_ENABLE_PROGMEM
namespace ARDUINOJSON_NAMESPACE {
struct pgm_p {
pgm_p(const void* p) : address(reinterpret_cast<const char*>(p)) {}
const char* address;
};
} // namespace ARDUINOJSON_NAMESPACE
#ifndef strlen_P
inline size_t strlen_P(ARDUINOJSON_NAMESPACE::pgm_p s) {
const char* p = s.address;
ARDUINOJSON_ASSERT(p != NULL);
while (pgm_read_byte(p))
p++;
return size_t(p - s.address);
}
#endif
#ifndef strncmp_P
inline int strncmp_P(const char* a, ARDUINOJSON_NAMESPACE::pgm_p b, size_t n) {
const char* s1 = a;
const char* s2 = b.address;
ARDUINOJSON_ASSERT(s1 != NULL);
ARDUINOJSON_ASSERT(s2 != NULL);
while (n-- > 0) {
char c1 = *s1++;
char c2 = static_cast<char>(pgm_read_byte(s2++));
if (c1 < c2)
return -1;
if (c1 > c2)
return 1;
if (c1 == 0 /* and c2 as well */)
return 0;
}
return 0;
}
#endif
#ifndef strcmp_P
inline int strcmp_P(const char* a, ARDUINOJSON_NAMESPACE::pgm_p b) {
const char* s1 = a;
const char* s2 = b.address;
ARDUINOJSON_ASSERT(s1 != NULL);
ARDUINOJSON_ASSERT(s2 != NULL);
for (;;) {
char c1 = *s1++;
char c2 = static_cast<char>(pgm_read_byte(s2++));
if (c1 < c2)
return -1;
if (c1 > c2)
return 1;
if (c1 == 0 /* and c2 as well */)
return 0;
}
}
#endif
#ifndef memcmp_P
inline int memcmp_P(const void* a, ARDUINOJSON_NAMESPACE::pgm_p b, size_t n) {
const uint8_t* p1 = reinterpret_cast<const uint8_t*>(a);
const char* p2 = b.address;
ARDUINOJSON_ASSERT(p1 != NULL);
ARDUINOJSON_ASSERT(p2 != NULL);
while (n-- > 0) {
uint8_t v1 = *p1++;
uint8_t v2 = pgm_read_byte(p2++);
if (v1 != v2)
return v1 - v2;
}
return 0;
}
#endif
#ifndef memcpy_P
inline void* memcpy_P(void* dst, ARDUINOJSON_NAMESPACE::pgm_p src, size_t n) {
uint8_t* d = reinterpret_cast<uint8_t*>(dst);
const char* s = src.address;
ARDUINOJSON_ASSERT(d != NULL);
ARDUINOJSON_ASSERT(s != NULL);
while (n-- > 0) {
*d++ = pgm_read_byte(s++);
}
return dst;
}
#endif
#ifndef pgm_read_dword
inline uint32_t pgm_read_dword(ARDUINOJSON_NAMESPACE::pgm_p p) {
uint32_t result;
memcpy_P(&result, p.address, 4);
return result;
}
#endif
#ifndef pgm_read_ptr
inline void* pgm_read_ptr(ARDUINOJSON_NAMESPACE::pgm_p p) {
void* result;
memcpy_P(&result, p.address, sizeof(result));
return result;
}
#endif
namespace ARDUINOJSON_NAMESPACE {
class FlashString {
public:
static const size_t typeSortKey = 1;
FlashString(const __FlashStringHelper* str, size_t sz)
: _str(reinterpret_cast<const char*>(str)), _size(sz) {}
bool isNull() const {
return !_str;
}
char operator[](size_t i) const {
ARDUINOJSON_ASSERT(_str != 0);
ARDUINOJSON_ASSERT(i <= _size);
return static_cast<char>(pgm_read_byte(_str + i));
}
size_t size() const {
return _size;
}
friend bool stringEquals(FlashString a, SizedRamString b) {
ARDUINOJSON_ASSERT(a.typeSortKey < b.typeSortKey);
ARDUINOJSON_ASSERT(!a.isNull());
ARDUINOJSON_ASSERT(!b.isNull());
if (a.size() != b.size())
return false;
return ::memcmp_P(b.data(), a._str, a._size) == 0;
}
friend int stringCompare(FlashString a, SizedRamString b) {
ARDUINOJSON_ASSERT(a.typeSortKey < b.typeSortKey);
ARDUINOJSON_ASSERT(!a.isNull());
ARDUINOJSON_ASSERT(!b.isNull());
size_t minsize = a.size() < b.size() ? a.size() : b.size();
int res = ::memcmp_P(b.data(), a._str, minsize);
if (res)
return -res;
if (a.size() < b.size())
return -1;
if (a.size() > b.size())
return 1;
return 0;
}
friend void stringGetChars(FlashString s, char* p, size_t n) {
ARDUINOJSON_ASSERT(s.size() <= n);
::memcpy_P(p, s._str, n);
}
StringStoragePolicy::Copy storagePolicy() const {
return StringStoragePolicy::Copy();
}
private:
const char* _str;
size_t _size;
};
template <>
struct StringAdapter<const __FlashStringHelper*, void> {
typedef FlashString AdaptedString;
static AdaptedString adapt(const __FlashStringHelper* s) {
return AdaptedString(s, s ? strlen_P(reinterpret_cast<const char*>(s)) : 0);
}
};
template <>
struct SizedStringAdapter<const __FlashStringHelper*, void> {
typedef FlashString AdaptedString;
static AdaptedString adapt(const __FlashStringHelper* s, size_t n) {
return AdaptedString(s, n);
}
};
} // namespace ARDUINOJSON_NAMESPACE
#endif
namespace ARDUINOJSON_NAMESPACE {
template <typename TAdaptedString1, typename TAdaptedString2>
typename enable_if<TAdaptedString1::typeSortKey <= TAdaptedString2::typeSortKey,
int>::type
stringCompare(TAdaptedString1 s1, TAdaptedString2 s2) {
ARDUINOJSON_ASSERT(!s1.isNull());
ARDUINOJSON_ASSERT(!s2.isNull());
size_t size1 = s1.size();
size_t size2 = s2.size();
size_t n = size1 < size2 ? size1 : size2;
for (size_t i = 0; i < n; i++) {
if (s1[i] != s2[i])
return s1[i] - s2[i];
}
if (size1 < size2)
return -1;
if (size1 > size2)
return 1;
return 0;
}
template <typename TAdaptedString1, typename TAdaptedString2>
typename enable_if<
(TAdaptedString1::typeSortKey > TAdaptedString2::typeSortKey), int>::type
stringCompare(TAdaptedString1 s1, TAdaptedString2 s2) {
return -stringCompare(s2, s1);
}
template <typename TAdaptedString1, typename TAdaptedString2>
typename enable_if<TAdaptedString1::typeSortKey <= TAdaptedString2::typeSortKey,
bool>::type
stringEquals(TAdaptedString1 s1, TAdaptedString2 s2) {
ARDUINOJSON_ASSERT(!s1.isNull());
ARDUINOJSON_ASSERT(!s2.isNull());
size_t size1 = s1.size();
size_t size2 = s2.size();
if (size1 != size2)
return false;
for (size_t i = 0; i < size1; i++) {
if (s1[i] != s2[i])
return false;
}
return true;
}
template <typename TAdaptedString1, typename TAdaptedString2>
typename enable_if<
(TAdaptedString1::typeSortKey > TAdaptedString2::typeSortKey), bool>::type
stringEquals(TAdaptedString1 s1, TAdaptedString2 s2) {
return stringEquals(s2, s1);
}
template <typename TAdaptedString>
static void stringGetChars(TAdaptedString s, char* p, size_t n) {
ARDUINOJSON_ASSERT(s.size() <= n);
for (size_t i = 0; i < n; i++) {
p[i] = s[i];
}
}
template <int Bits>
struct int_t;
template <>
struct int_t<8> {
typedef int8_t type;
};
template <>
struct int_t<16> {
typedef int16_t type;
};
template <>
struct int_t<32> {
typedef int32_t type;
};
} // namespace ARDUINOJSON_NAMESPACE
#ifdef _MSC_VER
# pragma warning(push)
# pragma warning(disable : 4310)
#endif
namespace ARDUINOJSON_NAMESPACE {
template <typename T, typename Enable = void>
struct numeric_limits;
template <typename T>
struct numeric_limits<T, typename enable_if<is_unsigned<T>::value>::type> {
static T lowest() {
return 0;
}
static T highest() {
return T(-1);
}
};
template <typename T>
struct numeric_limits<
T, typename enable_if<is_integral<T>::value && is_signed<T>::value>::type> {
static T lowest() {
return T(T(1) << (sizeof(T) * 8 - 1));
}
static T highest() {
return T(~lowest());
}
};
} // namespace ARDUINOJSON_NAMESPACE
#ifdef _MSC_VER
# pragma warning(pop)
#endif
namespace ARDUINOJSON_NAMESPACE {
class MemoryPool;
class VariantData;
class VariantSlot;
class CollectionData {
VariantSlot* _head;
VariantSlot* _tail;
public:
VariantData* addElement(MemoryPool* pool);
VariantData* getElement(size_t index) const;
VariantData* getOrAddElement(size_t index, MemoryPool* pool);
void removeElement(size_t index);
template <typename TAdaptedString>
VariantData* addMember(TAdaptedString key, MemoryPool* pool);
template <typename TAdaptedString>
VariantData* getMember(TAdaptedString key) const;
template <typename TAdaptedString>
VariantData* getOrAddMember(TAdaptedString key, MemoryPool* pool);
template <typename TAdaptedString>
void removeMember(TAdaptedString key) {
removeSlot(getSlot(key));
}
template <typename TAdaptedString>
bool containsKey(const TAdaptedString& key) const;
void clear();
size_t memoryUsage() const;
size_t size() const;
VariantSlot* addSlot(MemoryPool*);
void removeSlot(VariantSlot* slot);
bool copyFrom(const CollectionData& src, MemoryPool* pool);
VariantSlot* head() const {
return _head;
}
void movePointers(ptrdiff_t stringDistance, ptrdiff_t variantDistance);
private:
VariantSlot* getSlot(size_t index) const;
template <typename TAdaptedString>
VariantSlot* getSlot(TAdaptedString key) const;
VariantSlot* getPreviousSlot(VariantSlot*) const;
};
inline const VariantData* collectionToVariant(
const CollectionData* collection) {
const void* data = collection; // prevent warning cast-align
return reinterpret_cast<const VariantData*>(data);
}
inline VariantData* collectionToVariant(CollectionData* collection) {
void* data = collection; // prevent warning cast-align
return reinterpret_cast<VariantData*>(data);
}
#if ARDUINOJSON_USE_DOUBLE
typedef double JsonFloat;
#else
typedef float JsonFloat;
#endif
#if ARDUINOJSON_USE_LONG_LONG
typedef int64_t JsonInteger;
typedef uint64_t JsonUInt;
#else
typedef long JsonInteger;
typedef unsigned long JsonUInt;
#endif
} // namespace ARDUINOJSON_NAMESPACE
#if ARDUINOJSON_HAS_LONG_LONG && !ARDUINOJSON_USE_LONG_LONG
# define ARDUINOJSON_ASSERT_INTEGER_TYPE_IS_SUPPORTED(T) \
static_assert(sizeof(T) <= sizeof(ARDUINOJSON_NAMESPACE::JsonInteger), \
"To use 64-bit integers with ArduinoJson, you must set " \
"ARDUINOJSON_USE_LONG_LONG to 1. See " \
"https://arduinojson.org/v6/api/config/use_long_long/");
#else
# define ARDUINOJSON_ASSERT_INTEGER_TYPE_IS_SUPPORTED(T)
#endif
namespace ARDUINOJSON_NAMESPACE {
enum {
VALUE_MASK = 0x7F,
OWNED_VALUE_BIT = 0x01,
VALUE_IS_NULL = 0,
VALUE_IS_LINKED_RAW = 0x02,
VALUE_IS_OWNED_RAW = 0x03,
VALUE_IS_LINKED_STRING = 0x04,
VALUE_IS_OWNED_STRING = 0x05,
VALUE_IS_BOOLEAN = 0x06,
NUMBER_BIT = 0x08,
VALUE_IS_UNSIGNED_INTEGER = 0x08,
VALUE_IS_SIGNED_INTEGER = 0x0A,
VALUE_IS_FLOAT = 0x0C,
COLLECTION_MASK = 0x60,
VALUE_IS_OBJECT = 0x20,
VALUE_IS_ARRAY = 0x40,
OWNED_KEY_BIT = 0x80
};
struct RawData {
const char* data;
size_t size;
};
union VariantContent {
JsonFloat asFloat;
bool asBoolean;
JsonUInt asUnsignedInteger;
JsonInteger asSignedInteger;
CollectionData asCollection;
struct {
const char* data;
size_t size;
} asString;
};
typedef int_t<ARDUINOJSON_SLOT_OFFSET_SIZE * 8>::type VariantSlotDiff;
class VariantSlot {
VariantContent _content;
uint8_t _flags;
VariantSlotDiff _next;
const char* _key;
public:
VariantData* data() {
return reinterpret_cast<VariantData*>(&_content);
}
const VariantData* data() const {
return reinterpret_cast<const VariantData*>(&_content);
}
VariantSlot* next() {
return _next ? this + _next : 0;
}
const VariantSlot* next() const {
return const_cast<VariantSlot*>(this)->next();
}
VariantSlot* next(size_t distance) {
VariantSlot* slot = this;
while (distance--) {
if (!slot->_next)
return 0;
slot += slot->_next;
}
return slot;
}
const VariantSlot* next(size_t distance) const {
return const_cast<VariantSlot*>(this)->next(distance);
}
void setNext(VariantSlot* slot) {
ARDUINOJSON_ASSERT(!slot || slot - this >=
numeric_limits<VariantSlotDiff>::lowest());
ARDUINOJSON_ASSERT(!slot || slot - this <=
numeric_limits<VariantSlotDiff>::highest());
_next = VariantSlotDiff(slot ? slot - this : 0);
}
void setNextNotNull(VariantSlot* slot) {
ARDUINOJSON_ASSERT(slot != 0);
ARDUINOJSON_ASSERT(slot - this >=
numeric_limits<VariantSlotDiff>::lowest());
ARDUINOJSON_ASSERT(slot - this <=
numeric_limits<VariantSlotDiff>::highest());
_next = VariantSlotDiff(slot - this);
}
void setKey(JsonString k) {
ARDUINOJSON_ASSERT(k);
if (k.isLinked())
_flags &= VALUE_MASK;
else
_flags |= OWNED_KEY_BIT;
_key = k.c_str();
}
const char* key() const {
return _key;
}
bool ownsKey() const {
return (_flags & OWNED_KEY_BIT) != 0;
}
void clear() {
_next = 0;
_flags = 0;
_key = 0;
}
void movePointers(ptrdiff_t stringDistance, ptrdiff_t variantDistance) {
if (_flags & OWNED_KEY_BIT)
_key += stringDistance;
if (_flags & OWNED_VALUE_BIT)
_content.asString.data += stringDistance;
if (_flags & COLLECTION_MASK)
_content.asCollection.movePointers(stringDistance, variantDistance);
}
};
} // namespace ARDUINOJSON_NAMESPACE
#define JSON_STRING_SIZE(SIZE) (SIZE + 1)
#define JSON_ARRAY_SIZE(NUMBER_OF_ELEMENTS) \
((NUMBER_OF_ELEMENTS) * sizeof(ARDUINOJSON_NAMESPACE::VariantSlot))
#define JSON_OBJECT_SIZE(NUMBER_OF_ELEMENTS) \
((NUMBER_OF_ELEMENTS) * sizeof(ARDUINOJSON_NAMESPACE::VariantSlot))
namespace ARDUINOJSON_NAMESPACE {
class MemoryPool {
public:
MemoryPool(char* buf, size_t capa)
: _begin(buf),
_left(buf),
_right(buf ? buf + capa : 0),
_end(buf ? buf + capa : 0),
_overflowed(false) {
ARDUINOJSON_ASSERT(isAligned(_begin));
ARDUINOJSON_ASSERT(isAligned(_right));
ARDUINOJSON_ASSERT(isAligned(_end));
}
void* buffer() {
return _begin; // NOLINT(clang-analyzer-unix.Malloc)
}
size_t capacity() const {
return size_t(_end - _begin);
}
size_t size() const {
return size_t(_left - _begin + _end - _right);
}
bool overflowed() const {
return _overflowed;
}
VariantSlot* allocVariant() {
return allocRight<VariantSlot>();
}
template <typename TAdaptedString>
const char* saveString(TAdaptedString str) {
if (str.isNull())
return 0;
#if ARDUINOJSON_ENABLE_STRING_DEDUPLICATION
const char* existingCopy = findString(str);
if (existingCopy)
return existingCopy;
#endif
size_t n = str.size();
char* newCopy = allocString(n + 1);
if (newCopy) {
stringGetChars(str, newCopy, n);
newCopy[n] = 0; // force null-terminator
}
return newCopy;
}
void getFreeZone(char** zoneStart, size_t* zoneSize) const {
*zoneStart = _left;
*zoneSize = size_t(_right - _left);
}
const char* saveStringFromFreeZone(size_t len) {
#if ARDUINOJSON_ENABLE_STRING_DEDUPLICATION
const char* dup = findString(adaptString(_left, len));
if (dup)
return dup;
#endif
const char* str = _left;
_left += len;
*_left++ = 0;
checkInvariants();
return str;
}
void markAsOverflowed() {
_overflowed = true;
}
void clear() {
_left = _begin;
_right = _end;
_overflowed = false;
}
bool canAlloc(size_t bytes) const {
return _left + bytes <= _right;
}
bool owns(void* p) const {
return _begin <= p && p < _end;
}
void* operator new(size_t, void* p) {
return p;
}
ptrdiff_t squash() {
char* new_right = addPadding(_left);
if (new_right >= _right)
return 0;
size_t right_size = static_cast<size_t>(_end - _right);
memmove(new_right, _right, right_size);
ptrdiff_t bytes_reclaimed = _right - new_right;
_right = new_right;
_end = new_right + right_size;
return bytes_reclaimed;
}
void movePointers(ptrdiff_t offset) {
_begin += offset;
_left += offset;
_right += offset;
_end += offset;
}
private:
void checkInvariants() {
ARDUINOJSON_ASSERT(_begin <= _left);
ARDUINOJSON_ASSERT(_left <= _right);
ARDUINOJSON_ASSERT(_right <= _end);
ARDUINOJSON_ASSERT(isAligned(_right));
}
#if ARDUINOJSON_ENABLE_STRING_DEDUPLICATION
template <typename TAdaptedString>
const char* findString(const TAdaptedString& str) const {
size_t n = str.size();
for (char* next = _begin; next + n < _left; ++next) {
if (next[n] == '\0' && stringEquals(str, adaptString(next, n)))
return next;
while (*next)
++next;
}
return 0;
}
#endif
char* allocString(size_t n) {
if (!canAlloc(n)) {
_overflowed = true;
return 0;
}
char* s = _left;
_left += n;
checkInvariants();
return s;
}
template <typename T>
T* allocRight() {
return reinterpret_cast<T*>(allocRight(sizeof(T)));
}
void* allocRight(size_t bytes) {
if (!canAlloc(bytes)) {
_overflowed = true;
return 0;
}
_right -= bytes;
return _right;
}
char *_begin, *_left, *_right, *_end;
bool _overflowed;
};
template <typename TAdaptedString, typename TCallback>
bool storeString(MemoryPool* pool, TAdaptedString str,
StringStoragePolicy::Copy, TCallback callback) {
const char* copy = pool->saveString(str);
JsonString storedString(copy, str.size(), JsonString::Copied);
callback(storedString);
return copy != 0;
}
template <typename TAdaptedString, typename TCallback>
bool storeString(MemoryPool*, TAdaptedString str, StringStoragePolicy::Link,
TCallback callback) {
JsonString storedString(str.data(), str.size(), JsonString::Linked);
callback(storedString);
return !str.isNull();
}
template <typename TAdaptedString, typename TCallback>
bool storeString(MemoryPool* pool, TAdaptedString str,
StringStoragePolicy::LinkOrCopy policy, TCallback callback) {
if (policy.link)
return storeString(pool, str, StringStoragePolicy::Link(), callback);
else
return storeString(pool, str, StringStoragePolicy::Copy(), callback);
}
template <typename TAdaptedString, typename TCallback>
bool storeString(MemoryPool* pool, TAdaptedString str, TCallback callback) {
return storeString(pool, str, str.storagePolicy(), callback);
}
template <typename T, typename Enable = void>
struct IsString : false_type {};
template <typename T>
struct IsString<
T, typename make_void<typename StringAdapter<T>::AdaptedString>::type>
: true_type {};
} // namespace ARDUINOJSON_NAMESPACE
#ifdef _MSC_VER // Visual Studio
# define FORCE_INLINE // __forceinline causes C4714 when returning std::string
# define NO_INLINE __declspec(noinline)
#elif defined(__GNUC__) // GCC or Clang
# define FORCE_INLINE __attribute__((always_inline))
# define NO_INLINE __attribute__((noinline))
#else // Other compilers
# define FORCE_INLINE
# define NO_INLINE
#endif
#if __cplusplus >= 201103L
# define NOEXCEPT noexcept
#else
# define NOEXCEPT throw()
#endif
#if defined(__has_attribute)
# if __has_attribute(no_sanitize)
# define ARDUINOJSON_NO_SANITIZE(check) __attribute__((no_sanitize(check)))
# else
# define ARDUINOJSON_NO_SANITIZE(check)
# endif
#else
# define ARDUINOJSON_NO_SANITIZE(check)
#endif
namespace ARDUINOJSON_NAMESPACE {
class JsonArray;
class JsonObject;
class JsonVariant;
template <typename T>
struct VariantTo {};
template <>
struct VariantTo<JsonArray> {
typedef JsonArray type;
};
template <>
struct VariantTo<JsonObject> {
typedef JsonObject type;
};
template <>
struct VariantTo<JsonVariant> {
typedef JsonVariant type;
};
class VariantAttorney {
template <typename TClient>
struct ResultOfGetData {
protected: // <- to avoid GCC's "all member functions in class are private"
static int probe(const VariantData*);
static char probe(VariantData*);
static TClient& client;
public:
typedef typename conditional<sizeof(probe(client.getData())) == sizeof(int),
const VariantData*, VariantData*>::type type;
};
public:
template <typename TClient>
FORCE_INLINE static MemoryPool* getPool(TClient& client) {
return client.getPool();
}
template <typename TClient>
FORCE_INLINE static typename ResultOfGetData<TClient>::type getData(
TClient& client) {
return client.getData();
}
template <typename TClient>
FORCE_INLINE static VariantData* getOrCreateData(TClient& client) {
return client.getOrCreateData();
}
};
template <typename T>
class SerializedValue {
public:
explicit SerializedValue(T str) : _str(str) {}
operator T() const {
return _str;
}
const char* data() const {
return _str.c_str();
}
size_t size() const {
return _str.length();
}
private:
T _str;
};
template <typename TChar>
class SerializedValue<TChar*> {
public:
explicit SerializedValue(TChar* p, size_t n) : _data(p), _size(n) {}
operator TChar*() const {
return _data;
}
TChar* data() const {
return _data;
}
size_t size() const {
return _size;
}
private:
TChar* _data;
size_t _size;
};
template <typename T>
inline SerializedValue<T> serialized(T str) {
return SerializedValue<T>(str);
}
template <typename TChar>
inline SerializedValue<TChar*> serialized(TChar* p) {
return SerializedValue<TChar*>(p, adaptString(p).size());
}
template <typename TChar>
inline SerializedValue<TChar*> serialized(TChar* p, size_t n) {
return SerializedValue<TChar*>(p, n);
}
} // namespace ARDUINOJSON_NAMESPACE
#if defined(__clang__)
# pragma clang diagnostic push
# pragma clang diagnostic ignored "-Wconversion"
#elif defined(__GNUC__)
# if __GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 6)
# pragma GCC diagnostic push
# endif
# pragma GCC diagnostic ignored "-Wconversion"
#endif
#include <stdlib.h>
namespace ARDUINOJSON_NAMESPACE {
#ifndef isnan
template <typename T>
bool isnan(T x) {
return x != x;
}
#endif
#ifndef isinf
template <typename T>
bool isinf(T x) {
return x != 0.0 && x * 2 == x;
}
#endif
template <typename T, typename F>
struct alias_cast_t {
union {
F raw;
T data;
};
};
template <typename T, typename F>
T alias_cast(F raw_data) {
alias_cast_t<T, F> ac;
ac.raw = raw_data;
return ac.data;
}
} // namespace ARDUINOJSON_NAMESPACE
#if ARDUINOJSON_ENABLE_PROGMEM
#endif
namespace ARDUINOJSON_NAMESPACE {
#if ARDUINOJSON_ENABLE_PROGMEM
# ifndef ARDUINOJSON_DEFINE_PROGMEM_ARRAY
# define ARDUINOJSON_DEFINE_PROGMEM_ARRAY(type, name, value) \
static type const name[] PROGMEM = value;
# endif
template <typename T>
inline const T* pgm_read(const T* const* p) {
return reinterpret_cast<const T*>(pgm_read_ptr(p));
}
inline uint32_t pgm_read(const uint32_t* p) {
return pgm_read_dword(p);
}
#else
# ifndef ARDUINOJSON_DEFINE_PROGMEM_ARRAY
# define ARDUINOJSON_DEFINE_PROGMEM_ARRAY(type, name, value) \
static type const name[] = value;
# endif
template <typename T>
inline T pgm_read(const T* p) {
return *p;
}
#endif
template <typename T, size_t = sizeof(T)>
struct FloatTraits {};
template <typename T>
struct FloatTraits<T, 8 /*64bits*/> {
typedef uint64_t mantissa_type;
static const short mantissa_bits = 52;
static const mantissa_type mantissa_max =
(mantissa_type(1) << mantissa_bits) - 1;
typedef int16_t exponent_type;
static const exponent_type exponent_max = 308;
template <typename TExponent>
static T make_float(T m, TExponent e) {
if (e > 0) {
for (uint8_t index = 0; e != 0; index++) {
if (e & 1)
m *= positiveBinaryPowerOfTen(index);
e >>= 1;
}
} else {
e = TExponent(-e);
for (uint8_t index = 0; e != 0; index++) {
if (e & 1)
m *= negativeBinaryPowerOfTen(index);
e >>= 1;
}
}
return m;
}
static T positiveBinaryPowerOfTen(int index) {
ARDUINOJSON_DEFINE_PROGMEM_ARRAY( //
uint32_t, factors,
ARDUINOJSON_EXPAND18({
0x40240000, 0x00000000, // 1e1
0x40590000, 0x00000000, // 1e2
0x40C38800, 0x00000000, // 1e4
0x4197D784, 0x00000000, // 1e8
0x4341C379, 0x37E08000, // 1e16
0x4693B8B5, 0xB5056E17, // 1e32
0x4D384F03, 0xE93FF9F5, // 1e64
0x5A827748, 0xF9301D32, // 1e128
0x75154FDD, 0x7F73BF3C // 1e256
}));
return forge(pgm_read(factors + 2 * index),
pgm_read(factors + 2 * index + 1));
}
static T negativeBinaryPowerOfTen(int index) {
ARDUINOJSON_DEFINE_PROGMEM_ARRAY( //
uint32_t, factors,
ARDUINOJSON_EXPAND18({
0x3FB99999, 0x9999999A, // 1e-1
0x3F847AE1, 0x47AE147B, // 1e-2
0x3F1A36E2, 0xEB1C432D, // 1e-4
0x3E45798E, 0xE2308C3A, // 1e-8
0x3C9CD2B2, 0x97D889BC, // 1e-16
0x3949F623, 0xD5A8A733, // 1e-32
0x32A50FFD, 0x44F4A73D, // 1e-64
0x255BBA08, 0xCF8C979D, // 1e-128
0x0AC80628, 0x64AC6F43 // 1e-256
}));
return forge(pgm_read(factors + 2 * index),
pgm_read(factors + 2 * index + 1));
}
static T negativeBinaryPowerOfTenPlusOne(int index) {
ARDUINOJSON_DEFINE_PROGMEM_ARRAY( //
uint32_t, factors,
ARDUINOJSON_EXPAND18({
0x3FF00000, 0x00000000, // 1e0
0x3FB99999, 0x9999999A, // 1e-1
0x3F50624D, 0xD2F1A9FC, // 1e-3
0x3E7AD7F2, 0x9ABCAF48, // 1e-7
0x3CD203AF, 0x9EE75616, // 1e-15
0x398039D6, 0x65896880, // 1e-31
0x32DA53FC, 0x9631D10D, // 1e-63
0x25915445, 0x81B7DEC2, // 1e-127
0x0AFE07B2, 0x7DD78B14 // 1e-255
}));
return forge(pgm_read(factors + 2 * index),
pgm_read(factors + 2 * index + 1));
}
static T nan() {
return forge(0x7ff80000, 0x00000000);
}
static T inf() {
return forge(0x7ff00000, 0x00000000);
}
static T highest() {
return forge(0x7FEFFFFF, 0xFFFFFFFF);
}
template <typename TOut> // int64_t
static T highest_for(
typename enable_if<is_integral<TOut>::value && is_signed<TOut>::value &&
sizeof(TOut) == 8,
signed>::type* = 0) {
return forge(0x43DFFFFF, 0xFFFFFFFF); // 9.2233720368547748e+18
}
template <typename TOut> // uint64_t
static T highest_for(
typename enable_if<is_integral<TOut>::value && is_unsigned<TOut>::value &&
sizeof(TOut) == 8,
unsigned>::type* = 0) {
return forge(0x43EFFFFF, 0xFFFFFFFF); // 1.8446744073709549568e+19
}
static T lowest() {
return forge(0xFFEFFFFF, 0xFFFFFFFF);
}
static T forge(uint32_t msb, uint32_t lsb) {
return alias_cast<T>((uint64_t(msb) << 32) | lsb);
}
};
template <typename T>
struct FloatTraits<T, 4 /*32bits*/> {
typedef uint32_t mantissa_type;
static const short mantissa_bits = 23;
static const mantissa_type mantissa_max =
(mantissa_type(1) << mantissa_bits) - 1;
typedef int8_t exponent_type;
static const exponent_type exponent_max = 38;
template <typename TExponent>
static T make_float(T m, TExponent e) {
if (e > 0) {
for (uint8_t index = 0; e != 0; index++) {
if (e & 1)
m *= positiveBinaryPowerOfTen(index);
e >>= 1;
}
} else {
e = -e;
for (uint8_t index = 0; e != 0; index++) {
if (e & 1)
m *= negativeBinaryPowerOfTen(index);
e >>= 1;
}
}
return m;
}
static T positiveBinaryPowerOfTen(int index) {
ARDUINOJSON_DEFINE_PROGMEM_ARRAY(uint32_t, factors,
ARDUINOJSON_EXPAND6({
0x41200000, // 1e1f
0x42c80000, // 1e2f
0x461c4000, // 1e4f
0x4cbebc20, // 1e8f
0x5a0e1bca, // 1e16f
0x749dc5ae // 1e32f
}));
return forge(pgm_read(factors + index));
}
static T negativeBinaryPowerOfTen(int index) {
ARDUINOJSON_DEFINE_PROGMEM_ARRAY(uint32_t, factors,
ARDUINOJSON_EXPAND6({
0x3dcccccd, // 1e-1f
0x3c23d70a, // 1e-2f
0x38d1b717, // 1e-4f
0x322bcc77, // 1e-8f
0x24e69595, // 1e-16f
0x0a4fb11f // 1e-32f
}));
return forge(pgm_read(factors + index));
}
static T negativeBinaryPowerOfTenPlusOne(int index) {
ARDUINOJSON_DEFINE_PROGMEM_ARRAY(uint32_t, factors,
ARDUINOJSON_EXPAND6({
0x3f800000, // 1e0f
0x3dcccccd, // 1e-1f
0x3a83126f, // 1e-3f
0x33d6bf95, // 1e-7f
0x26901d7d, // 1e-15f
0x0c01ceb3 // 1e-31f
}));
return forge(pgm_read(factors + index));
}
static T forge(uint32_t bits) {
return alias_cast<T>(bits);
}
static T nan() {
return forge(0x7fc00000);
}
static T inf() {
return forge(0x7f800000);
}
static T highest() {
return forge(0x7f7fffff);
}
template <typename TOut> // int32_t
static T highest_for(
typename enable_if<is_integral<TOut>::value && is_signed<TOut>::value &&
sizeof(TOut) == 4,
signed>::type* = 0) {
return forge(0x4EFFFFFF); // 2.14748352E9
}
template <typename TOut> // uint32_t
static T highest_for(
typename enable_if<is_integral<TOut>::value && is_unsigned<TOut>::value &&
sizeof(TOut) == 4,
unsigned>::type* = 0) {
return forge(0x4F7FFFFF); // 4.29496704E9
}
template <typename TOut> // int64_t
static T highest_for(
typename enable_if<is_integral<TOut>::value && is_signed<TOut>::value &&
sizeof(TOut) == 8,
signed>::type* = 0) {
return forge(0x5EFFFFFF); // 9.22337148709896192E18
}
template <typename TOut> // uint64_t
static T highest_for(
typename enable_if<is_integral<TOut>::value && is_unsigned<TOut>::value &&
sizeof(TOut) == 8,
unsigned>::type* = 0) {
return forge(0x5F7FFFFF); // 1.844674297419792384E19
}
static T lowest() {
return forge(0xFf7fffff);
}
};
template <typename TOut, typename TIn>
typename enable_if<is_integral<TIn>::value && is_unsigned<TIn>::value &&
is_integral<TOut>::value && sizeof(TOut) <= sizeof(TIn),
bool>::type
canConvertNumber(TIn value) {
return value <= TIn(numeric_limits<TOut>::highest());
}
template <typename TOut, typename TIn>
typename enable_if<is_integral<TIn>::value && is_unsigned<TIn>::value &&
is_integral<TOut>::value && sizeof(TIn) < sizeof(TOut),
bool>::type
canConvertNumber(TIn) {
return true;
}
template <typename TOut, typename TIn>
typename enable_if<is_integral<TIn>::value && is_floating_point<TOut>::value,
bool>::type
canConvertNumber(TIn) {
return true;
}
template <typename TOut, typename TIn>
typename enable_if<is_integral<TIn>::value && is_signed<TIn>::value &&
is_integral<TOut>::value && is_signed<TOut>::value &&
sizeof(TOut) < sizeof(TIn),
bool>::type
canConvertNumber(TIn value) {
return value >= TIn(numeric_limits<TOut>::lowest()) &&
value <= TIn(numeric_limits<TOut>::highest());
}
template <typename TOut, typename TIn>
typename enable_if<is_integral<TIn>::value && is_signed<TIn>::value &&
is_integral<TOut>::value && is_signed<TOut>::value &&
sizeof(TIn) <= sizeof(TOut),
bool>::type
canConvertNumber(TIn) {
return true;
}
template <typename TOut, typename TIn>
typename enable_if<is_integral<TIn>::value && is_signed<TIn>::value &&
is_integral<TOut>::value && is_unsigned<TOut>::value &&
sizeof(TOut) >= sizeof(TIn),
bool>::type
canConvertNumber(TIn value) {
if (value < 0)
return false;
return TOut(value) <= numeric_limits<TOut>::highest();
}
template <typename TOut, typename TIn>
typename enable_if<is_integral<TIn>::value && is_signed<TIn>::value &&
is_integral<TOut>::value && is_unsigned<TOut>::value &&
sizeof(TOut) < sizeof(TIn),
bool>::type
canConvertNumber(TIn value) {
if (value < 0)
return false;
return value <= TIn(numeric_limits<TOut>::highest());
}
template <typename TOut, typename TIn>
typename enable_if<is_floating_point<TIn>::value && is_integral<TOut>::value &&
sizeof(TOut) < sizeof(TIn),
bool>::type
canConvertNumber(TIn value) {
return value >= numeric_limits<TOut>::lowest() &&
value <= numeric_limits<TOut>::highest();
}
template <typename TOut, typename TIn>
typename enable_if<is_floating_point<TIn>::value && is_integral<TOut>::value &&
sizeof(TOut) >= sizeof(TIn),
bool>::type
canConvertNumber(TIn value) {
return value >= numeric_limits<TOut>::lowest() &&
value <= FloatTraits<TIn>::template highest_for<TOut>();
}
template <typename TOut, typename TIn>
TOut convertNumber(TIn value) {
return canConvertNumber<TOut>(value) ? TOut(value) : 0;
}
} // namespace ARDUINOJSON_NAMESPACE
#if defined(__clang__)
# pragma clang diagnostic pop
#elif defined(__GNUC__)
# if __GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 6)
# pragma GCC diagnostic pop
# endif
#endif
#if defined(__GNUC__)
# if __GNUC__ >= 7
# pragma GCC diagnostic push
# pragma GCC diagnostic ignored "-Wmaybe-uninitialized"
# pragma GCC diagnostic ignored "-Wuninitialized"
# endif
#endif
namespace ARDUINOJSON_NAMESPACE {
class VariantData {
VariantContent _content; // must be first to allow cast from array to variant
uint8_t _flags;
public:
void init() {
_flags = VALUE_IS_NULL;
}
void operator=(const VariantData& src) {
_content = src._content;
_flags = uint8_t((_flags & OWNED_KEY_BIT) | (src._flags & ~OWNED_KEY_BIT));
}
template <typename TVisitor>
typename TVisitor::result_type accept(TVisitor& visitor) const {
switch (type()) {
case VALUE_IS_FLOAT:
return visitor.visitFloat(_content.asFloat);
case VALUE_IS_ARRAY:
return visitor.visitArray(_content.asCollection);
case VALUE_IS_OBJECT:
return visitor.visitObject(_content.asCollection);
case VALUE_IS_LINKED_STRING:
case VALUE_IS_OWNED_STRING:
return visitor.visitString(_content.asString.data,
_content.asString.size);
case VALUE_IS_OWNED_RAW:
case VALUE_IS_LINKED_RAW:
return visitor.visitRawJson(_content.asString.data,
_content.asString.size);
case VALUE_IS_SIGNED_INTEGER:
return visitor.visitSignedInteger(_content.asSignedInteger);
case VALUE_IS_UNSIGNED_INTEGER:
return visitor.visitUnsignedInteger(_content.asUnsignedInteger);
case VALUE_IS_BOOLEAN:
return visitor.visitBoolean(_content.asBoolean != 0);
default:
return visitor.visitNull();
}
}
template <typename T>
T asIntegral() const;
template <typename T>
T asFloat() const;
JsonString asString() const;
bool asBoolean() const;
CollectionData* asArray() {
return isArray() ? &_content.asCollection : 0;
}
const CollectionData* asArray() const {
return const_cast<VariantData*>(this)->asArray();
}
const CollectionData* asCollection() const {
return isCollection() ? &_content.asCollection : 0;
}
CollectionData* asObject() {
return isObject() ? &_content.asCollection : 0;
}
const CollectionData* asObject() const {
return const_cast<VariantData*>(this)->asObject();
}
bool copyFrom(const VariantData& src, MemoryPool* pool);
bool isArray() const {
return (_flags & VALUE_IS_ARRAY) != 0;
}
bool isBoolean() const {
return type() == VALUE_IS_BOOLEAN;
}
bool isCollection() const {
return (_flags & COLLECTION_MASK) != 0;
}
template <typename T>
bool isInteger() const {
switch (type()) {
case VALUE_IS_UNSIGNED_INTEGER:
return canConvertNumber<T>(_content.asUnsignedInteger);
case VALUE_IS_SIGNED_INTEGER:
return canConvertNumber<T>(_content.asSignedInteger);
default:
return false;
}
}
bool isFloat() const {
return (_flags & NUMBER_BIT) != 0;
}
bool isString() const {
return type() == VALUE_IS_LINKED_STRING || type() == VALUE_IS_OWNED_STRING;
}
bool isObject() const {
return (_flags & VALUE_IS_OBJECT) != 0;
}
bool isNull() const {
return type() == VALUE_IS_NULL;
}
bool isEnclosed() const {
return !isFloat();
}
void remove(size_t index) {
if (isArray())
_content.asCollection.removeElement(index);
}
template <typename TAdaptedString>
void remove(TAdaptedString key) {
if (isObject())
_content.asCollection.removeMember(key);
}
void setBoolean(bool value) {
setType(VALUE_IS_BOOLEAN);
_content.asBoolean = value;
}
void setFloat(JsonFloat value) {
setType(VALUE_IS_FLOAT);
_content.asFloat = value;
}
void setLinkedRaw(SerializedValue<const char*> value) {
if (value.data()) {
setType(VALUE_IS_LINKED_RAW);
_content.asString.data = value.data();
_content.asString.size = value.size();
} else {
setType(VALUE_IS_NULL);
}
}
template <typename T>
bool storeOwnedRaw(SerializedValue<T> value, MemoryPool* pool) {
const char* dup = pool->saveString(adaptString(value.data(), value.size()));
if (dup) {
setType(VALUE_IS_OWNED_RAW);
_content.asString.data = dup;
_content.asString.size = value.size();
return true;
} else {
setType(VALUE_IS_NULL);
return false;
}
}
template <typename T>
typename enable_if<is_unsigned<T>::value>::type setInteger(T value) {
setType(VALUE_IS_UNSIGNED_INTEGER);
_content.asUnsignedInteger = static_cast<JsonUInt>(value);
}
template <typename T>
typename enable_if<is_signed<T>::value>::type setInteger(T value) {
setType(VALUE_IS_SIGNED_INTEGER);
_content.asSignedInteger = value;
}
void setNull() {
setType(VALUE_IS_NULL);
}
void setString(JsonString s) {
ARDUINOJSON_ASSERT(s);
if (s.isLinked())
setType(VALUE_IS_LINKED_STRING);
else
setType(VALUE_IS_OWNED_STRING);
_content.asString.data = s.c_str();
_content.asString.size = s.size();
}
CollectionData& toArray() {
setType(VALUE_IS_ARRAY);
_content.asCollection.clear();
return _content.asCollection;
}
CollectionData& toObject() {
setType(VALUE_IS_OBJECT);
_content.asCollection.clear();
return _content.asCollection;
}
size_t memoryUsage() const {
switch (type()) {
case VALUE_IS_OWNED_STRING:
case VALUE_IS_OWNED_RAW:
return _content.asString.size + 1;
case VALUE_IS_OBJECT:
case VALUE_IS_ARRAY:
return _content.asCollection.memoryUsage();
default:
return 0;
}
}
size_t size() const {
return isCollection() ? _content.asCollection.size() : 0;
}
VariantData* addElement(MemoryPool* pool) {
if (isNull())
toArray();
if (!isArray())
return 0;
return _content.asCollection.addElement(pool);
}
VariantData* getElement(size_t index) const {
const CollectionData* col = asArray();
return col ? col->getElement(index) : 0;
}
VariantData* getOrAddElement(size_t index, MemoryPool* pool) {
if (isNull())
toArray();
if (!isArray())
return 0;
return _content.asCollection.getOrAddElement(index, pool);
}
template <typename TAdaptedString>
VariantData* getMember(TAdaptedString key) const {
const CollectionData* col = asObject();
return col ? col->getMember(key) : 0;
}
template <typename TAdaptedString>
VariantData* getOrAddMember(TAdaptedString key, MemoryPool* pool) {
if (isNull())
toObject();
if (!isObject())
return 0;
return _content.asCollection.getOrAddMember(key, pool);
}
void movePointers(ptrdiff_t stringDistance, ptrdiff_t variantDistance) {
if (_flags & OWNED_VALUE_BIT)
_content.asString.data += stringDistance;
if (_flags & COLLECTION_MASK)
_content.asCollection.movePointers(stringDistance, variantDistance);
}
uint8_t type() const {
return _flags & VALUE_MASK;
}
template <typename TAdaptedString>
inline bool setString(TAdaptedString value, MemoryPool* pool) {
if (value.isNull()) {
setNull();
return true;
}
return storeString(pool, value, VariantStringSetter(this));
}
private:
void setType(uint8_t t) {
_flags &= OWNED_KEY_BIT;
_flags |= t;
}
struct VariantStringSetter {
VariantStringSetter(VariantData* instance) : _instance(instance) {}
template <typename TStoredString>
void operator()(TStoredString s) {
if (s)
_instance->setString(s);
else
_instance->setNull();
}
VariantData* _instance;
};
};
} // namespace ARDUINOJSON_NAMESPACE
#if defined(__GNUC__)
# if __GNUC__ >= 8
# pragma GCC diagnostic pop
# endif
#endif
namespace ARDUINOJSON_NAMESPACE {
template <typename TResult>
struct Visitor {
typedef TResult result_type;
TResult visitArray(const CollectionData&) {
return TResult();
}
TResult visitBoolean(bool) {
return TResult();
}
TResult visitFloat(JsonFloat) {
return TResult();
}
TResult visitSignedInteger(JsonInteger) {
return TResult();
}
TResult visitNull() {
return TResult();
}
TResult visitObject(const CollectionData&) {
return TResult();
}
TResult visitUnsignedInteger(JsonUInt) {
return TResult();
}
TResult visitRawJson(const char*, size_t) {
return TResult();
}
TResult visitString(const char*, size_t) {
return TResult();
}
};
template <typename TVisitor>
inline typename TVisitor::result_type variantAccept(const VariantData* var,
TVisitor& visitor) {
if (var != 0)
return var->accept(visitor);
else
return visitor.visitNull();
}
inline bool variantCopyFrom(VariantData* dst, const VariantData* src,
MemoryPool* pool) {
if (!dst)
return false;
if (!src) {
dst->setNull();
return true;
}
return dst->copyFrom(*src, pool);
}
inline void variantSetNull(VariantData* var) {
if (!var)
return;
var->setNull();
}
template <typename TAdaptedString>
inline bool variantSetString(VariantData* var, TAdaptedString value,
MemoryPool* pool) {
return var != 0 ? var->setString(value, pool) : 0;
}
inline size_t variantSize(const VariantData* var) {
return var != 0 ? var->size() : 0;
}
inline CollectionData* variantToArray(VariantData* var) {
if (!var)
return 0;
return &var->toArray();
}
inline CollectionData* variantToObject(VariantData* var) {
if (!var)
return 0;
return &var->toObject();
}
inline VariantData* variantGetElement(const VariantData* var, size_t index) {
return var != 0 ? var->getElement(index) : 0;
}
inline NO_INLINE VariantData* variantAddElement(VariantData* var,
MemoryPool* pool) {
return var != 0 ? var->addElement(pool) : 0;
}
inline NO_INLINE VariantData* variantGetOrAddElement(VariantData* var,
size_t index,
MemoryPool* pool) {
return var != 0 ? var->getOrAddElement(index, pool) : 0;
}
template <typename TAdaptedString>
VariantData* variantGetMember(const VariantData* var, TAdaptedString key) {
if (!var)
return 0;
return var->getMember(key);
}
template <typename TAdaptedString>
VariantData* variantGetOrAddMember(VariantData* var, TAdaptedString key,
MemoryPool* pool) {
if (!var)
return 0;
return var->getOrAddMember(key, pool);
}
inline bool variantIsNull(const VariantData* var) {
return var == 0 || var->isNull();
}
inline size_t variantNesting(const VariantData* var) {
if (!var)
return 0;
const CollectionData* collection = var->asCollection();
if (!collection)
return 0;
size_t maxChildNesting = 0;
for (const VariantSlot* s = collection->head(); s; s = s->next()) {
size_t childNesting = variantNesting(s->data());
if (childNesting > maxChildNesting)
maxChildNesting = childNesting;
}
return maxChildNesting + 1;
}
enum CompareResult {
COMPARE_RESULT_DIFFER = 0,
COMPARE_RESULT_EQUAL = 1,
COMPARE_RESULT_GREATER = 2,
COMPARE_RESULT_LESS = 4,
COMPARE_RESULT_GREATER_OR_EQUAL = 3,
COMPARE_RESULT_LESS_OR_EQUAL = 5
};
template <typename T>
CompareResult arithmeticCompare(const T& lhs, const T& rhs) {
if (lhs < rhs)
return COMPARE_RESULT_LESS;
else if (lhs > rhs)
return COMPARE_RESULT_GREATER;
else
return COMPARE_RESULT_EQUAL;
}
template <typename T1, typename T2>
CompareResult arithmeticCompare(
const T1& lhs, const T2& rhs,
typename enable_if<is_integral<T1>::value && is_integral<T2>::value &&
sizeof(T1) < sizeof(T2),
int // Using int instead of void to avoid C2572 on
>::type* = 0) {
return arithmeticCompare<T2>(static_cast<T2>(lhs), rhs);
}
template <typename T1, typename T2>
CompareResult arithmeticCompare(
const T1& lhs, const T2& rhs,
typename enable_if<is_integral<T1>::value && is_integral<T2>::value &&
sizeof(T2) < sizeof(T1)>::type* = 0) {
return arithmeticCompare<T1>(lhs, static_cast<T1>(rhs));
}
template <typename T1, typename T2>
CompareResult arithmeticCompare(
const T1& lhs, const T2& rhs,
typename enable_if<is_integral<T1>::value && is_integral<T2>::value &&
is_signed<T1>::value == is_signed<T2>::value &&
sizeof(T2) == sizeof(T1)>::type* = 0) {
return arithmeticCompare<T1>(lhs, static_cast<T1>(rhs));
}
template <typename T1, typename T2>
CompareResult arithmeticCompare(
const T1& lhs, const T2& rhs,
typename enable_if<is_integral<T1>::value && is_integral<T2>::value &&
is_unsigned<T1>::value && is_signed<T2>::value &&
sizeof(T2) == sizeof(T1)>::type* = 0) {
if (rhs < 0)
return COMPARE_RESULT_GREATER;
return arithmeticCompare<T1>(lhs, static_cast<T1>(rhs));
}
template <typename T1, typename T2>
CompareResult arithmeticCompare(
const T1& lhs, const T2& rhs,
typename enable_if<is_integral<T1>::value && is_integral<T2>::value &&
is_signed<T1>::value && is_unsigned<T2>::value &&
sizeof(T2) == sizeof(T1)>::type* = 0) {
if (lhs < 0)
return COMPARE_RESULT_LESS;
return arithmeticCompare<T2>(static_cast<T2>(lhs), rhs);
}
template <typename T1, typename T2>
CompareResult arithmeticCompare(
const T1& lhs, const T2& rhs,
typename enable_if<is_floating_point<T1>::value ||
is_floating_point<T2>::value>::type* = 0) {
return arithmeticCompare<double>(static_cast<double>(lhs),
static_cast<double>(rhs));
}
template <typename T2>
CompareResult arithmeticCompareNegateLeft(
JsonUInt, const T2&,
typename enable_if<is_unsigned<T2>::value>::type* = 0) {
return COMPARE_RESULT_LESS;
}
template <typename T2>
CompareResult arithmeticCompareNegateLeft(
JsonUInt lhs, const T2& rhs,
typename enable_if<is_signed<T2>::value>::type* = 0) {
if (rhs > 0)
return COMPARE_RESULT_LESS;
return arithmeticCompare(-rhs, static_cast<T2>(lhs));
}
template <typename T1>
CompareResult arithmeticCompareNegateRight(
const T1&, JsonUInt,
typename enable_if<is_unsigned<T1>::value>::type* = 0) {
return COMPARE_RESULT_GREATER;
}
template <typename T1>
CompareResult arithmeticCompareNegateRight(
const T1& lhs, JsonUInt rhs,
typename enable_if<is_signed<T1>::value>::type* = 0) {
if (lhs > 0)
return COMPARE_RESULT_GREATER;
return arithmeticCompare(static_cast<T1>(rhs), -lhs);
}
struct VariantTag {};
template <typename T>
struct IsVariant : is_base_of<VariantTag, T> {};
class JsonVariantConst;
template <typename T>
CompareResult compare(JsonVariantConst lhs,
const T& rhs); // VariantCompare.cpp
struct VariantOperatorTag {};
template <typename TVariant>
struct VariantOperators : VariantOperatorTag {
template <typename T>
friend
typename enable_if<!IsVariant<T>::value && !is_array<T>::value, T>::type
operator|(const TVariant& variant, const T& defaultValue) {
if (variant.template is<T>())
return variant.template as<T>();
else
return defaultValue;
}
friend const char* operator|(const TVariant& variant,
const char* defaultValue) {
if (variant.template is<const char*>())
return variant.template as<const char*>();
else
return defaultValue;
}
template <typename T>
friend typename enable_if<IsVariant<T>::value, JsonVariantConst>::type
operator|(const TVariant& variant, T defaultValue) {
if (variant)
return variant;
else
return defaultValue;
}
template <typename T>
friend bool operator==(T* lhs, TVariant rhs) {
return compare(rhs, lhs) == COMPARE_RESULT_EQUAL;
}
template <typename T>
friend bool operator==(const T& lhs, TVariant rhs) {
return compare(rhs, lhs) == COMPARE_RESULT_EQUAL;
}
template <typename T>
friend bool operator==(TVariant lhs, T* rhs) {
return compare(lhs, rhs) == COMPARE_RESULT_EQUAL;
}
template <typename T>
friend
typename enable_if<!is_base_of<VariantOperatorTag, T>::value, bool>::type
operator==(TVariant lhs, const T& rhs) {
return compare(lhs, rhs) == COMPARE_RESULT_EQUAL;
}
template <typename T>
friend bool operator!=(T* lhs, TVariant rhs) {
return compare(rhs, lhs) != COMPARE_RESULT_EQUAL;
}
template <typename T>
friend bool operator!=(const T& lhs, TVariant rhs) {
return compare(rhs, lhs) != COMPARE_RESULT_EQUAL;
}
template <typename T>
friend bool operator!=(TVariant lhs, T* rhs) {
return compare(lhs, rhs) != COMPARE_RESULT_EQUAL;
}
template <typename T>
friend
typename enable_if<!is_base_of<VariantOperatorTag, T>::value, bool>::type
operator!=(TVariant lhs, const T& rhs) {
return compare(lhs, rhs) != COMPARE_RESULT_EQUAL;
}
template <typename T>
friend bool operator<(T* lhs, TVariant rhs) {
return compare(rhs, lhs) == COMPARE_RESULT_GREATER;
}
template <typename T>
friend bool operator<(const T& lhs, TVariant rhs) {
return compare(rhs, lhs) == COMPARE_RESULT_GREATER;
}
template <typename T>
friend bool operator<(TVariant lhs, T* rhs) {
return compare(lhs, rhs) == COMPARE_RESULT_LESS;
}
template <typename T>
friend
typename enable_if<!is_base_of<VariantOperatorTag, T>::value, bool>::type
operator<(TVariant lhs, const T& rhs) {
return compare(lhs, rhs) == COMPARE_RESULT_LESS;
}
template <typename T>
friend bool operator<=(T* lhs, TVariant rhs) {
return (compare(rhs, lhs) & COMPARE_RESULT_GREATER_OR_EQUAL) != 0;
}
template <typename T>
friend bool operator<=(const T& lhs, TVariant rhs) {
return (compare(rhs, lhs) & COMPARE_RESULT_GREATER_OR_EQUAL) != 0;
}
template <typename T>
friend bool operator<=(TVariant lhs, T* rhs) {
return (compare(lhs, rhs) & COMPARE_RESULT_LESS_OR_EQUAL) != 0;
}
template <typename T>
friend
typename enable_if<!is_base_of<VariantOperatorTag, T>::value, bool>::type
operator<=(TVariant lhs, const T& rhs) {
return (compare(lhs, rhs) & COMPARE_RESULT_LESS_OR_EQUAL) != 0;
}
template <typename T>
friend bool operator>(T* lhs, TVariant rhs) {
return compare(rhs, lhs) == COMPARE_RESULT_LESS;
}
template <typename T>
friend bool operator>(const T& lhs, TVariant rhs) {
return compare(rhs, lhs) == COMPARE_RESULT_LESS;
}
template <typename T>
friend bool operator>(TVariant lhs, T* rhs) {
return compare(lhs, rhs) == COMPARE_RESULT_GREATER;
}
template <typename T>
friend
typename enable_if<!is_base_of<VariantOperatorTag, T>::value, bool>::type
operator>(TVariant lhs, const T& rhs) {
return compare(lhs, rhs) == COMPARE_RESULT_GREATER;
}
template <typename T>
friend bool operator>=(T* lhs, TVariant rhs) {
return (compare(rhs, lhs) & COMPARE_RESULT_LESS_OR_EQUAL) != 0;
}
template <typename T>
friend bool operator>=(const T& lhs, TVariant rhs) {
return (compare(rhs, lhs) & COMPARE_RESULT_LESS_OR_EQUAL) != 0;
}
template <typename T>
friend bool operator>=(TVariant lhs, T* rhs) {
return (compare(lhs, rhs) & COMPARE_RESULT_GREATER_OR_EQUAL) != 0;
}
template <typename T>
friend
typename enable_if<!is_base_of<VariantOperatorTag, T>::value, bool>::type
operator>=(TVariant lhs, const T& rhs) {
return (compare(lhs, rhs) & COMPARE_RESULT_GREATER_OR_EQUAL) != 0;
}
};
class JsonArray;
class JsonObject;
class JsonVariantConst : public VariantTag,
public VariantOperators<JsonVariantConst> {
friend class VariantAttorney;
public:
JsonVariantConst() : _data(0) {}
explicit JsonVariantConst(const VariantData* data) : _data(data) {}
FORCE_INLINE bool isNull() const {
return variantIsNull(_data);
}
FORCE_INLINE bool isUnbound() const {
return !_data;
}
FORCE_INLINE size_t memoryUsage() const {
return _data ? _data->memoryUsage() : 0;
}
FORCE_INLINE size_t nesting() const {
return variantNesting(_data);
}
size_t size() const {
return variantSize(_data);
}
template <typename T>
FORCE_INLINE
typename enable_if<!is_same<T, char*>::value && !is_same<T, char>::value,
T>::type
as() const {
return Converter<T>::fromJson(*this);
}
template <typename T>
FORCE_INLINE
typename enable_if<!is_same<T, char*>::value && !is_same<T, char>::value,
bool>::type
is() const {
return Converter<T>::checkJson(*this);
}
template <typename T>
FORCE_INLINE operator T() const {
return as<T>();
}
FORCE_INLINE JsonVariantConst operator[](size_t index) const {
return JsonVariantConst(variantGetElement(_data, index));
}
template <typename TString>
FORCE_INLINE
typename enable_if<IsString<TString>::value, JsonVariantConst>::type
operator[](const TString& key) const {
return JsonVariantConst(variantGetMember(_data, adaptString(key)));
}
template <typename TChar>
FORCE_INLINE
typename enable_if<IsString<TChar*>::value, JsonVariantConst>::type
operator[](TChar* key) const {
return JsonVariantConst(variantGetMember(_data, adaptString(key)));
}
template <typename TString>
FORCE_INLINE typename enable_if<IsString<TString>::value, bool>::type
containsKey(const TString& key) const {
return variantGetMember(getData(), adaptString(key)) != 0;
}
template <typename TChar>
FORCE_INLINE typename enable_if<IsString<TChar*>::value, bool>::type
containsKey(TChar* key) const {
return variantGetMember(getData(), adaptString(key)) != 0;
}
protected:
const VariantData* getData() const {
return _data;
}
private:
const VariantData* _data;
};
class JsonVariant;
template <typename>
class ElementProxy;
template <typename, typename>
class MemberProxy;
template <typename TDerived>
class VariantRefBase : public VariantTag {
friend class VariantAttorney;
public:
FORCE_INLINE void clear() const {
variantSetNull(getData());
}
FORCE_INLINE bool isNull() const {
return variantIsNull(getData());
}
FORCE_INLINE bool isUnbound() const {
return !getData();
}
template <typename T>
FORCE_INLINE
typename enable_if<!ConverterNeedsWriteableRef<T>::value, T>::type
as() const {
return Converter<T>::fromJson(getVariantConst());
}
template <typename T>
FORCE_INLINE typename enable_if<ConverterNeedsWriteableRef<T>::value, T>::type
as() const {
return Converter<T>::fromJson(getVariant());
}
template <typename T>
FORCE_INLINE operator T() const {
return as<T>();
}
template <typename T>
typename enable_if<is_same<T, JsonArray>::value, JsonArray>::type to() const;
template <typename T>
typename enable_if<is_same<T, JsonObject>::value, JsonObject>::type to()
const;
template <typename T>
typename enable_if<is_same<T, JsonVariant>::value, JsonVariant>::type to()
const;
template <typename T>
FORCE_INLINE
typename enable_if<ConverterNeedsWriteableRef<T>::value, bool>::type
is() const {
return Converter<T>::checkJson(getVariant());
}
template <typename T>
FORCE_INLINE typename enable_if<!ConverterNeedsWriteableRef<T>::value &&
!is_same<T, char*>::value &&
!is_same<T, char>::value,
bool>::type
is() const {
return Converter<T>::checkJson(getVariantConst());
}
FORCE_INLINE void shallowCopy(JsonVariantConst target) {
VariantData* data = getOrCreateData();
if (!data)
return;
const VariantData* targetData = VariantAttorney::getData(target);
if (targetData)
*data = *targetData;
else
data->setNull();
}
template <typename T>
FORCE_INLINE bool set(const T& value) const {
Converter<T>::toJson(value, getOrCreateVariant());
MemoryPool* pool = getPool();
return pool && !pool->overflowed();
}
template <typename T>
FORCE_INLINE bool set(T* value) const {
Converter<T*>::toJson(value, getOrCreateVariant());
MemoryPool* pool = getPool();
return pool && !pool->overflowed();
}
FORCE_INLINE size_t size() const {
return variantSize(getData());
}
FORCE_INLINE size_t memoryUsage() const {
VariantData* data = getData();
return data ? data->memoryUsage() : 0;
}
FORCE_INLINE size_t nesting() const {
return variantNesting(getData());
}
FORCE_INLINE JsonVariant add() const;
template <typename T>
FORCE_INLINE bool add(const T& value) const {
return add().set(value);
}
template <typename T>
FORCE_INLINE bool add(T* value) const {
return add().set(value);
}
FORCE_INLINE void remove(size_t index) const {
VariantData* data = getData();
if (data)
data->remove(index);
}
template <typename TChar>
FORCE_INLINE typename enable_if<IsString<TChar*>::value>::type remove(
TChar* key) const {
VariantData* data = getData();
if (data)
data->remove(adaptString(key));
}
template <typename TString>
FORCE_INLINE typename enable_if<IsString<TString>::value>::type remove(
const TString& key) const {
VariantData* data = getData();
if (data)
data->remove(adaptString(key));
}
FORCE_INLINE JsonArray createNestedArray() const;
FORCE_INLINE JsonObject createNestedObject() const;
FORCE_INLINE ElementProxy<TDerived> operator[](size_t index) const;
template <typename TString>
FORCE_INLINE typename enable_if<IsString<TString>::value, bool>::type
containsKey(const TString& key) const;
template <typename TChar>
FORCE_INLINE typename enable_if<IsString<TChar*>::value, bool>::type
containsKey(TChar* key) const;
template <typename TString>
FORCE_INLINE typename enable_if<IsString<TString>::value,
MemberProxy<TDerived, TString> >::type
operator[](const TString& key) const;
template <typename TChar>
FORCE_INLINE typename enable_if<IsString<TChar*>::value,
MemberProxy<TDerived, TChar*> >::type
operator[](TChar* key) const;
template <typename TString>
FORCE_INLINE JsonArray createNestedArray(const TString& key) const;
template <typename TChar>
FORCE_INLINE JsonArray createNestedArray(TChar* key) const;
template <typename TString>
JsonObject createNestedObject(const TString& key) const;
template <typename TChar>
JsonObject createNestedObject(TChar* key) const;
private:
TDerived& derived() {
return static_cast<TDerived&>(*this);
}
const TDerived& derived() const {
return static_cast<const TDerived&>(*this);
}
FORCE_INLINE MemoryPool* getPool() const {
return VariantAttorney::getPool(derived());
}
FORCE_INLINE VariantData* getData() const {
return VariantAttorney::getData(derived());
}
FORCE_INLINE VariantData* getOrCreateData() const {
return VariantAttorney::getOrCreateData(derived());
}
private:
FORCE_INLINE JsonVariant getVariant() const;
FORCE_INLINE JsonVariantConst getVariantConst() const {
return JsonVariantConst(getData());
}
FORCE_INLINE JsonVariant getOrCreateVariant() const;
};
template <typename TUpstream>
class ElementProxy : public VariantRefBase<ElementProxy<TUpstream> >,
public VariantOperators<ElementProxy<TUpstream> > {
friend class VariantAttorney;
public:
ElementProxy(TUpstream upstream, size_t index)
: _upstream(upstream), _index(index) {}
ElementProxy(const ElementProxy& src)
: _upstream(src._upstream), _index(src._index) {}
FORCE_INLINE ElementProxy& operator=(const ElementProxy& src) {
this->set(src);
return *this;
}
template <typename T>
FORCE_INLINE ElementProxy& operator=(const T& src) {
this->set(src);
return *this;
}
template <typename T>
FORCE_INLINE ElementProxy& operator=(T* src) {
this->set(src);
return *this;
}
private:
FORCE_INLINE MemoryPool* getPool() const {
return VariantAttorney::getPool(_upstream);
}
FORCE_INLINE VariantData* getData() const {
return variantGetElement(VariantAttorney::getData(_upstream), _index);
}
FORCE_INLINE VariantData* getOrCreateData() const {
return variantGetOrAddElement(VariantAttorney::getOrCreateData(_upstream),
_index, VariantAttorney::getPool(_upstream));
}
TUpstream _upstream;
size_t _index;
};
class JsonVariant : public VariantRefBase<JsonVariant>,
public VariantOperators<JsonVariant> {
friend class VariantAttorney;
public:
JsonVariant() : _data(0), _pool(0) {}
JsonVariant(MemoryPool* pool, VariantData* data) : _data(data), _pool(pool) {}
private:
FORCE_INLINE MemoryPool* getPool() const {
return _pool;
}
FORCE_INLINE VariantData* getData() const {
return _data;
}
FORCE_INLINE VariantData* getOrCreateData() const {
return _data;
}
VariantData* _data;
MemoryPool* _pool;
};
template <>
struct Converter<JsonVariant> : private VariantAttorney {
static void toJson(JsonVariant src, JsonVariant dst) {
variantCopyFrom(getData(dst), getData(src), getPool(dst));
}
static JsonVariant fromJson(JsonVariant src) {
return src;
}
static InvalidConversion<JsonVariantConst, JsonVariant> fromJson(
JsonVariantConst);
static bool checkJson(JsonVariant src) {
VariantData* data = getData(src);
return !!data;
}
static bool checkJson(JsonVariantConst) {
return false;
}
};
template <>
struct Converter<JsonVariantConst> : private VariantAttorney {
static void toJson(JsonVariantConst src, JsonVariant dst) {
variantCopyFrom(getData(dst), getData(src), getPool(dst));
}
static JsonVariantConst fromJson(JsonVariantConst src) {
return JsonVariantConst(getData(src));
}
static bool checkJson(JsonVariantConst src) {
const VariantData* data = getData(src);
return !!data;
}
};
struct SlotKeySetter {
SlotKeySetter(VariantSlot* instance) : _instance(instance) {}
template <typename TStoredString>
void operator()(TStoredString s) {
if (!s)
return;
ARDUINOJSON_ASSERT(_instance != 0);
_instance->setKey(s);
}
VariantSlot* _instance;
};
template <typename TAdaptedString>
inline bool slotSetKey(VariantSlot* var, TAdaptedString key, MemoryPool* pool) {
if (!var)
return false;
return storeString(pool, key, SlotKeySetter(var));
}
inline size_t slotSize(const VariantSlot* var) {
size_t n = 0;
while (var) {
n++;
var = var->next();
}
return n;
}
inline VariantData* slotData(VariantSlot* slot) {
return reinterpret_cast<VariantData*>(slot);
}
class VariantPtr {
public:
VariantPtr(MemoryPool* pool, VariantData* data) : _variant(pool, data) {}
JsonVariant* operator->() {
return &_variant;
}
JsonVariant& operator*() {
return _variant;
}
private:
JsonVariant _variant;
};
class JsonArrayIterator {
friend class JsonArray;
public:
JsonArrayIterator() : _slot(0) {}
explicit JsonArrayIterator(MemoryPool* pool, VariantSlot* slot)
: _pool(pool), _slot(slot) {}
JsonVariant operator*() const {
return JsonVariant(_pool, _slot->data());
}
VariantPtr operator->() {
return VariantPtr(_pool, _slot->data());
}
bool operator==(const JsonArrayIterator& other) const {
return _slot == other._slot;
}
bool operator!=(const JsonArrayIterator& other) const {
return _slot != other._slot;
}
JsonArrayIterator& operator++() {
_slot = _slot->next();
return *this;
}
JsonArrayIterator& operator+=(size_t distance) {
_slot = _slot->next(distance);
return *this;
}
private:
MemoryPool* _pool;
VariantSlot* _slot;
};
class VariantConstPtr {
public:
VariantConstPtr(const VariantData* data) : _variant(data) {}
JsonVariantConst* operator->() {
return &_variant;
}
JsonVariantConst& operator*() {
return _variant;
}
private:
JsonVariantConst _variant;
};
class JsonArrayConstIterator {
friend class JsonArray;
public:
JsonArrayConstIterator() : _slot(0) {}
explicit JsonArrayConstIterator(const VariantSlot* slot) : _slot(slot) {}
JsonVariantConst operator*() const {
return JsonVariantConst(_slot->data());
}
VariantConstPtr operator->() {
return VariantConstPtr(_slot->data());
}
bool operator==(const JsonArrayConstIterator& other) const {
return _slot == other._slot;
}
bool operator!=(const JsonArrayConstIterator& other) const {
return _slot != other._slot;
}
JsonArrayConstIterator& operator++() {
_slot = _slot->next();
return *this;
}
JsonArrayConstIterator& operator+=(size_t distance) {
_slot = _slot->next(distance);
return *this;
}
private:
const VariantSlot* _slot;
};
class JsonObject;
class JsonArrayConst : public VariantOperators<JsonArrayConst> {
friend class JsonArray;
friend class VariantAttorney;
public:
typedef JsonArrayConstIterator iterator;
FORCE_INLINE iterator begin() const {
if (!_data)
return iterator();
return iterator(_data->head());
}
FORCE_INLINE iterator end() const {
return iterator();
}
FORCE_INLINE JsonArrayConst() : _data(0) {}
FORCE_INLINE JsonArrayConst(const CollectionData* data) : _data(data) {}
FORCE_INLINE bool operator==(JsonArrayConst rhs) const {
if (_data == rhs._data)
return true;
if (!_data || !rhs._data)
return false;
iterator it1 = begin();
iterator it2 = rhs.begin();
for (;;) {
bool end1 = it1 == end();
bool end2 = it2 == rhs.end();
if (end1 && end2)
return true;
if (end1 || end2)
return false;
if (*it1 != *it2)
return false;
++it1;
++it2;
}
}
FORCE_INLINE JsonVariantConst operator[](size_t index) const {
return JsonVariantConst(_data ? _data->getElement(index) : 0);
}
operator JsonVariantConst() const {
return JsonVariantConst(collectionToVariant(_data));
}
FORCE_INLINE bool isNull() const {
return _data == 0;
}
FORCE_INLINE operator bool() const {
return _data != 0;
}
FORCE_INLINE size_t memoryUsage() const {
return _data ? _data->memoryUsage() : 0;
}
FORCE_INLINE size_t nesting() const {
return variantNesting(collectionToVariant(_data));
}
FORCE_INLINE size_t size() const {
return _data ? _data->size() : 0;
}
private:
const VariantData* getData() const {
return collectionToVariant(_data);
}
const CollectionData* _data;
};
template <>
struct Converter<JsonArrayConst> : private VariantAttorney {
static void toJson(JsonVariantConst src, JsonVariant dst) {
variantCopyFrom(getData(dst), getData(src), getPool(dst));
}
static JsonArrayConst fromJson(JsonVariantConst src) {
const VariantData* data = getData(src);
return data ? data->asArray() : 0;
}
static bool checkJson(JsonVariantConst src) {
const VariantData* data = getData(src);
return data && data->isArray();
}
};
class JsonObject;
class JsonArray : public VariantOperators<JsonArray> {
friend class VariantAttorney;
public:
typedef JsonArrayIterator iterator;
FORCE_INLINE JsonArray() : _data(0), _pool(0) {}
FORCE_INLINE JsonArray(MemoryPool* pool, CollectionData* data)
: _data(data), _pool(pool) {}
operator JsonVariant() {
void* data = _data; // prevent warning cast-align
return JsonVariant(_pool, reinterpret_cast<VariantData*>(data));
}
operator JsonArrayConst() const {
return JsonArrayConst(_data);
}
JsonVariant add() const {
if (!_data)
return JsonVariant();
return JsonVariant(_pool, _data->addElement(_pool));
}
template <typename T>
FORCE_INLINE bool add(const T& value) const {
return add().set(value);
}
template <typename T>
FORCE_INLINE bool add(T* value) const {
return add().set(value);
}
FORCE_INLINE iterator begin() const {
if (!_data)
return iterator();
return iterator(_pool, _data->head());
}
FORCE_INLINE iterator end() const {
return iterator();
}
FORCE_INLINE bool set(JsonArrayConst src) const {
if (!_data || !src._data)
return false;
return _data->copyFrom(*src._data, _pool);
}
FORCE_INLINE bool operator==(JsonArray rhs) const {
return JsonArrayConst(_data) == JsonArrayConst(rhs._data);
}
FORCE_INLINE void remove(iterator it) const {
if (!_data)
return;
_data->removeSlot(it._slot);
}
FORCE_INLINE void remove(size_t index) const {
if (!_data)
return;
_data->removeElement(index);
}
void clear() const {
if (!_data)
return;
_data->clear();
}
FORCE_INLINE ElementProxy<JsonArray> operator[](size_t index) const {
return ElementProxy<JsonArray>(*this, index);
}
FORCE_INLINE JsonObject createNestedObject() const;
FORCE_INLINE JsonArray createNestedArray() const {
return add().to<JsonArray>();
}
operator JsonVariantConst() const {
return JsonVariantConst(collectionToVariant(_data));
}
FORCE_INLINE bool isNull() const {
return _data == 0;
}
FORCE_INLINE operator bool() const {
return _data != 0;
}
FORCE_INLINE size_t memoryUsage() const {
return _data ? _data->memoryUsage() : 0;
}
FORCE_INLINE size_t nesting() const {
return variantNesting(collectionToVariant(_data));
}
FORCE_INLINE size_t size() const {
return _data ? _data->size() : 0;
}
private:
MemoryPool* getPool() const {
return _pool;
}
VariantData* getData() const {
return collectionToVariant(_data);
}
VariantData* getOrCreateData() const {
return collectionToVariant(_data);
}
CollectionData* _data;
MemoryPool* _pool;
};
template <>
struct Converter<JsonArray> : private VariantAttorney {
static void toJson(JsonVariantConst src, JsonVariant dst) {
variantCopyFrom(getData(dst), getData(src), getPool(dst));
}
static JsonArray fromJson(JsonVariant src) {
VariantData* data = getData(src);
MemoryPool* pool = getPool(src);
return JsonArray(pool, data != 0 ? data->asArray() : 0);
}
static InvalidConversion<JsonVariantConst, JsonArray> fromJson(
JsonVariantConst);
static bool checkJson(JsonVariantConst) {
return false;
}
static bool checkJson(JsonVariant src) {
VariantData* data = getData(src);
return data && data->isArray();
}
};
class JsonPair {
public:
JsonPair(MemoryPool* pool, VariantSlot* slot) {
if (slot) {
_key = JsonString(slot->key(), slot->ownsKey() ? JsonString::Copied
: JsonString::Linked);
_value = JsonVariant(pool, slot->data());
}
}
JsonString key() const {
return _key;
}
JsonVariant value() const {
return _value;
}
private:
JsonString _key;
JsonVariant _value;
};
class JsonPairConst {
public:
JsonPairConst(const VariantSlot* slot) {
if (slot) {
_key = JsonString(slot->key(), slot->ownsKey() ? JsonString::Copied
: JsonString::Linked);
_value = JsonVariantConst(slot->data());
}
}
JsonString key() const {
return _key;
}
JsonVariantConst value() const {
return _value;
}
private:
JsonString _key;
JsonVariantConst _value;
};
class JsonPairPtr {
public:
JsonPairPtr(MemoryPool* pool, VariantSlot* slot) : _pair(pool, slot) {}
const JsonPair* operator->() const {
return &_pair;
}
const JsonPair& operator*() const {
return _pair;
}
private:
JsonPair _pair;
};
class JsonObjectIterator {
friend class JsonObject;
public:
JsonObjectIterator() : _slot(0) {}
explicit JsonObjectIterator(MemoryPool* pool, VariantSlot* slot)
: _pool(pool), _slot(slot) {}
JsonPair operator*() const {
return JsonPair(_pool, _slot);
}
JsonPairPtr operator->() {
return JsonPairPtr(_pool, _slot);
}
bool operator==(const JsonObjectIterator& other) const {
return _slot == other._slot;
}
bool operator!=(const JsonObjectIterator& other) const {
return _slot != other._slot;
}
JsonObjectIterator& operator++() {
_slot = _slot->next();
return *this;
}
JsonObjectIterator& operator+=(size_t distance) {
_slot = _slot->next(distance);
return *this;
}
private:
MemoryPool* _pool;
VariantSlot* _slot;
};
class JsonPairConstPtr {
public:
JsonPairConstPtr(const VariantSlot* slot) : _pair(slot) {}
const JsonPairConst* operator->() const {
return &_pair;
}
const JsonPairConst& operator*() const {
return _pair;
}
private:
JsonPairConst _pair;
};
class JsonObjectConstIterator {
friend class JsonObject;
public:
JsonObjectConstIterator() : _slot(0) {}
explicit JsonObjectConstIterator(const VariantSlot* slot) : _slot(slot) {}
JsonPairConst operator*() const {
return JsonPairConst(_slot);
}
JsonPairConstPtr operator->() {
return JsonPairConstPtr(_slot);
}
bool operator==(const JsonObjectConstIterator& other) const {
return _slot == other._slot;
}
bool operator!=(const JsonObjectConstIterator& other) const {
return _slot != other._slot;
}
JsonObjectConstIterator& operator++() {
_slot = _slot->next();
return *this;
}
JsonObjectConstIterator& operator+=(size_t distance) {
_slot = _slot->next(distance);
return *this;
}
private:
const VariantSlot* _slot;
};
class JsonObjectConst : public VariantOperators<JsonObjectConst> {
friend class JsonObject;
friend class VariantAttorney;
public:
typedef JsonObjectConstIterator iterator;
JsonObjectConst() : _data(0) {}
JsonObjectConst(const CollectionData* data) : _data(data) {}
operator JsonVariantConst() const {
return JsonVariantConst(collectionToVariant(_data));
}
FORCE_INLINE bool isNull() const {
return _data == 0;
}
FORCE_INLINE operator bool() const {
return _data != 0;
}
FORCE_INLINE size_t memoryUsage() const {
return _data ? _data->memoryUsage() : 0;
}
FORCE_INLINE size_t nesting() const {
return variantNesting(collectionToVariant(_data));
}
FORCE_INLINE size_t size() const {
return _data ? _data->size() : 0;
}
FORCE_INLINE iterator begin() const {
if (!_data)
return iterator();
return iterator(_data->head());
}
FORCE_INLINE iterator end() const {
return iterator();
}
template <typename TString>
FORCE_INLINE bool containsKey(const TString& key) const {
return getMember(adaptString(key)) != 0;
}
template <typename TChar>
FORCE_INLINE bool containsKey(TChar* key) const {
return getMember(adaptString(key)) != 0;
}
template <typename TString>
FORCE_INLINE
typename enable_if<IsString<TString>::value, JsonVariantConst>::type
operator[](const TString& key) const {
return JsonVariantConst(getMember(adaptString(key)));
}
template <typename TChar>
FORCE_INLINE
typename enable_if<IsString<TChar*>::value, JsonVariantConst>::type
operator[](TChar* key) const {
return JsonVariantConst(getMember(adaptString(key)));
}
FORCE_INLINE bool operator==(JsonObjectConst rhs) const {
if (_data == rhs._data)
return true;
if (!_data || !rhs._data)
return false;
size_t count = 0;
for (iterator it = begin(); it != end(); ++it) {
if (it->value() != rhs[it->key()])
return false;
count++;
}
return count == rhs.size();
}
private:
const VariantData* getData() const {
return collectionToVariant(_data);
}
template <typename TAdaptedString>
const VariantData* getMember(TAdaptedString key) const {
if (!_data)
return 0;
return _data->getMember(key);
}
const CollectionData* _data;
};
template <>
struct Converter<JsonObjectConst> : private VariantAttorney {
static void toJson(JsonVariantConst src, JsonVariant dst) {
variantCopyFrom(getData(dst), getData(src), getPool(dst));
}
static JsonObjectConst fromJson(JsonVariantConst src) {
const VariantData* data = getData(src);
return data != 0 ? data->asObject() : 0;
}
static bool checkJson(JsonVariantConst src) {
const VariantData* data = getData(src);
return data && data->isObject();
}
};
template <typename TUpstream, typename TStringRef>
class MemberProxy
: public VariantRefBase<MemberProxy<TUpstream, TStringRef> >,
public VariantOperators<MemberProxy<TUpstream, TStringRef> > {
friend class VariantAttorney;
public:
FORCE_INLINE MemberProxy(TUpstream upstream, TStringRef key)
: _upstream(upstream), _key(key) {}
MemberProxy(const MemberProxy& src)
: _upstream(src._upstream), _key(src._key) {}
FORCE_INLINE MemberProxy& operator=(const MemberProxy& src) {
this->set(src);
return *this;
}
template <typename T>
FORCE_INLINE MemberProxy& operator=(const T& src) {
this->set(src);
return *this;
}
template <typename T>
FORCE_INLINE MemberProxy& operator=(T* src) {
this->set(src);
return *this;
}
private:
FORCE_INLINE MemoryPool* getPool() const {
return VariantAttorney::getPool(_upstream);
}
FORCE_INLINE VariantData* getData() const {
return variantGetMember(VariantAttorney::getData(_upstream),
adaptString(_key));
}
FORCE_INLINE VariantData* getOrCreateData() const {
return variantGetOrAddMember(VariantAttorney::getOrCreateData(_upstream),
adaptString(_key),
VariantAttorney::getPool(_upstream));
}
private:
TUpstream _upstream;
TStringRef _key;
};
class JsonArray;
class JsonObject : public VariantOperators<JsonObject> {
friend class VariantAttorney;
public:
typedef JsonObjectIterator iterator;
FORCE_INLINE JsonObject() : _data(0), _pool(0) {}
FORCE_INLINE JsonObject(MemoryPool* buf, CollectionData* data)
: _data(data), _pool(buf) {}
operator JsonVariant() const {
void* data = _data; // prevent warning cast-align
return JsonVariant(_pool, reinterpret_cast<VariantData*>(data));
}
operator JsonObjectConst() const {
return JsonObjectConst(_data);
}
operator JsonVariantConst() const {
return JsonVariantConst(collectionToVariant(_data));
}
FORCE_INLINE bool isNull() const {
return _data == 0;
}
FORCE_INLINE operator bool() const {
return _data != 0;
}
FORCE_INLINE size_t memoryUsage() const {
return _data ? _data->memoryUsage() : 0;
}
FORCE_INLINE size_t nesting() const {
return variantNesting(collectionToVariant(_data));
}
FORCE_INLINE size_t size() const {
return _data ? _data->size() : 0;
}
FORCE_INLINE iterator begin() const {
if (!_data)
return iterator();
return iterator(_pool, _data->head());
}
FORCE_INLINE iterator end() const {
return iterator();
}
void clear() const {
if (!_data)
return;
_data->clear();
}
FORCE_INLINE bool set(JsonObjectConst src) {
if (!_data || !src._data)
return false;
return _data->copyFrom(*src._data, _pool);
}
FORCE_INLINE bool operator==(JsonObject rhs) const {
return JsonObjectConst(_data) == JsonObjectConst(rhs._data);
}
template <typename TString>
FORCE_INLINE typename enable_if<IsString<TString>::value,
MemberProxy<JsonObject, TString> >::type
operator[](const TString& key) const {
return MemberProxy<JsonObject, TString>(*this, key);
}
template <typename TChar>
FORCE_INLINE typename enable_if<IsString<TChar*>::value,
MemberProxy<JsonObject, TChar*> >::type
operator[](TChar* key) const {
return MemberProxy<JsonObject, TChar*>(*this, key);
}
FORCE_INLINE void remove(iterator it) const {
if (!_data)
return;
_data->removeSlot(it._slot);
}
template <typename TString>
FORCE_INLINE void remove(const TString& key) const {
removeMember(adaptString(key));
}
template <typename TChar>
FORCE_INLINE void remove(TChar* key) const {
removeMember(adaptString(key));
}
template <typename TString>
FORCE_INLINE typename enable_if<IsString<TString>::value, bool>::type
containsKey(const TString& key) const {
return getMember(adaptString(key)) != 0;
}
template <typename TChar>
FORCE_INLINE typename enable_if<IsString<TChar*>::value, bool>::type
containsKey(TChar* key) const {
return getMember(adaptString(key)) != 0;
}
template <typename TString>
FORCE_INLINE JsonArray createNestedArray(const TString& key) const;
template <typename TChar>
FORCE_INLINE JsonArray createNestedArray(TChar* key) const;
template <typename TString>
JsonObject createNestedObject(const TString& key) const {
return operator[](key).template to<JsonObject>();
}
template <typename TChar>
JsonObject createNestedObject(TChar* key) const {
return operator[](key).template to<JsonObject>();
}
private:
MemoryPool* getPool() const {
return _pool;
}
VariantData* getData() const {
return collectionToVariant(_data);
}
VariantData* getOrCreateData() const {
return collectionToVariant(_data);
}
template <typename TAdaptedString>
inline VariantData* getMember(TAdaptedString key) const {
if (!_data)
return 0;
return _data->getMember(key);
}
template <typename TAdaptedString>
void removeMember(TAdaptedString key) const {
if (!_data)
return;
_data->removeMember(key);
}
CollectionData* _data;
MemoryPool* _pool;
};
template <>
struct Converter<JsonObject> : private VariantAttorney {
static void toJson(JsonVariantConst src, JsonVariant dst) {
variantCopyFrom(getData(dst), getData(src), getPool(dst));
}
static JsonObject fromJson(JsonVariant src) {
VariantData* data = getData(src);
MemoryPool* pool = getPool(src);
return JsonObject(pool, data != 0 ? data->asObject() : 0);
}
static InvalidConversion<JsonVariantConst, JsonObject> fromJson(
JsonVariantConst);
static bool checkJson(JsonVariantConst) {
return false;
}
static bool checkJson(JsonVariant src) {
VariantData* data = getData(src);
return data && data->isObject();
}
};
class JsonDocument : public VariantOperators<const JsonDocument&> {
friend class VariantAttorney;
public:
template <typename T>
T as() {
return getVariant().template as<T>();
}
template <typename T>
T as() const {
return getVariant().template as<T>();
}
void clear() {
_pool.clear();
_data.init();
}
template <typename T>
bool is() {
return getVariant().template is<T>();
}
template <typename T>
bool is() const {
return getVariant().template is<T>();
}
bool isNull() const {
return getVariant().isNull();
}
size_t memoryUsage() const {
return _pool.size();
}
bool overflowed() const {
return _pool.overflowed();
}
size_t nesting() const {
return variantNesting(&_data);
}
size_t capacity() const {
return _pool.capacity();
}
size_t size() const {
return _data.size();
}
bool set(const JsonDocument& src) {
return to<JsonVariant>().set(src.as<JsonVariantConst>());
}
template <typename T>
typename enable_if<!is_base_of<JsonDocument, T>::value, bool>::type set(
const T& src) {
return to<JsonVariant>().set(src);
}
template <typename T>
typename VariantTo<T>::type to() {
clear();
return getVariant().template to<T>();
}
JsonArray createNestedArray() {
return add().to<JsonArray>();
}
template <typename TChar>
JsonArray createNestedArray(TChar* key) {
return operator[](key).template to<JsonArray>();
}
template <typename TString>
JsonArray createNestedArray(const TString& key) {
return operator[](key).template to<JsonArray>();
}
JsonObject createNestedObject() {
return add().to<JsonObject>();
}
template <typename TChar>
JsonObject createNestedObject(TChar* key) {
return operator[](key).template to<JsonObject>();
}
template <typename TString>
JsonObject createNestedObject(const TString& key) {
return operator[](key).template to<JsonObject>();
}
template <typename TChar>
bool containsKey(TChar* key) const {
return _data.getMember(adaptString(key)) != 0;
}
template <typename TString>
bool containsKey(const TString& key) const {
return _data.getMember(adaptString(key)) != 0;
}
template <typename TString>
FORCE_INLINE typename enable_if<IsString<TString>::value,
MemberProxy<JsonDocument&, TString> >::type
operator[](const TString& key) {
return MemberProxy<JsonDocument&, TString>(*this, key);
}
template <typename TChar>
FORCE_INLINE typename enable_if<IsString<TChar*>::value,
MemberProxy<JsonDocument&, TChar*> >::type
operator[](TChar* key) {
return MemberProxy<JsonDocument&, TChar*>(*this, key);
}
template <typename TString>
FORCE_INLINE
typename enable_if<IsString<TString>::value, JsonVariantConst>::type
operator[](const TString& key) const {
return JsonVariantConst(_data.getMember(adaptString(key)));
}
template <typename TChar>
FORCE_INLINE
typename enable_if<IsString<TChar*>::value, JsonVariantConst>::type
operator[](TChar* key) const {
return JsonVariantConst(_data.getMember(adaptString(key)));
}
FORCE_INLINE ElementProxy<JsonDocument&> operator[](size_t index) {
return ElementProxy<JsonDocument&>(*this, index);
}
FORCE_INLINE JsonVariantConst operator[](size_t index) const {
return JsonVariantConst(_data.getElement(index));
}
FORCE_INLINE JsonVariant add() {
return JsonVariant(&_pool, _data.addElement(&_pool));
}
template <typename TValue>
FORCE_INLINE bool add(const TValue& value) {
return add().set(value);
}
template <typename TChar>
FORCE_INLINE bool add(TChar* value) {
return add().set(value);
}
FORCE_INLINE void remove(size_t index) {
_data.remove(index);
}
template <typename TChar>
FORCE_INLINE typename enable_if<IsString<TChar*>::value>::type remove(
TChar* key) {
_data.remove(adaptString(key));
}
template <typename TString>
FORCE_INLINE typename enable_if<IsString<TString>::value>::type remove(
const TString& key) {
_data.remove(adaptString(key));
}
FORCE_INLINE operator JsonVariant() {
return getVariant();
}
FORCE_INLINE operator JsonVariantConst() const {
return getVariant();
}
protected:
JsonDocument() : _pool(0, 0) {
_data.init();
}
JsonDocument(MemoryPool pool) : _pool(pool) {
_data.init();
}
JsonDocument(char* buf, size_t capa) : _pool(buf, capa) {
_data.init();
}
~JsonDocument() {}
void replacePool(MemoryPool pool) {
_pool = pool;
}
JsonVariant getVariant() {
return JsonVariant(&_pool, &_data);
}
JsonVariantConst getVariant() const {
return JsonVariantConst(&_data);
}
MemoryPool _pool;
VariantData _data;
private:
JsonDocument(const JsonDocument&);
JsonDocument& operator=(const JsonDocument&);
protected:
MemoryPool* getPool() {
return &_pool;
}
VariantData* getData() {
return &_data;
}
const VariantData* getData() const {
return &_data;
}
VariantData* getOrCreateData() {
return &_data;
}
};
inline void convertToJson(const JsonDocument& src, JsonVariant dst) {
dst.set(src.as<JsonVariantConst>());
}
template <typename TAllocator>
class AllocatorOwner {
public:
AllocatorOwner() {}
AllocatorOwner(TAllocator a) : _allocator(a) {}
void* allocate(size_t size) {
return _allocator.allocate(size);
}
void deallocate(void* ptr) {
if (ptr)
_allocator.deallocate(ptr);
}
void* reallocate(void* ptr, size_t new_size) {
return _allocator.reallocate(ptr, new_size);
}
TAllocator& allocator() {
return _allocator;
}
private:
TAllocator _allocator;
};
template <typename TAllocator>
class BasicJsonDocument : AllocatorOwner<TAllocator>, public JsonDocument {
public:
explicit BasicJsonDocument(size_t capa, TAllocator alloc = TAllocator())
: AllocatorOwner<TAllocator>(alloc), JsonDocument(allocPool(capa)) {}
BasicJsonDocument(const BasicJsonDocument& src)
: AllocatorOwner<TAllocator>(src), JsonDocument() {
copyAssignFrom(src);
}
#if ARDUINOJSON_HAS_RVALUE_REFERENCES
BasicJsonDocument(BasicJsonDocument&& src) : AllocatorOwner<TAllocator>(src) {
moveAssignFrom(src);
}
#endif
BasicJsonDocument(const JsonDocument& src) {
copyAssignFrom(src);
}
template <typename T>
BasicJsonDocument(
const T& src,
typename enable_if<
is_same<T, JsonVariant>::value ||
is_same<T, JsonVariantConst>::value || is_same<T, JsonArray>::value ||
is_same<T, JsonArrayConst>::value || is_same<T, JsonObject>::value ||
is_same<T, JsonObjectConst>::value>::type* = 0)
: JsonDocument(allocPool(src.memoryUsage())) {
set(src);
}
BasicJsonDocument(JsonVariant src)
: JsonDocument(allocPool(src.memoryUsage())) {
set(src);
}
~BasicJsonDocument() {
freePool();
}
BasicJsonDocument& operator=(const BasicJsonDocument& src) {
copyAssignFrom(src);
return *this;
}
#if ARDUINOJSON_HAS_RVALUE_REFERENCES
BasicJsonDocument& operator=(BasicJsonDocument&& src) {
moveAssignFrom(src);
return *this;
}
#endif
template <typename T>
BasicJsonDocument& operator=(const T& src) {
size_t requiredSize = src.memoryUsage();
if (requiredSize > capacity())
reallocPool(requiredSize);
set(src);
return *this;
}
void shrinkToFit() {
ptrdiff_t bytes_reclaimed = _pool.squash();
if (bytes_reclaimed == 0)
return;
void* old_ptr = _pool.buffer();
void* new_ptr = this->reallocate(old_ptr, _pool.capacity());
ptrdiff_t ptr_offset =
static_cast<char*>(new_ptr) - static_cast<char*>(old_ptr);
_pool.movePointers(ptr_offset);
_data.movePointers(ptr_offset, ptr_offset - bytes_reclaimed);
}
bool garbageCollect() {
BasicJsonDocument tmp(*this);
if (!tmp.capacity())
return false;
tmp.set(*this);
moveAssignFrom(tmp);
return true;
}
using AllocatorOwner<TAllocator>::allocator;
private:
MemoryPool allocPool(size_t requiredSize) {
size_t capa = addPadding(requiredSize);
return MemoryPool(reinterpret_cast<char*>(this->allocate(capa)), capa);
}
void reallocPool(size_t requiredSize) {
size_t capa = addPadding(requiredSize);
if (capa == _pool.capacity())
return;
freePool();
replacePool(allocPool(addPadding(requiredSize)));
}
void freePool() {
this->deallocate(getPool()->buffer());
}
void copyAssignFrom(const JsonDocument& src) {
reallocPool(src.capacity());
set(src);
}
void moveAssignFrom(BasicJsonDocument& src) {
freePool();
_data = src._data;
_pool = src._pool;
src._data.setNull();
src._pool = MemoryPool(0, 0);
}
};
struct DefaultAllocator {
void* allocate(size_t size) {
return malloc(size);
}
void deallocate(void* ptr) {
free(ptr);
}
void* reallocate(void* ptr, size_t new_size) {
return realloc(ptr, new_size);
}
};
typedef BasicJsonDocument<DefaultAllocator> DynamicJsonDocument;
template <size_t desiredCapacity>
class StaticJsonDocument : public JsonDocument {
static const size_t _capacity =
AddPadding<Max<1, desiredCapacity>::value>::value;
public:
StaticJsonDocument() : JsonDocument(_buffer, _capacity) {}
StaticJsonDocument(const StaticJsonDocument& src)
: JsonDocument(_buffer, _capacity) {
set(src);
}
template <typename T>
StaticJsonDocument(
const T& src,
typename enable_if<is_convertible<T, JsonVariantConst>::value>::type* = 0)
: JsonDocument(_buffer, _capacity) {
set(src);
}
StaticJsonDocument(JsonVariant src) : JsonDocument(_buffer, _capacity) {
set(src);
}
StaticJsonDocument& operator=(const StaticJsonDocument& src) {
set(src);
return *this;
}
template <typename T>
StaticJsonDocument& operator=(const T& src) {
set(src);
return *this;
}
void garbageCollect() {
StaticJsonDocument tmp(*this);
set(tmp);
}
private:
char _buffer[_capacity];
};
inline JsonObject JsonArray::createNestedObject() const {
return add().to<JsonObject>();
}
template <typename TDerived>
inline JsonArray VariantRefBase<TDerived>::createNestedArray() const {
return add().template to<JsonArray>();
}
template <typename TDerived>
inline JsonObject VariantRefBase<TDerived>::createNestedObject() const {
return add().template to<JsonObject>();
}
template <typename TDerived>
inline ElementProxy<TDerived> VariantRefBase<TDerived>::operator[](
size_t index) const {
return ElementProxy<TDerived>(derived(), index);
}
template <typename T>
inline typename enable_if<!is_array<T>::value, bool>::type copyArray(
const T& src, JsonVariant dst) {
return dst.set(src);
}
template <typename T, size_t N, typename TDestination>
inline typename enable_if<!is_base_of<JsonDocument, TDestination>::value,
bool>::type
copyArray(T (&src)[N], const TDestination& dst) {
return copyArray(src, N, dst);
}
template <typename T, typename TDestination>
inline typename enable_if<!is_base_of<JsonDocument, TDestination>::value,
bool>::type
copyArray(const T* src, size_t len, const TDestination& dst) {
bool ok = true;
for (size_t i = 0; i < len; i++) {
ok &= copyArray(src[i], dst.add());
}
return ok;
}
template <typename TDestination>
inline bool copyArray(const char* src, size_t, const TDestination& dst) {
return dst.set(src);
}
template <typename T>
inline bool copyArray(const T& src, JsonDocument& dst) {
return copyArray(src, dst.to<JsonArray>());
}
template <typename T>
inline bool copyArray(const T* src, size_t len, JsonDocument& dst) {
return copyArray(src, len, dst.to<JsonArray>());
}
template <typename T>
inline typename enable_if<!is_array<T>::value, size_t>::type copyArray(
JsonVariantConst src, T& dst) {
dst = src.as<T>();
return 1;
}
template <typename T, size_t N>
inline size_t copyArray(JsonArrayConst src, T (&dst)[N]) {
return copyArray(src, dst, N);
}
template <typename T>
inline size_t copyArray(JsonArrayConst src, T* dst, size_t len) {
size_t i = 0;
for (JsonArrayConst::iterator it = src.begin(); it != src.end() && i < len;
++it)
copyArray(*it, dst[i++]);
return i;
}
template <size_t N>
inline size_t copyArray(JsonVariantConst src, char (&dst)[N]) {
JsonString s = src;
size_t len = N - 1;
if (len > s.size())
len = s.size();
memcpy(dst, s.c_str(), len);
dst[len] = 0;
return 1;
}
template <typename TSource, typename T>
inline typename enable_if<is_array<T>::value &&
is_base_of<JsonDocument, TSource>::value,
size_t>::type
copyArray(const TSource& src, T& dst) {
return copyArray(src.template as<JsonArrayConst>(), dst);
}
inline VariantSlot* CollectionData::addSlot(MemoryPool* pool) {
VariantSlot* slot = pool->allocVariant();
if (!slot)
return 0;
if (_tail) {
ARDUINOJSON_ASSERT(pool->owns(_tail)); // Can't alter a linked array/object
_tail->setNextNotNull(slot);
_tail = slot;
} else {
_head = slot;
_tail = slot;
}
slot->clear();
return slot;
}
inline VariantData* CollectionData::addElement(MemoryPool* pool) {
return slotData(addSlot(pool));
}
template <typename TAdaptedString>
inline VariantData* CollectionData::addMember(TAdaptedString key,
MemoryPool* pool) {
VariantSlot* slot = addSlot(pool);
if (!slotSetKey(slot, key, pool)) {
removeSlot(slot);
return 0;
}
return slot->data();
}
inline void CollectionData::clear() {
_head = 0;
_tail = 0;
}
template <typename TAdaptedString>
inline bool CollectionData::containsKey(const TAdaptedString& key) const {
return getSlot(key) != 0;
}
inline bool CollectionData::copyFrom(const CollectionData& src,
MemoryPool* pool) {
clear();
for (VariantSlot* s = src._head; s; s = s->next()) {
VariantData* var;
if (s->key() != 0) {
JsonString key(s->key(),
s->ownsKey() ? JsonString::Copied : JsonString::Linked);
var = addMember(adaptString(key), pool);
} else {
var = addElement(pool);
}
if (!var)
return false;
if (!var->copyFrom(*s->data(), pool))
return false;
}
return true;
}
template <typename TAdaptedString>
inline VariantSlot* CollectionData::getSlot(TAdaptedString key) const {
if (key.isNull())
return 0;
VariantSlot* slot = _head;
while (slot) {
if (stringEquals(key, adaptString(slot->key())))
break;
slot = slot->next();
}
return slot;
}
inline VariantSlot* CollectionData::getSlot(size_t index) const {
if (!_head)
return 0;
return _head->next(index);
}
inline VariantSlot* CollectionData::getPreviousSlot(VariantSlot* target) const {
VariantSlot* current = _head;
while (current) {
VariantSlot* next = current->next();
if (next == target)
return current;
current = next;
}
return 0;
}
template <typename TAdaptedString>
inline VariantData* CollectionData::getMember(TAdaptedString key) const {
VariantSlot* slot = getSlot(key);
return slot ? slot->data() : 0;
}
template <typename TAdaptedString>
inline VariantData* CollectionData::getOrAddMember(TAdaptedString key,
MemoryPool* pool) {
if (key.isNull())
return 0;
VariantSlot* slot = getSlot(key);
if (slot)
return slot->data();
return addMember(key, pool);
}
inline VariantData* CollectionData::getElement(size_t index) const {
VariantSlot* slot = getSlot(index);
return slot ? slot->data() : 0;
}
inline VariantData* CollectionData::getOrAddElement(size_t index,
MemoryPool* pool) {
VariantSlot* slot = _head;
while (slot && index > 0) {
slot = slot->next();
index--;
}
if (!slot)
index++;
while (index > 0) {
slot = addSlot(pool);
index--;
}
return slotData(slot);
}
inline void CollectionData::removeSlot(VariantSlot* slot) {
if (!slot)
return;
VariantSlot* prev = getPreviousSlot(slot);
VariantSlot* next = slot->next();
if (prev)
prev->setNext(next);
else
_head = next;
if (!next)
_tail = prev;
}
inline void CollectionData::removeElement(size_t index) {
removeSlot(getSlot(index));
}
inline size_t CollectionData::memoryUsage() const {
size_t total = 0;
for (VariantSlot* s = _head; s; s = s->next()) {
total += sizeof(VariantSlot) + s->data()->memoryUsage();
if (s->ownsKey())
total += strlen(s->key()) + 1;
}
return total;
}
inline size_t CollectionData::size() const {
return slotSize(_head);
}
template <typename T>
inline void movePointer(T*& p, ptrdiff_t offset) {
if (!p)
return;
p = reinterpret_cast<T*>(
reinterpret_cast<void*>(reinterpret_cast<char*>(p) + offset));
ARDUINOJSON_ASSERT(isAligned(p));
}
inline void CollectionData::movePointers(ptrdiff_t stringDistance,
ptrdiff_t variantDistance) {
movePointer(_head, variantDistance);
movePointer(_tail, variantDistance);
for (VariantSlot* slot = _head; slot; slot = slot->next())
slot->movePointers(stringDistance, variantDistance);
}
template <typename TString>
inline JsonArray JsonObject::createNestedArray(const TString& key) const {
return operator[](key).template to<JsonArray>();
}
template <typename TChar>
inline JsonArray JsonObject::createNestedArray(TChar* key) const {
return operator[](key).template to<JsonArray>();
}
template <typename TDerived>
template <typename TString>
inline JsonArray VariantRefBase<TDerived>::createNestedArray(
const TString& key) const {
return operator[](key).template to<JsonArray>();
}
template <typename TDerived>
template <typename TChar>
inline JsonArray VariantRefBase<TDerived>::createNestedArray(TChar* key) const {
return operator[](key).template to<JsonArray>();
}
template <typename TDerived>
template <typename TString>
inline JsonObject VariantRefBase<TDerived>::createNestedObject(
const TString& key) const {
return operator[](key).template to<JsonObject>();
}
template <typename TDerived>
template <typename TChar>
inline JsonObject VariantRefBase<TDerived>::createNestedObject(
TChar* key) const {
return operator[](key).template to<JsonObject>();
}
template <typename TDerived>
template <typename TString>
inline typename enable_if<IsString<TString>::value, bool>::type
VariantRefBase<TDerived>::containsKey(const TString& key) const {
return variantGetMember(VariantAttorney::getData(derived()),
adaptString(key)) != 0;
}
template <typename TDerived>
template <typename TChar>
inline typename enable_if<IsString<TChar*>::value, bool>::type
VariantRefBase<TDerived>::containsKey(TChar* key) const {
return variantGetMember(VariantAttorney::getData(derived()),
adaptString(key)) != 0;
}
template <typename TDerived>
template <typename TString>
inline typename enable_if<IsString<TString*>::value,
MemberProxy<TDerived, TString*> >::type
VariantRefBase<TDerived>::operator[](TString* key) const {
return MemberProxy<TDerived, TString*>(derived(), key);
}
template <typename TDerived>
template <typename TString>
inline typename enable_if<IsString<TString>::value,
MemberProxy<TDerived, TString> >::type
VariantRefBase<TDerived>::operator[](const TString& key) const {
return MemberProxy<TDerived, TString>(derived(), key);
}
class EscapeSequence {
public:
static char escapeChar(char c) {
const char* p = escapeTable(true);
while (p[0] && p[1] != c) {
p += 2;
}
return p[0];
}
static char unescapeChar(char c) {
const char* p = escapeTable(false);
for (;;) {
if (p[0] == '\0')
return 0;
if (p[0] == c)
return p[1];
p += 2;
}
}
private:
static const char* escapeTable(bool excludeSolidus) {
return &"//\"\"\\\\b\bf\fn\nr\rt\t"[excludeSolidus ? 2 : 0];
}
};
template <typename TFloat>
struct FloatParts {
uint32_t integral;
uint32_t decimal;
int16_t exponent;
int8_t decimalPlaces;
FloatParts(TFloat value) {
uint32_t maxDecimalPart = sizeof(TFloat) >= 8 ? 1000000000 : 1000000;
decimalPlaces = sizeof(TFloat) >= 8 ? 9 : 6;
exponent = normalize(value);
integral = uint32_t(value);
for (uint32_t tmp = integral; tmp >= 10; tmp /= 10) {
maxDecimalPart /= 10;
decimalPlaces--;
}
TFloat remainder = (value - TFloat(integral)) * TFloat(maxDecimalPart);
decimal = uint32_t(remainder);
remainder = remainder - TFloat(decimal);
decimal += uint32_t(remainder * 2);
if (decimal >= maxDecimalPart) {
decimal = 0;
integral++;
if (exponent && integral >= 10) {
exponent++;
integral = 1;
}
}
while (decimal % 10 == 0 && decimalPlaces > 0) {
decimal /= 10;
decimalPlaces--;
}
}
static int16_t normalize(TFloat& value) {
typedef FloatTraits<TFloat> traits;
int16_t powersOf10 = 0;
int8_t index = sizeof(TFloat) == 8 ? 8 : 5;
int bit = 1 << index;
if (value >= ARDUINOJSON_POSITIVE_EXPONENTIATION_THRESHOLD) {
for (; index >= 0; index--) {
if (value >= traits::positiveBinaryPowerOfTen(index)) {
value *= traits::negativeBinaryPowerOfTen(index);
powersOf10 = int16_t(powersOf10 + bit);
}
bit >>= 1;
}
}
if (value > 0 && value <= ARDUINOJSON_NEGATIVE_EXPONENTIATION_THRESHOLD) {
for (; index >= 0; index--) {
if (value < traits::negativeBinaryPowerOfTenPlusOne(index)) {
value *= traits::positiveBinaryPowerOfTen(index);
powersOf10 = int16_t(powersOf10 - bit);
}
bit >>= 1;
}
}
return powersOf10;
}
};
template <typename TWriter>
class CountingDecorator {
public:
explicit CountingDecorator(TWriter& writer) : _writer(writer), _count(0) {}
void write(uint8_t c) {
_count += _writer.write(c);
}
void write(const uint8_t* s, size_t n) {
_count += _writer.write(s, n);
}
size_t count() const {
return _count;
}
private:
TWriter _writer;
size_t _count;
};
template <typename TWriter>
class TextFormatter {
public:
explicit TextFormatter(TWriter writer) : _writer(writer) {}
size_t bytesWritten() const {
return _writer.count();
}
void writeBoolean(bool value) {
if (value)
writeRaw("true");
else
writeRaw("false");
}
void writeString(const char* value) {
ARDUINOJSON_ASSERT(value != NULL);
writeRaw('\"');
while (*value)
writeChar(*value++);
writeRaw('\"');
}
void writeString(const char* value, size_t n) {
ARDUINOJSON_ASSERT(value != NULL);
writeRaw('\"');
while (n--)
writeChar(*value++);
writeRaw('\"');
}
void writeChar(char c) {
char specialChar = EscapeSequence::escapeChar(c);
if (specialChar) {
writeRaw('\\');
writeRaw(specialChar);
} else if (c) {
writeRaw(c);
} else {
writeRaw("\\u0000");
}
}
template <typename T>
void writeFloat(T value) {
if (isnan(value))
return writeRaw(ARDUINOJSON_ENABLE_NAN ? "NaN" : "null");
#if ARDUINOJSON_ENABLE_INFINITY
if (value < 0.0) {
writeRaw('-');
value = -value;
}
if (isinf(value))
return writeRaw("Infinity");
#else
if (isinf(value))
return writeRaw("null");
if (value < 0.0) {
writeRaw('-');
value = -value;
}
#endif
FloatParts<T> parts(value);
writeInteger(parts.integral);
if (parts.decimalPlaces)
writeDecimals(parts.decimal, parts.decimalPlaces);
if (parts.exponent) {
writeRaw('e');
writeInteger(parts.exponent);
}
}
template <typename T>
typename enable_if<is_signed<T>::value>::type writeInteger(T value) {
typedef typename make_unsigned<T>::type unsigned_type;
unsigned_type unsigned_value;
if (value < 0) {
writeRaw('-');
unsigned_value = unsigned_type(unsigned_type(~value) + 1);
} else {
unsigned_value = unsigned_type(value);
}
writeInteger(unsigned_value);
}
template <typename T>
typename enable_if<is_unsigned<T>::value>::type writeInteger(T value) {
char buffer[22];
char* end = buffer + sizeof(buffer);
char* begin = end;
do {
*--begin = char(value % 10 + '0');
value = T(value / 10);
} while (value);
writeRaw(begin, end);
}
void writeDecimals(uint32_t value, int8_t width) {
char buffer[16];
char* end = buffer + sizeof(buffer);
char* begin = end;
while (width--) {
*--begin = char(value % 10 + '0');
value /= 10;
}
*--begin = '.';
writeRaw(begin, end);
}
void writeRaw(const char* s) {
_writer.write(reinterpret_cast<const uint8_t*>(s), strlen(s));
}
void writeRaw(const char* s, size_t n) {
_writer.write(reinterpret_cast<const uint8_t*>(s), n);
}
void writeRaw(const char* begin, const char* end) {
_writer.write(reinterpret_cast<const uint8_t*>(begin),
static_cast<size_t>(end - begin));
}
template <size_t N>
void writeRaw(const char (&s)[N]) {
_writer.write(reinterpret_cast<const uint8_t*>(s), N - 1);
}
void writeRaw(char c) {
_writer.write(static_cast<uint8_t>(c));
}
protected:
CountingDecorator<TWriter> _writer;
private:
TextFormatter& operator=(const TextFormatter&); // cannot be assigned
};
class DummyWriter {
public:
size_t write(uint8_t) {
return 1;
}
size_t write(const uint8_t*, size_t n) {
return n;
}
};
template <template <typename> class TSerializer>
size_t measure(JsonVariantConst source) {
DummyWriter dp;
TSerializer<DummyWriter> serializer(dp);
return variantAccept(VariantAttorney::getData(source), serializer);
}
template <typename TDestination, typename Enable = void>
class Writer {
public:
explicit Writer(TDestination& dest) : _dest(&dest) {}
size_t write(uint8_t c) {
return _dest->write(c);
}
size_t write(const uint8_t* s, size_t n) {
return _dest->write(s, n);
}
private:
TDestination* _dest;
};
class StaticStringWriter {
public:
StaticStringWriter(char* buf, size_t size) : end(buf + size), p(buf) {}
size_t write(uint8_t c) {
if (p >= end)
return 0;
*p++ = static_cast<char>(c);
return 1;
}
size_t write(const uint8_t* s, size_t n) {
char* begin = p;
while (p < end && n > 0) {
*p++ = static_cast<char>(*s++);
n--;
}
return size_t(p - begin);
}
private:
char* end;
char* p;
};
} // namespace ARDUINOJSON_NAMESPACE
#if ARDUINOJSON_ENABLE_STD_STRING
namespace ARDUINOJSON_NAMESPACE {
template <class T>
struct is_std_string : false_type {};
template <class TCharTraits, class TAllocator>
struct is_std_string<std::basic_string<char, TCharTraits, TAllocator> >
: true_type {};
template <typename TDestination>
class Writer<TDestination,
typename enable_if<is_std_string<TDestination>::value>::type> {
public:
Writer(TDestination& str) : _str(&str) {}
size_t write(uint8_t c) {
_str->operator+=(static_cast<char>(c));
return 1;
}
size_t write(const uint8_t* s, size_t n) {
_str->append(reinterpret_cast<const char*>(s), n);
return n;
}
private:
TDestination* _str;
};
} // namespace ARDUINOJSON_NAMESPACE
#endif
#if ARDUINOJSON_ENABLE_ARDUINO_STRING
namespace ARDUINOJSON_NAMESPACE {
template <>
class Writer< ::String, void> {
static const size_t bufferCapacity = ARDUINOJSON_STRING_BUFFER_SIZE;
public:
explicit Writer(::String& str) : _destination(&str) {
_size = 0;
}
~Writer() {
flush();
}
size_t write(uint8_t c) {
if (_size + 1 >= bufferCapacity)
if (flush() != 0)
return 0;
_buffer[_size++] = static_cast<char>(c);
return 1;
}
size_t write(const uint8_t* s, size_t n) {
for (size_t i = 0; i < n; i++) {
write(s[i]);
}
return n;
}
size_t flush() {
ARDUINOJSON_ASSERT(_size < bufferCapacity);
_buffer[_size] = 0;
if (_destination->concat(_buffer))
_size = 0;
return _size;
}
private:
::String* _destination;
char _buffer[bufferCapacity];
size_t _size;
};
} // namespace ARDUINOJSON_NAMESPACE
#endif
#if ARDUINOJSON_ENABLE_STD_STREAM
namespace ARDUINOJSON_NAMESPACE {
template <typename TDestination>
class Writer<
TDestination,
typename enable_if<is_base_of<std::ostream, TDestination>::value>::type> {
public:
explicit Writer(std::ostream& os) : _os(&os) {}
size_t write(uint8_t c) {
_os->put(static_cast<char>(c));
return 1;
}
size_t write(const uint8_t* s, size_t n) {
_os->write(reinterpret_cast<const char*>(s),
static_cast<std::streamsize>(n));
return n;
}
private:
std::ostream* _os;
};
} // namespace ARDUINOJSON_NAMESPACE
#endif
#if ARDUINOJSON_ENABLE_ARDUINO_PRINT
namespace ARDUINOJSON_NAMESPACE {
template <typename TDestination>
class Writer<
TDestination,
typename enable_if<is_base_of< ::Print, TDestination>::value>::type> {
public:
explicit Writer(::Print& print) : _print(&print) {}
size_t write(uint8_t c) {
return _print->write(c);
}
size_t write(const uint8_t* s, size_t n) {
return _print->write(s, n);
}
private:
::Print* _print;
};
} // namespace ARDUINOJSON_NAMESPACE
#endif
namespace ARDUINOJSON_NAMESPACE {
template <template <typename> class TSerializer, typename TWriter>
size_t doSerialize(JsonVariantConst source, TWriter writer) {
TSerializer<TWriter> serializer(writer);
return variantAccept(VariantAttorney::getData(source), serializer);
}
template <template <typename> class TSerializer, typename TDestination>
size_t serialize(JsonVariantConst source, TDestination& destination) {
Writer<TDestination> writer(destination);
return doSerialize<TSerializer>(source, writer);
}
template <template <typename> class TSerializer>
typename enable_if<!TSerializer<StaticStringWriter>::producesText, size_t>::type
serialize(JsonVariantConst source, void* buffer, size_t bufferSize) {
StaticStringWriter writer(reinterpret_cast<char*>(buffer), bufferSize);
return doSerialize<TSerializer>(source, writer);
}
template <template <typename> class TSerializer>
typename enable_if<TSerializer<StaticStringWriter>::producesText, size_t>::type
serialize(JsonVariantConst source, void* buffer, size_t bufferSize) {
StaticStringWriter writer(reinterpret_cast<char*>(buffer), bufferSize);
size_t n = doSerialize<TSerializer>(source, writer);
if (n < bufferSize)
reinterpret_cast<char*>(buffer)[n] = 0;
return n;
}
template <template <typename> class TSerializer, typename TChar, size_t N>
typename enable_if<IsChar<TChar>::value, size_t>::type serialize(
JsonVariantConst source, TChar (&buffer)[N]) {
return serialize<TSerializer>(source, buffer, N);
}
template <typename TWriter>
class JsonSerializer : public Visitor<size_t> {
public:
static const bool producesText = true;
JsonSerializer(TWriter writer) : _formatter(writer) {}
FORCE_INLINE size_t visitArray(const CollectionData& array) {
write('[');
const VariantSlot* slot = array.head();
while (slot != 0) {
slot->data()->accept(*this);
slot = slot->next();
if (slot == 0)
break;
write(',');
}
write(']');
return bytesWritten();
}
size_t visitObject(const CollectionData& object) {
write('{');
const VariantSlot* slot = object.head();
while (slot != 0) {
_formatter.writeString(slot->key());
write(':');
slot->data()->accept(*this);
slot = slot->next();
if (slot == 0)
break;
write(',');
}
write('}');
return bytesWritten();
}
size_t visitFloat(JsonFloat value) {
_formatter.writeFloat(value);
return bytesWritten();
}
size_t visitString(const char* value) {
_formatter.writeString(value);
return bytesWritten();
}
size_t visitString(const char* value, size_t n) {
_formatter.writeString(value, n);
return bytesWritten();
}
size_t visitRawJson(const char* data, size_t n) {
_formatter.writeRaw(data, n);
return bytesWritten();
}
size_t visitSignedInteger(JsonInteger value) {
_formatter.writeInteger(value);
return bytesWritten();
}
size_t visitUnsignedInteger(JsonUInt value) {
_formatter.writeInteger(value);
return bytesWritten();
}
size_t visitBoolean(bool value) {
_formatter.writeBoolean(value);
return bytesWritten();
}
size_t visitNull() {
_formatter.writeRaw("null");
return bytesWritten();
}
protected:
size_t bytesWritten() const {
return _formatter.bytesWritten();
}
void write(char c) {
_formatter.writeRaw(c);
}
void write(const char* s) {
_formatter.writeRaw(s);
}
private:
TextFormatter<TWriter> _formatter;
};
template <typename TDestination>
size_t serializeJson(JsonVariantConst source, TDestination& destination) {
return serialize<JsonSerializer>(source, destination);
}
inline size_t serializeJson(JsonVariantConst source, void* buffer,
size_t bufferSize) {
return serialize<JsonSerializer>(source, buffer, bufferSize);
}
inline size_t measureJson(JsonVariantConst source) {
return measure<JsonSerializer>(source);
}
#if ARDUINOJSON_ENABLE_STD_STREAM
template <typename T>
inline typename enable_if<is_convertible<T, JsonVariantConst>::value,
std::ostream&>::type
operator<<(std::ostream& os, const T& source) {
serializeJson(source, os);
return os;
}
#endif
template <typename T, typename Enable>
struct Converter {
static void toJson(const T& src, JsonVariant dst) {
convertToJson(src, dst); // Error here? See https://arduinojson.org/v6/unsupported-set/
}
static T fromJson(JsonVariantConst src) {
T result; // Error here? See https://arduinojson.org/v6/non-default-constructible/
convertFromJson(src, result); // Error here? See https://arduinojson.org/v6/unsupported-as/
return result;
}
static bool checkJson(JsonVariantConst src) {
T dummy = T();
return canConvertFromJson(src, dummy); // Error here? See https://arduinojson.org/v6/unsupported-is/
}
};
template <typename T>
struct Converter<
T, typename enable_if<is_integral<T>::value && !is_same<bool, T>::value &&
!is_same<char, T>::value>::type>
: private VariantAttorney {
static void toJson(T src, JsonVariant dst) {
VariantData* data = getData(dst);
ARDUINOJSON_ASSERT_INTEGER_TYPE_IS_SUPPORTED(T);
if (data)
data->setInteger(src);
}
static T fromJson(JsonVariantConst src) {
ARDUINOJSON_ASSERT_INTEGER_TYPE_IS_SUPPORTED(T);
const VariantData* data = getData(src);
return data ? data->asIntegral<T>() : T();
}
static bool checkJson(JsonVariantConst src) {
const VariantData* data = getData(src);
return data && data->isInteger<T>();
}
};
template <typename T>
struct Converter<T, typename enable_if<is_enum<T>::value>::type>
: private VariantAttorney {
static void toJson(T src, JsonVariant dst) {
dst.set(static_cast<JsonInteger>(src));
}
static T fromJson(JsonVariantConst src) {
const VariantData* data = getData(src);
return data ? static_cast<T>(data->asIntegral<int>()) : T();
}
static bool checkJson(JsonVariantConst src) {
const VariantData* data = getData(src);
return data && data->isInteger<int>();
}
};
template <>
struct Converter<bool> : private VariantAttorney {
static void toJson(bool src, JsonVariant dst) {
VariantData* data = getData(dst);
if (data)
data->setBoolean(src);
}
static bool fromJson(JsonVariantConst src) {
const VariantData* data = getData(src);
return data ? data->asBoolean() : false;
}
static bool checkJson(JsonVariantConst src) {
const VariantData* data = getData(src);
return data && data->isBoolean();
}
};
template <typename T>
struct Converter<T, typename enable_if<is_floating_point<T>::value>::type>
: private VariantAttorney {
static void toJson(T src, JsonVariant dst) {
VariantData* data = getData(dst);
if (data)
data->setFloat(static_cast<JsonFloat>(src));
}
static T fromJson(JsonVariantConst src) {
const VariantData* data = getData(src);
return data ? data->asFloat<T>() : 0;
}
static bool checkJson(JsonVariantConst src) {
const VariantData* data = getData(src);
return data && data->isFloat();
}
};
template <>
struct Converter<const char*> : private VariantAttorney {
static void toJson(const char* src, JsonVariant dst) {
variantSetString(getData(dst), adaptString(src), getPool(dst));
}
static const char* fromJson(JsonVariantConst src) {
const VariantData* data = getData(src);
return data ? data->asString().c_str() : 0;
}
static bool checkJson(JsonVariantConst src) {
const VariantData* data = getData(src);
return data && data->isString();
}
};
template <>
struct Converter<JsonString> : private VariantAttorney {
static void toJson(JsonString src, JsonVariant dst) {
variantSetString(getData(dst), adaptString(src), getPool(dst));
}
static JsonString fromJson(JsonVariantConst src) {
const VariantData* data = getData(src);
return data ? data->asString() : 0;
}
static bool checkJson(JsonVariantConst src) {
const VariantData* data = getData(src);
return data && data->isString();
}
};
template <typename T>
inline typename enable_if<IsString<T>::value, bool>::type convertToJson(
const T& src, JsonVariant dst) {
VariantData* data = VariantAttorney::getData(dst);
MemoryPool* pool = VariantAttorney::getPool(dst);
return variantSetString(data, adaptString(src), pool);
}
template <>
struct Converter<SerializedValue<const char*> > {
static void toJson(SerializedValue<const char*> src, JsonVariant dst) {
VariantData* data = VariantAttorney::getData(dst);
if (data)
data->setLinkedRaw(src);
}
};
template <typename T>
struct Converter<SerializedValue<T>,
typename enable_if<!is_same<const char*, T>::value>::type>
: private VariantAttorney {
static void toJson(SerializedValue<T> src, JsonVariant dst) {
VariantData* data = getData(dst);
MemoryPool* pool = getPool(dst);
if (data)
data->storeOwnedRaw(src, pool);
}
};
#if ARDUINOJSON_HAS_NULLPTR
template <>
struct Converter<decltype(nullptr)> : private VariantAttorney {
static void toJson(decltype(nullptr), JsonVariant dst) {
variantSetNull(getData(dst));
}
static decltype(nullptr) fromJson(JsonVariantConst) {
return nullptr;
}
static bool checkJson(JsonVariantConst src) {
const VariantData* data = getData(src);
return data == 0 || data->isNull();
}
};
#endif
#if ARDUINOJSON_ENABLE_ARDUINO_STREAM
class MemoryPoolPrint : public Print {
public:
MemoryPoolPrint(MemoryPool* pool) : _pool(pool), _size(0) {
pool->getFreeZone(&_string, &_capacity);
}
JsonString str() {
ARDUINOJSON_ASSERT(_size < _capacity);
return JsonString(_pool->saveStringFromFreeZone(_size), _size,
JsonString::Copied);
}
size_t write(uint8_t c) {
if (_size >= _capacity)
return 0;
_string[_size++] = char(c);
return 1;
}
size_t write(const uint8_t* buffer, size_t size) {
if (_size + size >= _capacity) {
_size = _capacity; // mark as overflowed
return 0;
}
memcpy(&_string[_size], buffer, size);
_size += size;
return size;
}
bool overflowed() const {
return _size >= _capacity;
}
private:
MemoryPool* _pool;
size_t _size;
char* _string;
size_t _capacity;
};
inline void convertToJson(const ::Printable& src, JsonVariant dst) {
MemoryPool* pool = VariantAttorney::getPool(dst);
VariantData* data = VariantAttorney::getData(dst);
if (!pool || !data)
return;
MemoryPoolPrint print(pool);
src.printTo(print);
if (print.overflowed()) {
pool->markAsOverflowed();
data->setNull();
return;
}
data->setString(print.str());
}
#endif
#if ARDUINOJSON_ENABLE_ARDUINO_STRING
inline void convertFromJson(JsonVariantConst src, ::String& dst) {
JsonString str = src.as<JsonString>();
if (str)
dst = str.c_str();
else
serializeJson(src, dst);
}
inline bool canConvertFromJson(JsonVariantConst src, const ::String&) {
return src.is<JsonString>();
}
#endif
#if ARDUINOJSON_ENABLE_STD_STRING
inline void convertFromJson(JsonVariantConst src, std::string& dst) {
JsonString str = src.as<JsonString>();
if (str)
dst.assign(str.c_str(), str.size());
else
serializeJson(src, dst);
}
inline bool canConvertFromJson(JsonVariantConst src, const std::string&) {
return src.is<JsonString>();
}
#endif
#if ARDUINOJSON_ENABLE_STRING_VIEW
inline void convertFromJson(JsonVariantConst src, std::string_view& dst) {
JsonString str = src.as<JsonString>();
if (str) // the standard doesn't allow passing null to the constructor
dst = std::string_view(str.c_str(), str.size());
}
inline bool canConvertFromJson(JsonVariantConst src, const std::string_view&) {
return src.is<JsonString>();
}
#endif
template <typename T>
struct ConverterNeedsWriteableRef {
protected: // <- to avoid GCC's "all member functions in class are private"
static int probe(T (*f)(JsonVariant));
static char probe(T (*f)(JsonVariantConst));
public:
static const bool value =
sizeof(probe(Converter<T>::fromJson)) == sizeof(int);
};
class CollectionData;
struct ComparerBase : Visitor<CompareResult> {};
template <typename T, typename Enable = void>
struct Comparer;
template <typename T>
struct Comparer<T, typename enable_if<IsString<T>::value>::type>
: ComparerBase {
T rhs; // TODO: store adapted string?
explicit Comparer(T value) : rhs(value) {}
CompareResult visitString(const char* lhs, size_t n) {
int i = stringCompare(adaptString(rhs), adaptString(lhs, n));
if (i < 0)
return COMPARE_RESULT_GREATER;
else if (i > 0)
return COMPARE_RESULT_LESS;
else
return COMPARE_RESULT_EQUAL;
}
CompareResult visitNull() {
if (adaptString(rhs).isNull())
return COMPARE_RESULT_EQUAL;
else
return COMPARE_RESULT_DIFFER;
}
};
template <typename T>
struct Comparer<T, typename enable_if<is_integral<T>::value ||
is_floating_point<T>::value>::type>
: ComparerBase {
T rhs;
explicit Comparer(T value) : rhs(value) {}
CompareResult visitFloat(JsonFloat lhs) {
return arithmeticCompare(lhs, rhs);
}
CompareResult visitSignedInteger(JsonInteger lhs) {
return arithmeticCompare(lhs, rhs);
}
CompareResult visitUnsignedInteger(JsonUInt lhs) {
return arithmeticCompare(lhs, rhs);
}
CompareResult visitBoolean(bool lhs) {
return visitUnsignedInteger(static_cast<JsonUInt>(lhs));
}
};
struct NullComparer : ComparerBase {
CompareResult visitNull() {
return COMPARE_RESULT_EQUAL;
}
};
#if ARDUINOJSON_HAS_NULLPTR
template <>
struct Comparer<decltype(nullptr), void> : NullComparer {
explicit Comparer(decltype(nullptr)) : NullComparer() {}
};
#endif
struct ArrayComparer : ComparerBase {
const CollectionData* _rhs;
explicit ArrayComparer(const CollectionData& rhs) : _rhs(&rhs) {}
CompareResult visitArray(const CollectionData& lhs) {
if (JsonArrayConst(&lhs) == JsonArrayConst(_rhs))
return COMPARE_RESULT_EQUAL;
else
return COMPARE_RESULT_DIFFER;
}
};
struct ObjectComparer : ComparerBase {
const CollectionData* _rhs;
explicit ObjectComparer(const CollectionData& rhs) : _rhs(&rhs) {}
CompareResult visitObject(const CollectionData& lhs) {
if (JsonObjectConst(&lhs) == JsonObjectConst(_rhs))
return COMPARE_RESULT_EQUAL;
else
return COMPARE_RESULT_DIFFER;
}
};
struct RawComparer : ComparerBase {
const char* _rhsData;
size_t _rhsSize;
explicit RawComparer(const char* rhsData, size_t rhsSize)
: _rhsData(rhsData), _rhsSize(rhsSize) {}
CompareResult visitRawJson(const char* lhsData, size_t lhsSize) {
size_t size = _rhsSize < lhsSize ? _rhsSize : lhsSize;
int n = memcmp(lhsData, _rhsData, size);
if (n < 0)
return COMPARE_RESULT_LESS;
else if (n > 0)
return COMPARE_RESULT_GREATER;
else
return COMPARE_RESULT_EQUAL;
}
};
struct VariantComparer : ComparerBase {
const VariantData* rhs;
explicit VariantComparer(const VariantData* value) : rhs(value) {}
CompareResult visitArray(const CollectionData& lhs) {
ArrayComparer comparer(lhs);
return accept(comparer);
}
CompareResult visitObject(const CollectionData& lhs) {
ObjectComparer comparer(lhs);
return accept(comparer);
}
CompareResult visitFloat(JsonFloat lhs) {
Comparer<JsonFloat> comparer(lhs);
return accept(comparer);
}
CompareResult visitString(const char* lhs, size_t) {
Comparer<const char*> comparer(lhs);
return accept(comparer);
}
CompareResult visitRawJson(const char* lhsData, size_t lhsSize) {
RawComparer comparer(lhsData, lhsSize);
return accept(comparer);
}
CompareResult visitSignedInteger(JsonInteger lhs) {
Comparer<JsonInteger> comparer(lhs);
return accept(comparer);
}
CompareResult visitUnsignedInteger(JsonUInt lhs) {
Comparer<JsonUInt> comparer(lhs);
return accept(comparer);
}
CompareResult visitBoolean(bool lhs) {
Comparer<bool> comparer(lhs);
return accept(comparer);
}
CompareResult visitNull() {
NullComparer comparer;
return accept(comparer);
}
private:
template <typename TComparer>
CompareResult accept(TComparer& comparer) {
CompareResult reversedResult = variantAccept(rhs, comparer);
switch (reversedResult) {
case COMPARE_RESULT_GREATER:
return COMPARE_RESULT_LESS;
case COMPARE_RESULT_LESS:
return COMPARE_RESULT_GREATER;
default:
return reversedResult;
}
}
};
template <typename T>
struct Comparer<
T, typename enable_if<is_convertible<T, JsonVariantConst>::value>::type>
: VariantComparer {
explicit Comparer(const T& value)
: VariantComparer(VariantAttorney::getData(value)) {}
};
template <typename T>
CompareResult compare(JsonVariantConst lhs, const T& rhs) {
Comparer<T> comparer(rhs);
return variantAccept(VariantAttorney::getData(lhs), comparer);
}
#ifndef isdigit
inline bool isdigit(char c) {
return '0' <= c && c <= '9';
}
#endif
inline bool issign(char c) {
return '-' == c || c == '+';
}
template <typename A, typename B>
struct choose_largest : conditional<(sizeof(A) > sizeof(B)), A, B> {};
inline bool parseNumber(const char* s, VariantData& result) {
typedef FloatTraits<JsonFloat> traits;
typedef choose_largest<traits::mantissa_type, JsonUInt>::type mantissa_t;
typedef traits::exponent_type exponent_t;
ARDUINOJSON_ASSERT(s != 0);
bool is_negative = false;
switch (*s) {
case '-':
is_negative = true;
s++;
break;
case '+':
s++;
break;
}
#if ARDUINOJSON_ENABLE_NAN
if (*s == 'n' || *s == 'N') {
result.setFloat(traits::nan());
return true;
}
#endif
#if ARDUINOJSON_ENABLE_INFINITY
if (*s == 'i' || *s == 'I') {
result.setFloat(is_negative ? -traits::inf() : traits::inf());
return true;
}
#endif
if (!isdigit(*s) && *s != '.')
return false;
mantissa_t mantissa = 0;
exponent_t exponent_offset = 0;
const mantissa_t maxUint = JsonUInt(-1);
while (isdigit(*s)) {
uint8_t digit = uint8_t(*s - '0');
if (mantissa > maxUint / 10)
break;
mantissa *= 10;
if (mantissa > maxUint - digit)
break;
mantissa += digit;
s++;
}
if (*s == '\0') {
if (is_negative) {
const mantissa_t sintMantissaMax = mantissa_t(1)
<< (sizeof(JsonInteger) * 8 - 1);
if (mantissa <= sintMantissaMax) {
result.setInteger(JsonInteger(~mantissa + 1));
return true;
}
} else {
result.setInteger(JsonUInt(mantissa));
return true;
}
}
while (mantissa > traits::mantissa_max) {
mantissa /= 10;
exponent_offset++;
}
while (isdigit(*s)) {
exponent_offset++;
s++;
}
if (*s == '.') {
s++;
while (isdigit(*s)) {
if (mantissa < traits::mantissa_max / 10) {
mantissa = mantissa * 10 + uint8_t(*s - '0');
exponent_offset--;
}
s++;
}
}
int exponent = 0;
if (*s == 'e' || *s == 'E') {
s++;
bool negative_exponent = false;
if (*s == '-') {
negative_exponent = true;
s++;
} else if (*s == '+') {
s++;
}
while (isdigit(*s)) {
exponent = exponent * 10 + (*s - '0');
if (exponent + exponent_offset > traits::exponent_max) {
if (negative_exponent)
result.setFloat(is_negative ? -0.0f : 0.0f);
else
result.setFloat(is_negative ? -traits::inf() : traits::inf());
return true;
}
s++;
}
if (negative_exponent)
exponent = -exponent;
}
exponent += exponent_offset;
if (*s != '\0')
return false;
JsonFloat final_result =
traits::make_float(static_cast<JsonFloat>(mantissa), exponent);
result.setFloat(is_negative ? -final_result : final_result);
return true;
}
template <typename T>
inline T parseNumber(const char* s) {
VariantData value;
value.init(); // VariantData is a POD, so it has no constructor
parseNumber(s, value);
return Converter<T>::fromJson(JsonVariantConst(&value));
}
template <typename T>
inline T VariantData::asIntegral() const {
switch (type()) {
case VALUE_IS_BOOLEAN:
return _content.asBoolean;
case VALUE_IS_UNSIGNED_INTEGER:
return convertNumber<T>(_content.asUnsignedInteger);
case VALUE_IS_SIGNED_INTEGER:
return convertNumber<T>(_content.asSignedInteger);
case VALUE_IS_LINKED_STRING:
case VALUE_IS_OWNED_STRING:
return parseNumber<T>(_content.asString.data);
case VALUE_IS_FLOAT:
return convertNumber<T>(_content.asFloat);
default:
return 0;
}
}
inline bool VariantData::asBoolean() const {
switch (type()) {
case VALUE_IS_BOOLEAN:
return _content.asBoolean;
case VALUE_IS_SIGNED_INTEGER:
case VALUE_IS_UNSIGNED_INTEGER:
return _content.asUnsignedInteger != 0;
case VALUE_IS_FLOAT:
return _content.asFloat != 0;
case VALUE_IS_NULL:
return false;
default:
return true;
}
}
template <typename T>
inline T VariantData::asFloat() const {
switch (type()) {
case VALUE_IS_BOOLEAN:
return static_cast<T>(_content.asBoolean);
case VALUE_IS_UNSIGNED_INTEGER:
return static_cast<T>(_content.asUnsignedInteger);
case VALUE_IS_SIGNED_INTEGER:
return static_cast<T>(_content.asSignedInteger);
case VALUE_IS_LINKED_STRING:
case VALUE_IS_OWNED_STRING:
return parseNumber<T>(_content.asString.data);
case VALUE_IS_FLOAT:
return static_cast<T>(_content.asFloat);
default:
return 0;
}
}
inline JsonString VariantData::asString() const {
switch (type()) {
case VALUE_IS_LINKED_STRING:
return JsonString(_content.asString.data, _content.asString.size,
JsonString::Linked);
case VALUE_IS_OWNED_STRING:
return JsonString(_content.asString.data, _content.asString.size,
JsonString::Copied);
default:
return JsonString();
}
}
inline bool VariantData::copyFrom(const VariantData& src, MemoryPool* pool) {
switch (src.type()) {
case VALUE_IS_ARRAY:
return toArray().copyFrom(src._content.asCollection, pool);
case VALUE_IS_OBJECT:
return toObject().copyFrom(src._content.asCollection, pool);
case VALUE_IS_OWNED_STRING: {
JsonString value = src.asString();
return setString(adaptString(value), pool);
}
case VALUE_IS_OWNED_RAW:
return storeOwnedRaw(
serialized(src._content.asString.data, src._content.asString.size),
pool);
default:
setType(src.type());
_content = src._content;
return true;
}
}
template <typename TDerived>
inline JsonVariant VariantRefBase<TDerived>::add() const {
return JsonVariant(getPool(),
variantAddElement(getOrCreateData(), getPool()));
}
template <typename TDerived>
inline JsonVariant VariantRefBase<TDerived>::getVariant() const {
return JsonVariant(getPool(), getData());
}
template <typename TDerived>
inline JsonVariant VariantRefBase<TDerived>::getOrCreateVariant() const {
return JsonVariant(getPool(), getOrCreateData());
}
template <typename TDerived>
template <typename T>
inline typename enable_if<is_same<T, JsonArray>::value, JsonArray>::type
VariantRefBase<TDerived>::to() const {
return JsonArray(getPool(), variantToArray(getOrCreateData()));
}
template <typename TDerived>
template <typename T>
typename enable_if<is_same<T, JsonObject>::value, JsonObject>::type
VariantRefBase<TDerived>::to() const {
return JsonObject(getPool(), variantToObject(getOrCreateData()));
}
template <typename TDerived>
template <typename T>
typename enable_if<is_same<T, JsonVariant>::value, JsonVariant>::type
VariantRefBase<TDerived>::to() const {
variantSetNull(getOrCreateData());
return *this;
}
template <typename TDerived>
inline void convertToJson(const VariantRefBase<TDerived>& src,
JsonVariant dst) {
dst.set(src.template as<JsonVariantConst>());
}
} // namespace ARDUINOJSON_NAMESPACE
#if ARDUINOJSON_ENABLE_STD_STREAM
#endif
namespace ARDUINOJSON_NAMESPACE {
class DeserializationError : public SafeBoolIdom<DeserializationError> {
public:
enum Code {
Ok,
EmptyInput,
IncompleteInput,
InvalidInput,
NoMemory,
TooDeep
};
DeserializationError() {}
DeserializationError(Code c) : _code(c) {}
friend bool operator==(const DeserializationError& lhs,
const DeserializationError& rhs) {
return lhs._code == rhs._code;
}
friend bool operator!=(const DeserializationError& lhs,
const DeserializationError& rhs) {
return lhs._code != rhs._code;
}
friend bool operator==(const DeserializationError& lhs, Code rhs) {
return lhs._code == rhs;
}
friend bool operator==(Code lhs, const DeserializationError& rhs) {
return lhs == rhs._code;
}
friend bool operator!=(const DeserializationError& lhs, Code rhs) {
return lhs._code != rhs;
}
friend bool operator!=(Code lhs, const DeserializationError& rhs) {
return lhs != rhs._code;
}
operator bool_type() const {
return _code != Ok ? safe_true() : safe_false();
}
Code code() const {
return _code;
}
const char* c_str() const {
static const char* messages[] = {
"Ok", "EmptyInput", "IncompleteInput",
"InvalidInput", "NoMemory", "TooDeep"};
ARDUINOJSON_ASSERT(static_cast<size_t>(_code) <
sizeof(messages) / sizeof(messages[0]));
return messages[_code];
}
#if ARDUINOJSON_ENABLE_PROGMEM
const __FlashStringHelper* f_str() const {
ARDUINOJSON_DEFINE_PROGMEM_ARRAY(char, s0, "Ok");
ARDUINOJSON_DEFINE_PROGMEM_ARRAY(char, s1, "EmptyInput");
ARDUINOJSON_DEFINE_PROGMEM_ARRAY(char, s2, "IncompleteInput");
ARDUINOJSON_DEFINE_PROGMEM_ARRAY(char, s3, "InvalidInput");
ARDUINOJSON_DEFINE_PROGMEM_ARRAY(char, s4, "NoMemory");
ARDUINOJSON_DEFINE_PROGMEM_ARRAY(char, s5, "TooDeep");
ARDUINOJSON_DEFINE_PROGMEM_ARRAY(
const char*, messages, ARDUINOJSON_EXPAND6({s0, s1, s2, s3, s4, s5}));
return reinterpret_cast<const __FlashStringHelper*>(
pgm_read(messages + _code));
}
#endif
private:
Code _code;
};
#if ARDUINOJSON_ENABLE_STD_STREAM
inline std::ostream& operator<<(std::ostream& s,
const DeserializationError& e) {
s << e.c_str();
return s;
}
inline std::ostream& operator<<(std::ostream& s, DeserializationError::Code c) {
s << DeserializationError(c).c_str();
return s;
}
#endif
class Filter {
public:
explicit Filter(JsonVariantConst v) : _variant(v) {}
bool allow() const {
return _variant;
}
bool allowArray() const {
return _variant == true || _variant.is<JsonArrayConst>();
}
bool allowObject() const {
return _variant == true || _variant.is<JsonObjectConst>();
}
bool allowValue() const {
return _variant == true;
}
template <typename TKey>
Filter operator[](const TKey& key) const {
if (_variant == true) // "true" means "allow recursively"
return *this;
JsonVariantConst member = _variant[key];
return Filter(member.isNull() ? _variant["*"] : member);
}
private:
JsonVariantConst _variant;
};
struct AllowAllFilter {
bool allow() const {
return true;
}
bool allowArray() const {
return true;
}
bool allowObject() const {
return true;
}
bool allowValue() const {
return true;
}
template <typename TKey>
AllowAllFilter operator[](const TKey&) const {
return AllowAllFilter();
}
};
class NestingLimit {
public:
NestingLimit() : _value(ARDUINOJSON_DEFAULT_NESTING_LIMIT) {}
explicit NestingLimit(uint8_t n) : _value(n) {}
NestingLimit decrement() const {
ARDUINOJSON_ASSERT(_value > 0);
return NestingLimit(static_cast<uint8_t>(_value - 1));
}
bool reached() const {
return _value == 0;
}
private:
uint8_t _value;
};
template <typename TSource, typename Enable = void>
struct Reader {
public:
Reader(TSource& source) : _source(&source) {}
int read() {
return _source->read(); // Error here? You passed an unsupported input type
}
size_t readBytes(char* buffer, size_t length) {
return _source->readBytes(buffer, length);
}
private:
TSource* _source;
};
template <typename TSource, typename Enable = void>
struct BoundedReader {
};
template <typename TIterator>
class IteratorReader {
TIterator _ptr, _end;
public:
explicit IteratorReader(TIterator begin, TIterator end)
: _ptr(begin), _end(end) {}
int read() {
if (_ptr < _end)
return static_cast<unsigned char>(*_ptr++);
else
return -1;
}
size_t readBytes(char* buffer, size_t length) {
size_t i = 0;
while (i < length && _ptr < _end)
buffer[i++] = *_ptr++;
return i;
}
};
template <typename T>
struct void_ {
typedef void type;
};
template <typename TSource>
struct Reader<TSource, typename void_<typename TSource::const_iterator>::type>
: IteratorReader<typename TSource::const_iterator> {
explicit Reader(const TSource& source)
: IteratorReader<typename TSource::const_iterator>(source.begin(),
source.end()) {}
};
template <typename T>
struct IsCharOrVoid {
static const bool value =
is_same<T, void>::value || is_same<T, char>::value ||
is_same<T, unsigned char>::value || is_same<T, signed char>::value;
};
template <typename T>
struct IsCharOrVoid<const T> : IsCharOrVoid<T> {};
template <typename TSource>
struct Reader<TSource*,
typename enable_if<IsCharOrVoid<TSource>::value>::type> {
const char* _ptr;
public:
explicit Reader(const void* ptr)
: _ptr(ptr ? reinterpret_cast<const char*>(ptr) : "") {}
int read() {
return static_cast<unsigned char>(*_ptr++);
}
size_t readBytes(char* buffer, size_t length) {
for (size_t i = 0; i < length; i++)
buffer[i] = *_ptr++;
return length;
}
};
template <typename TSource>
struct BoundedReader<TSource*,
typename enable_if<IsCharOrVoid<TSource>::value>::type>
: public IteratorReader<const char*> {
public:
explicit BoundedReader(const void* ptr, size_t len)
: IteratorReader<const char*>(reinterpret_cast<const char*>(ptr),
reinterpret_cast<const char*>(ptr) + len) {}
};
template <typename TVariant>
struct Reader<TVariant, typename enable_if<IsVariant<TVariant>::value>::type>
: Reader<char*, void> {
explicit Reader(const TVariant& x)
: Reader<char*, void>(x.template as<const char*>()) {}
};
} // namespace ARDUINOJSON_NAMESPACE
#if ARDUINOJSON_ENABLE_ARDUINO_STREAM
namespace ARDUINOJSON_NAMESPACE {
template <typename TSource>
struct Reader<TSource,
typename enable_if<is_base_of<Stream, TSource>::value>::type> {
public:
explicit Reader(Stream& stream) : _stream(&stream) {}
int read() {
char c;
return _stream->readBytes(&c, 1) ? static_cast<unsigned char>(c) : -1;
}
size_t readBytes(char* buffer, size_t length) {
return _stream->readBytes(buffer, length);
}
private:
Stream* _stream;
};
} // namespace ARDUINOJSON_NAMESPACE
#endif
#if ARDUINOJSON_ENABLE_ARDUINO_STRING
namespace ARDUINOJSON_NAMESPACE {
template <typename TSource>
struct Reader<TSource,
typename enable_if<is_base_of< ::String, TSource>::value>::type>
: BoundedReader<const char*> {
explicit Reader(const ::String& s)
: BoundedReader<const char*>(s.c_str(), s.length()) {}
};
} // namespace ARDUINOJSON_NAMESPACE
#endif
#if ARDUINOJSON_ENABLE_PROGMEM
namespace ARDUINOJSON_NAMESPACE {
template <>
struct Reader<const __FlashStringHelper*, void> {
const char* _ptr;
public:
explicit Reader(const __FlashStringHelper* ptr)
: _ptr(reinterpret_cast<const char*>(ptr)) {}
int read() {
return pgm_read_byte(_ptr++);
}
size_t readBytes(char* buffer, size_t length) {
memcpy_P(buffer, _ptr, length);
_ptr += length;
return length;
}
};
template <>
struct BoundedReader<const __FlashStringHelper*, void> {
const char* _ptr;
const char* _end;
public:
explicit BoundedReader(const __FlashStringHelper* ptr, size_t size)
: _ptr(reinterpret_cast<const char*>(ptr)), _end(_ptr + size) {}
int read() {
if (_ptr < _end)
return pgm_read_byte(_ptr++);
else
return -1;
}
size_t readBytes(char* buffer, size_t length) {
size_t available = static_cast<size_t>(_end - _ptr);
if (available < length)
length = available;
memcpy_P(buffer, _ptr, length);
_ptr += length;
return length;
}
};
} // namespace ARDUINOJSON_NAMESPACE
#endif
#if ARDUINOJSON_ENABLE_STD_STREAM
#include <istream>
namespace ARDUINOJSON_NAMESPACE {
template <typename TSource>
struct Reader<TSource, typename enable_if<
is_base_of<std::istream, TSource>::value>::type> {
public:
explicit Reader(std::istream& stream) : _stream(&stream) {}
int read() {
return _stream->get();
}
size_t readBytes(char* buffer, size_t length) {
_stream->read(buffer, static_cast<std::streamsize>(length));
return static_cast<size_t>(_stream->gcount());
}
private:
std::istream* _stream;
};
} // namespace ARDUINOJSON_NAMESPACE
#endif
namespace ARDUINOJSON_NAMESPACE {
class StringCopier {
public:
StringCopier(MemoryPool* pool) : _pool(pool) {}
void startString() {
_pool->getFreeZone(&_ptr, &_capacity);
_size = 0;
if (_capacity == 0)
_pool->markAsOverflowed();
}
JsonString save() {
ARDUINOJSON_ASSERT(_ptr);
ARDUINOJSON_ASSERT(_size < _capacity); // needs room for the terminator
return JsonString(_pool->saveStringFromFreeZone(_size), _size,
JsonString::Copied);
}
void append(const char* s) {
while (*s)
append(*s++);
}
void append(const char* s, size_t n) {
while (n-- > 0)
append(*s++);
}
void append(char c) {
if (_size + 1 < _capacity)
_ptr[_size++] = c;
else
_pool->markAsOverflowed();
}
bool isValid() const {
return !_pool->overflowed();
}
size_t size() const {
return _size;
}
JsonString str() const {
ARDUINOJSON_ASSERT(_ptr);
ARDUINOJSON_ASSERT(_size < _capacity);
_ptr[_size] = 0;
return JsonString(_ptr, _size, JsonString::Copied);
}
private:
MemoryPool* _pool;
char* _ptr;
size_t _size, _capacity;
};
class StringMover {
public:
StringMover(char* ptr) : _writePtr(ptr) {}
void startString() {
_startPtr = _writePtr;
}
FORCE_INLINE JsonString save() {
JsonString s = str();
_writePtr++;
return s;
}
void append(char c) {
*_writePtr++ = c;
}
bool isValid() const {
return true;
}
JsonString str() const {
_writePtr[0] = 0; // terminator
return JsonString(_startPtr, size(), JsonString::Linked);
}
size_t size() const {
return size_t(_writePtr - _startPtr);
}
private:
char* _writePtr;
char* _startPtr;
};
template <typename TInput>
StringCopier makeStringStorage(TInput&, MemoryPool* pool) {
ARDUINOJSON_ASSERT(pool != 0);
return StringCopier(pool);
}
template <typename TChar>
StringMover makeStringStorage(
TChar* input, MemoryPool*,
typename enable_if<!is_const<TChar>::value>::type* = 0) {
return StringMover(reinterpret_cast<char*>(input));
}
template <template <typename, typename> class TDeserializer, typename TReader,
typename TWriter>
TDeserializer<TReader, TWriter> makeDeserializer(MemoryPool* pool,
TReader reader,
TWriter writer) {
ARDUINOJSON_ASSERT(pool != 0);
return TDeserializer<TReader, TWriter>(pool, reader, writer);
}
template <template <typename, typename> class TDeserializer, typename TString,
typename TFilter>
typename enable_if<!is_array<TString>::value, DeserializationError>::type
deserialize(JsonDocument& doc, const TString& input, NestingLimit nestingLimit,
TFilter filter) {
Reader<TString> reader(input);
VariantData* data = VariantAttorney::getData(doc);
MemoryPool* pool = VariantAttorney::getPool(doc);
doc.clear();
return makeDeserializer<TDeserializer>(pool, reader,
makeStringStorage(input, pool))
.parse(*data, filter, nestingLimit);
}
template <template <typename, typename> class TDeserializer, typename TChar,
typename TFilter>
DeserializationError deserialize(JsonDocument& doc, TChar* input,
size_t inputSize, NestingLimit nestingLimit,
TFilter filter) {
BoundedReader<TChar*> reader(input, inputSize);
VariantData* data = VariantAttorney::getData(doc);
MemoryPool* pool = VariantAttorney::getPool(doc);
doc.clear();
return makeDeserializer<TDeserializer>(pool, reader,
makeStringStorage(input, pool))
.parse(*data, filter, nestingLimit);
}
template <template <typename, typename> class TDeserializer, typename TStream,
typename TFilter>
DeserializationError deserialize(JsonDocument& doc, TStream& input,
NestingLimit nestingLimit, TFilter filter) {
Reader<TStream> reader(input);
VariantData* data = VariantAttorney::getData(doc);
MemoryPool* pool = VariantAttorney::getPool(doc);
doc.clear();
return makeDeserializer<TDeserializer>(pool, reader,
makeStringStorage(input, pool))
.parse(*data, filter, nestingLimit);
}
template <typename TReader>
class Latch {
public:
Latch(TReader reader) : _reader(reader), _loaded(false) {
#if ARDUINOJSON_DEBUG
_ended = false;
#endif
}
void clear() {
_loaded = false;
}
int last() const {
return _current;
}
FORCE_INLINE char current() {
if (!_loaded) {
load();
}
return _current;
}
private:
void load() {
ARDUINOJSON_ASSERT(!_ended);
int c = _reader.read();
#if ARDUINOJSON_DEBUG
if (c <= 0)
_ended = true;
#endif
_current = static_cast<char>(c > 0 ? c : 0);
_loaded = true;
}
TReader _reader;
char _current; // NOLINT(clang-analyzer-optin.cplusplus.UninitializedObject)
bool _loaded;
#if ARDUINOJSON_DEBUG
bool _ended;
#endif
};
} // namespace ARDUINOJSON_NAMESPACE
#if defined(__GNUC__)
# if __GNUC__ >= 7
# pragma GCC diagnostic push
# pragma GCC diagnostic ignored "-Wmaybe-uninitialized"
# endif
#endif
namespace ARDUINOJSON_NAMESPACE {
namespace Utf16 {
inline bool isHighSurrogate(uint16_t codeunit) {
return codeunit >= 0xD800 && codeunit < 0xDC00;
}
inline bool isLowSurrogate(uint16_t codeunit) {
return codeunit >= 0xDC00 && codeunit < 0xE000;
}
class Codepoint {
public:
Codepoint() : _highSurrogate(0), _codepoint(0) {}
bool append(uint16_t codeunit) {
if (isHighSurrogate(codeunit)) {
_highSurrogate = codeunit & 0x3FF;
return false;
}
if (isLowSurrogate(codeunit)) {
_codepoint =
uint32_t(0x10000 + ((_highSurrogate << 10) | (codeunit & 0x3FF)));
return true;
}
_codepoint = codeunit;
return true;
}
uint32_t value() const {
return _codepoint;
}
private:
uint16_t _highSurrogate;
uint32_t _codepoint;
};
} // namespace Utf16
} // namespace ARDUINOJSON_NAMESPACE
#if defined(__GNUC__)
# if __GNUC__ >= 8
# pragma GCC diagnostic pop
# endif
#endif
namespace ARDUINOJSON_NAMESPACE {
namespace Utf8 {
template <typename TStringBuilder>
inline void encodeCodepoint(uint32_t codepoint32, TStringBuilder& str) {
if (codepoint32 < 0x80) {
str.append(char(codepoint32));
} else {
char buf[5];
char* p = buf;
*(p++) = 0;
*(p++) = char((codepoint32 | 0x80) & 0xBF);
uint16_t codepoint16 = uint16_t(codepoint32 >> 6);
if (codepoint16 < 0x20) { // 0x800
*(p++) = char(codepoint16 | 0xC0);
} else {
*(p++) = char((codepoint16 | 0x80) & 0xBF);
codepoint16 = uint16_t(codepoint16 >> 6);
if (codepoint16 < 0x10) { // 0x10000
*(p++) = char(codepoint16 | 0xE0);
} else {
*(p++) = char((codepoint16 | 0x80) & 0xBF);
codepoint16 = uint16_t(codepoint16 >> 6);
*(p++) = char(codepoint16 | 0xF0);
}
}
while (*(--p)) {
str.append(*p);
}
}
}
} // namespace Utf8
template <typename TReader, typename TStringStorage>
class JsonDeserializer {
public:
JsonDeserializer(MemoryPool* pool, TReader reader,
TStringStorage stringStorage)
: _stringStorage(stringStorage),
_foundSomething(false),
_latch(reader),
_pool(pool) {}
template <typename TFilter>
DeserializationError parse(VariantData& variant, TFilter filter,
NestingLimit nestingLimit) {
DeserializationError::Code err;
err = parseVariant(variant, filter, nestingLimit);
if (!err && _latch.last() != 0 && !variant.isEnclosed()) {
return DeserializationError::InvalidInput;
}
return err;
}
private:
char current() {
return _latch.current();
}
void move() {
_latch.clear();
}
bool eat(char charToSkip) {
if (current() != charToSkip)
return false;
move();
return true;
}
template <typename TFilter>
DeserializationError::Code parseVariant(VariantData& variant, TFilter filter,
NestingLimit nestingLimit) {
DeserializationError::Code err;
err = skipSpacesAndComments();
if (err)
return err;
switch (current()) {
case '[':
if (filter.allowArray())
return parseArray(variant.toArray(), filter, nestingLimit);
else
return skipArray(nestingLimit);
case '{':
if (filter.allowObject())
return parseObject(variant.toObject(), filter, nestingLimit);
else
return skipObject(nestingLimit);
case '\"':
case '\'':
if (filter.allowValue())
return parseStringValue(variant);
else
return skipQuotedString();
case 't':
if (filter.allowValue())
variant.setBoolean(true);
return skipKeyword("true");
case 'f':
if (filter.allowValue())
variant.setBoolean(false);
return skipKeyword("false");
case 'n':
return skipKeyword("null");
default:
if (filter.allowValue())
return parseNumericValue(variant);
else
return skipNumericValue();
}
}
DeserializationError::Code skipVariant(NestingLimit nestingLimit) {
DeserializationError::Code err;
err = skipSpacesAndComments();
if (err)
return err;
switch (current()) {
case '[':
return skipArray(nestingLimit);
case '{':
return skipObject(nestingLimit);
case '\"':
case '\'':
return skipQuotedString();
case 't':
return skipKeyword("true");
case 'f':
return skipKeyword("false");
case 'n':
return skipKeyword("null");
default:
return skipNumericValue();
}
}
template <typename TFilter>
DeserializationError::Code parseArray(CollectionData& array, TFilter filter,
NestingLimit nestingLimit) {
DeserializationError::Code err;
if (nestingLimit.reached())
return DeserializationError::TooDeep;
ARDUINOJSON_ASSERT(current() == '[');
move();
err = skipSpacesAndComments();
if (err)
return err;
if (eat(']'))
return DeserializationError::Ok;
TFilter memberFilter = filter[0UL];
for (;;) {
if (memberFilter.allow()) {
VariantData* value = array.addElement(_pool);
if (!value)
return DeserializationError::NoMemory;
err = parseVariant(*value, memberFilter, nestingLimit.decrement());
if (err)
return err;
} else {
err = skipVariant(nestingLimit.decrement());
if (err)
return err;
}
err = skipSpacesAndComments();
if (err)
return err;
if (eat(']'))
return DeserializationError::Ok;
if (!eat(','))
return DeserializationError::InvalidInput;
}
}
DeserializationError::Code skipArray(NestingLimit nestingLimit) {
DeserializationError::Code err;
if (nestingLimit.reached())
return DeserializationError::TooDeep;
ARDUINOJSON_ASSERT(current() == '[');
move();
for (;;) {
err = skipVariant(nestingLimit.decrement());
if (err)
return err;
err = skipSpacesAndComments();
if (err)
return err;
if (eat(']'))
return DeserializationError::Ok;
if (!eat(','))
return DeserializationError::InvalidInput;
}
}
template <typename TFilter>
DeserializationError::Code parseObject(CollectionData& object, TFilter filter,
NestingLimit nestingLimit) {
DeserializationError::Code err;
if (nestingLimit.reached())
return DeserializationError::TooDeep;
ARDUINOJSON_ASSERT(current() == '{');
move();
err = skipSpacesAndComments();
if (err)
return err;
if (eat('}'))
return DeserializationError::Ok;
for (;;) {
err = parseKey();
if (err)
return err;
err = skipSpacesAndComments();
if (err)
return err;
if (!eat(':'))
return DeserializationError::InvalidInput;
JsonString key = _stringStorage.str();
TFilter memberFilter = filter[key.c_str()];
if (memberFilter.allow()) {
VariantData* variant = object.getMember(adaptString(key.c_str()));
if (!variant) {
key = _stringStorage.save();
VariantSlot* slot = object.addSlot(_pool);
if (!slot)
return DeserializationError::NoMemory;
slot->setKey(key);
variant = slot->data();
}
err = parseVariant(*variant, memberFilter, nestingLimit.decrement());
if (err)
return err;
} else {
err = skipVariant(nestingLimit.decrement());
if (err)
return err;
}
err = skipSpacesAndComments();
if (err)
return err;
if (eat('}'))
return DeserializationError::Ok;
if (!eat(','))
return DeserializationError::InvalidInput;
err = skipSpacesAndComments();
if (err)
return err;
}
}
DeserializationError::Code skipObject(NestingLimit nestingLimit) {
DeserializationError::Code err;
if (nestingLimit.reached())
return DeserializationError::TooDeep;
ARDUINOJSON_ASSERT(current() == '{');
move();
err = skipSpacesAndComments();
if (err)
return err;
if (eat('}'))
return DeserializationError::Ok;
for (;;) {
err = skipKey();
if (err)
return err;
err = skipSpacesAndComments();
if (err)
return err;
if (!eat(':'))
return DeserializationError::InvalidInput;
err = skipVariant(nestingLimit.decrement());
if (err)
return err;
err = skipSpacesAndComments();
if (err)
return err;
if (eat('}'))
return DeserializationError::Ok;
if (!eat(','))
return DeserializationError::InvalidInput;
err = skipSpacesAndComments();
if (err)
return err;
}
}
DeserializationError::Code parseKey() {
_stringStorage.startString();
if (isQuote(current())) {
return parseQuotedString();
} else {
return parseNonQuotedString();
}
}
DeserializationError::Code parseStringValue(VariantData& variant) {
DeserializationError::Code err;
_stringStorage.startString();
err = parseQuotedString();
if (err)
return err;
variant.setString(_stringStorage.save());
return DeserializationError::Ok;
}
DeserializationError::Code parseQuotedString() {
#if ARDUINOJSON_DECODE_UNICODE
Utf16::Codepoint codepoint;
DeserializationError::Code err;
#endif
const char stopChar = current();
move();
for (;;) {
char c = current();
move();
if (c == stopChar)
break;
if (c == '\0')
return DeserializationError::IncompleteInput;
if (c == '\\') {
c = current();
if (c == '\0')
return DeserializationError::IncompleteInput;
if (c == 'u') {
#if ARDUINOJSON_DECODE_UNICODE
move();
uint16_t codeunit;
err = parseHex4(codeunit);
if (err)
return err;
if (codepoint.append(codeunit))
Utf8::encodeCodepoint(codepoint.value(), _stringStorage);
#else
_stringStorage.append('\\');
#endif
continue;
}
c = EscapeSequence::unescapeChar(c);
if (c == '\0')
return DeserializationError::InvalidInput;
move();
}
_stringStorage.append(c);
}
if (!_stringStorage.isValid())
return DeserializationError::NoMemory;
return DeserializationError::Ok;
}
DeserializationError::Code parseNonQuotedString() {
char c = current();
ARDUINOJSON_ASSERT(c);
if (canBeInNonQuotedString(c)) { // no quotes
do {
move();
_stringStorage.append(c);
c = current();
} while (canBeInNonQuotedString(c));
} else {
return DeserializationError::InvalidInput;
}
if (!_stringStorage.isValid())
return DeserializationError::NoMemory;
return DeserializationError::Ok;
}
DeserializationError::Code skipKey() {
if (isQuote(current())) {
return skipQuotedString();
} else {
return skipNonQuotedString();
}
}
DeserializationError::Code skipQuotedString() {
const char stopChar = current();
move();
for (;;) {
char c = current();
move();
if (c == stopChar)
break;
if (c == '\0')
return DeserializationError::IncompleteInput;
if (c == '\\') {
if (current() != '\0')
move();
}
}
return DeserializationError::Ok;
}
DeserializationError::Code skipNonQuotedString() {
char c = current();
while (canBeInNonQuotedString(c)) {
move();
c = current();
}
return DeserializationError::Ok;
}
DeserializationError::Code parseNumericValue(VariantData& result) {
uint8_t n = 0;
char c = current();
while (canBeInNumber(c) && n < 63) {
move();
_buffer[n++] = c;
c = current();
}
_buffer[n] = 0;
if (!parseNumber(_buffer, result))
return DeserializationError::InvalidInput;
return DeserializationError::Ok;
}
DeserializationError::Code skipNumericValue() {
char c = current();
while (canBeInNumber(c)) {
move();
c = current();
}
return DeserializationError::Ok;
}
DeserializationError::Code parseHex4(uint16_t& result) {
result = 0;
for (uint8_t i = 0; i < 4; ++i) {
char digit = current();
if (!digit)
return DeserializationError::IncompleteInput;
uint8_t value = decodeHex(digit);
if (value > 0x0F)
return DeserializationError::InvalidInput;
result = uint16_t((result << 4) | value);
move();
}
return DeserializationError::Ok;
}
static inline bool isBetween(char c, char min, char max) {
return min <= c && c <= max;
}
static inline bool canBeInNumber(char c) {
return isBetween(c, '0', '9') || c == '+' || c == '-' || c == '.' ||
#if ARDUINOJSON_ENABLE_NAN || ARDUINOJSON_ENABLE_INFINITY
isBetween(c, 'A', 'Z') || isBetween(c, 'a', 'z');
#else
c == 'e' || c == 'E';
#endif
}
static inline bool canBeInNonQuotedString(char c) {
return isBetween(c, '0', '9') || isBetween(c, '_', 'z') ||
isBetween(c, 'A', 'Z');
}
static inline bool isQuote(char c) {
return c == '\'' || c == '\"';
}
static inline uint8_t decodeHex(char c) {
if (c < 'A')
return uint8_t(c - '0');
c = char(c & ~0x20); // uppercase
return uint8_t(c - 'A' + 10);
}
DeserializationError::Code skipSpacesAndComments() {
for (;;) {
switch (current()) {
case '\0':
return _foundSomething ? DeserializationError::IncompleteInput
: DeserializationError::EmptyInput;
case ' ':
case '\t':
case '\r':
case '\n':
move();
continue;
#if ARDUINOJSON_ENABLE_COMMENTS
case '/':
move(); // skip '/'
switch (current()) {
case '*': {
move(); // skip '*'
bool wasStar = false;
for (;;) {
char c = current();
if (c == '\0')
return DeserializationError::IncompleteInput;
if (c == '/' && wasStar) {
move();
break;
}
wasStar = c == '*';
move();
}
break;
}
case '/':
for (;;) {
move();
char c = current();
if (c == '\0')
return DeserializationError::IncompleteInput;
if (c == '\n')
break;
}
break;
default:
return DeserializationError::InvalidInput;
}
break;
#endif
default:
_foundSomething = true;
return DeserializationError::Ok;
}
}
}
DeserializationError::Code skipKeyword(const char* s) {
while (*s) {
char c = current();
if (c == '\0')
return DeserializationError::IncompleteInput;
if (*s != c)
return DeserializationError::InvalidInput;
++s;
move();
}
return DeserializationError::Ok;
}
TStringStorage _stringStorage;
bool _foundSomething;
Latch<TReader> _latch;
MemoryPool* _pool;
char _buffer[64]; // using a member instead of a local variable because it
};
template <typename TString>
DeserializationError deserializeJson(
JsonDocument& doc, const TString& input,
NestingLimit nestingLimit = NestingLimit()) {
return deserialize<JsonDeserializer>(doc, input, nestingLimit,
AllowAllFilter());
}
template <typename TString>
DeserializationError deserializeJson(
JsonDocument& doc, const TString& input, Filter filter,
NestingLimit nestingLimit = NestingLimit()) {
return deserialize<JsonDeserializer>(doc, input, nestingLimit, filter);
}
template <typename TString>
DeserializationError deserializeJson(JsonDocument& doc, const TString& input,
NestingLimit nestingLimit, Filter filter) {
return deserialize<JsonDeserializer>(doc, input, nestingLimit, filter);
}
template <typename TStream>
DeserializationError deserializeJson(
JsonDocument& doc, TStream& input,
NestingLimit nestingLimit = NestingLimit()) {
return deserialize<JsonDeserializer>(doc, input, nestingLimit,
AllowAllFilter());
}
template <typename TStream>
DeserializationError deserializeJson(
JsonDocument& doc, TStream& input, Filter filter,
NestingLimit nestingLimit = NestingLimit()) {
return deserialize<JsonDeserializer>(doc, input, nestingLimit, filter);
}
template <typename TStream>
DeserializationError deserializeJson(JsonDocument& doc, TStream& input,
NestingLimit nestingLimit, Filter filter) {
return deserialize<JsonDeserializer>(doc, input, nestingLimit, filter);
}
template <typename TChar>
DeserializationError deserializeJson(
JsonDocument& doc, TChar* input,
NestingLimit nestingLimit = NestingLimit()) {
return deserialize<JsonDeserializer>(doc, input, nestingLimit,
AllowAllFilter());
}
template <typename TChar>
DeserializationError deserializeJson(
JsonDocument& doc, TChar* input, Filter filter,
NestingLimit nestingLimit = NestingLimit()) {
return deserialize<JsonDeserializer>(doc, input, nestingLimit, filter);
}
template <typename TChar>
DeserializationError deserializeJson(JsonDocument& doc, TChar* input,
NestingLimit nestingLimit, Filter filter) {
return deserialize<JsonDeserializer>(doc, input, nestingLimit, filter);
}
template <typename TChar>
DeserializationError deserializeJson(
JsonDocument& doc, TChar* input, size_t inputSize,
NestingLimit nestingLimit = NestingLimit()) {
return deserialize<JsonDeserializer>(doc, input, inputSize, nestingLimit,
AllowAllFilter());
}
template <typename TChar>
DeserializationError deserializeJson(
JsonDocument& doc, TChar* input, size_t inputSize, Filter filter,
NestingLimit nestingLimit = NestingLimit()) {
return deserialize<JsonDeserializer>(doc, input, inputSize, nestingLimit,
filter);
}
template <typename TChar>
DeserializationError deserializeJson(JsonDocument& doc, TChar* input,
size_t inputSize,
NestingLimit nestingLimit, Filter filter) {
return deserialize<JsonDeserializer>(doc, input, inputSize, nestingLimit,
filter);
}
template <typename TWriter>
class PrettyJsonSerializer : public JsonSerializer<TWriter> {
typedef JsonSerializer<TWriter> base;
public:
PrettyJsonSerializer(TWriter writer) : base(writer), _nesting(0) {}
size_t visitArray(const CollectionData& array) {
const VariantSlot* slot = array.head();
if (slot) {
base::write("[\r\n");
_nesting++;
while (slot != 0) {
indent();
slot->data()->accept(*this);
slot = slot->next();
base::write(slot ? ",\r\n" : "\r\n");
}
_nesting--;
indent();
base::write("]");
} else {
base::write("[]");
}
return this->bytesWritten();
}
size_t visitObject(const CollectionData& object) {
const VariantSlot* slot = object.head();
if (slot) {
base::write("{\r\n");
_nesting++;
while (slot != 0) {
indent();
base::visitString(slot->key());
base::write(": ");
slot->data()->accept(*this);
slot = slot->next();
base::write(slot ? ",\r\n" : "\r\n");
}
_nesting--;
indent();
base::write("}");
} else {
base::write("{}");
}
return this->bytesWritten();
}
private:
void indent() {
for (uint8_t i = 0; i < _nesting; i++)
base::write(ARDUINOJSON_TAB);
}
uint8_t _nesting;
};
template <typename TDestination>
size_t serializeJsonPretty(JsonVariantConst source, TDestination& destination) {
return serialize<PrettyJsonSerializer>(source, destination);
}
inline size_t serializeJsonPretty(JsonVariantConst source, void* buffer,
size_t bufferSize) {
return serialize<PrettyJsonSerializer>(source, buffer, bufferSize);
}
inline size_t measureJsonPretty(JsonVariantConst source) {
return measure<PrettyJsonSerializer>(source);
}
#if ARDUINOJSON_LITTLE_ENDIAN
inline void swapBytes(uint8_t& a, uint8_t& b) {
uint8_t t(a);
a = b;
b = t;
}
inline void fixEndianess(uint8_t* p, integral_constant<size_t, 8>) {
swapBytes(p[0], p[7]);
swapBytes(p[1], p[6]);
swapBytes(p[2], p[5]);
swapBytes(p[3], p[4]);
}
inline void fixEndianess(uint8_t* p, integral_constant<size_t, 4>) {
swapBytes(p[0], p[3]);
swapBytes(p[1], p[2]);
}
inline void fixEndianess(uint8_t* p, integral_constant<size_t, 2>) {
swapBytes(p[0], p[1]);
}
inline void fixEndianess(uint8_t*, integral_constant<size_t, 1>) {}
template <typename T>
inline void fixEndianess(T& value) {
fixEndianess(reinterpret_cast<uint8_t*>(&value),
integral_constant<size_t, sizeof(T)>());
}
#else
template <typename T>
inline void fixEndianess(T&) {}
#endif
inline void doubleToFloat(const uint8_t d[8], uint8_t f[4]) {
f[0] = uint8_t((d[0] & 0xC0) | (d[0] << 3 & 0x3f) | (d[1] >> 5));
f[1] = uint8_t((d[1] << 3) | (d[2] >> 5));
f[2] = uint8_t((d[2] << 3) | (d[3] >> 5));
f[3] = uint8_t((d[3] << 3) | (d[4] >> 5));
}
template <typename TReader, typename TStringStorage>
class MsgPackDeserializer {
public:
MsgPackDeserializer(MemoryPool* pool, TReader reader,
TStringStorage stringStorage)
: _pool(pool),
_reader(reader),
_stringStorage(stringStorage),
_foundSomething(false) {}
template <typename TFilter>
DeserializationError parse(VariantData& variant, TFilter filter,
NestingLimit nestingLimit) {
DeserializationError::Code err;
err = parseVariant(&variant, filter, nestingLimit);
return _foundSomething ? err : DeserializationError::EmptyInput;
}
private:
template <typename TFilter>
DeserializationError::Code parseVariant(VariantData* variant, TFilter filter,
NestingLimit nestingLimit) {
DeserializationError::Code err;
uint8_t code = 0; // TODO: why do we need to initialize this variable?
err = readByte(code);
if (err)
return err;
_foundSomething = true;
bool allowValue = filter.allowValue();
if (allowValue) {
ARDUINOJSON_ASSERT(variant != 0);
}
switch (code) {
case 0xc0:
return DeserializationError::Ok;
case 0xc1:
return DeserializationError::InvalidInput;
case 0xc2:
if (allowValue)
variant->setBoolean(false);
return DeserializationError::Ok;
case 0xc3:
if (allowValue)
variant->setBoolean(true);
return DeserializationError::Ok;
case 0xc4: // bin 8 (not supported)
return skipString<uint8_t>();
case 0xc5: // bin 16 (not supported)
return skipString<uint16_t>();
case 0xc6: // bin 32 (not supported)
return skipString<uint32_t>();
case 0xc7: // ext 8 (not supported)
return skipExt<uint8_t>();
case 0xc8: // ext 16 (not supported)
return skipExt<uint16_t>();
case 0xc9: // ext 32 (not supported)
return skipExt<uint32_t>();
case 0xca:
if (allowValue)
return readFloat<float>(variant);
else
return skipBytes(4);
case 0xcb:
if (allowValue)
return readDouble<double>(variant);
else
return skipBytes(8);
case 0xcc:
if (allowValue)
return readInteger<uint8_t>(variant);
else
return skipBytes(1);
case 0xcd:
if (allowValue)
return readInteger<uint16_t>(variant);
else
return skipBytes(2);
case 0xce:
if (allowValue)
return readInteger<uint32_t>(variant);
else
return skipBytes(4);
case 0xcf:
#if ARDUINOJSON_USE_LONG_LONG
if (allowValue)
return readInteger<uint64_t>(variant);
else
return skipBytes(8);
#else
return skipBytes(8); // not supported
#endif
case 0xd0:
if (allowValue)
return readInteger<int8_t>(variant);
else
return skipBytes(1);
case 0xd1:
if (allowValue)
return readInteger<int16_t>(variant);
else
return skipBytes(2);
case 0xd2:
if (allowValue)
return readInteger<int32_t>(variant);
else
return skipBytes(4);
case 0xd3:
#if ARDUINOJSON_USE_LONG_LONG
if (allowValue)
return readInteger<int64_t>(variant);
else
return skipBytes(8); // not supported
#else
return skipBytes(8);
#endif
case 0xd4: // fixext 1 (not supported)
return skipBytes(2);
case 0xd5: // fixext 2 (not supported)
return skipBytes(3);
case 0xd6: // fixext 4 (not supported)
return skipBytes(5);
case 0xd7: // fixext 8 (not supported)
return skipBytes(9);
case 0xd8: // fixext 16 (not supported)
return skipBytes(17);
case 0xd9:
if (allowValue)
return readString<uint8_t>(variant);
else
return skipString<uint8_t>();
case 0xda:
if (allowValue)
return readString<uint16_t>(variant);
else
return skipString<uint16_t>();
case 0xdb:
if (allowValue)
return readString<uint32_t>(variant);
else
return skipString<uint32_t>();
case 0xdc:
return readArray<uint16_t>(variant, filter, nestingLimit);
case 0xdd:
return readArray<uint32_t>(variant, filter, nestingLimit);
case 0xde:
return readObject<uint16_t>(variant, filter, nestingLimit);
case 0xdf:
return readObject<uint32_t>(variant, filter, nestingLimit);
}
switch (code & 0xf0) {
case 0x80:
return readObject(variant, code & 0x0F, filter, nestingLimit);
case 0x90:
return readArray(variant, code & 0x0F, filter, nestingLimit);
}
if ((code & 0xe0) == 0xa0) {
if (allowValue)
return readString(variant, code & 0x1f);
else
return skipBytes(code & 0x1f);
}
if (allowValue)
variant->setInteger(static_cast<int8_t>(code));
return DeserializationError::Ok;
}
DeserializationError::Code readByte(uint8_t& value) {
int c = _reader.read();
if (c < 0)
return DeserializationError::IncompleteInput;
value = static_cast<uint8_t>(c);
return DeserializationError::Ok;
}
DeserializationError::Code readBytes(uint8_t* p, size_t n) {
if (_reader.readBytes(reinterpret_cast<char*>(p), n) == n)
return DeserializationError::Ok;
return DeserializationError::IncompleteInput;
}
template <typename T>
DeserializationError::Code readBytes(T& value) {
return readBytes(reinterpret_cast<uint8_t*>(&value), sizeof(value));
}
DeserializationError::Code skipBytes(size_t n) {
for (; n; --n) {
if (_reader.read() < 0)
return DeserializationError::IncompleteInput;
}
return DeserializationError::Ok;
}
template <typename T>
DeserializationError::Code readInteger(T& value) {
DeserializationError::Code err;
err = readBytes(value);
if (err)
return err;
fixEndianess(value);
return DeserializationError::Ok;
}
template <typename T>
DeserializationError::Code readInteger(VariantData* variant) {
DeserializationError::Code err;
T value;
err = readInteger(value);
if (err)
return err;
variant->setInteger(value);
return DeserializationError::Ok;
}
template <typename T>
typename enable_if<sizeof(T) == 4, DeserializationError::Code>::type
readFloat(VariantData* variant) {
DeserializationError::Code err;
T value;
err = readBytes(value);
if (err)
return err;
fixEndianess(value);
variant->setFloat(value);
return DeserializationError::Ok;
}
template <typename T>
typename enable_if<sizeof(T) == 8, DeserializationError::Code>::type
readDouble(VariantData* variant) {
DeserializationError::Code err;
T value;
err = readBytes(value);
if (err)
return err;
fixEndianess(value);
variant->setFloat(value);
return DeserializationError::Ok;
}
template <typename T>
typename enable_if<sizeof(T) == 4, DeserializationError::Code>::type
readDouble(VariantData* variant) {
DeserializationError::Code err;
uint8_t i[8]; // input is 8 bytes
T value; // output is 4 bytes
uint8_t* o = reinterpret_cast<uint8_t*>(&value);
err = readBytes(i, 8);
if (err)
return err;
doubleToFloat(i, o);
fixEndianess(value);
variant->setFloat(value);
return DeserializationError::Ok;
}
template <typename T>
DeserializationError::Code readString(VariantData* variant) {
DeserializationError::Code err;
T size;
err = readInteger(size);
if (err)
return err;
return readString(variant, size);
}
template <typename T>
DeserializationError::Code readString() {
DeserializationError::Code err;
T size;
err = readInteger(size);
if (err)
return err;
return readString(size);
}
template <typename T>
DeserializationError::Code skipString() {
DeserializationError::Code err;
T size;
err = readInteger(size);
if (err)
return err;
return skipBytes(size);
}
DeserializationError::Code readString(VariantData* variant, size_t n) {
DeserializationError::Code err;
err = readString(n);
if (err)
return err;
variant->setString(_stringStorage.save());
return DeserializationError::Ok;
}
DeserializationError::Code readString(size_t n) {
DeserializationError::Code err;
_stringStorage.startString();
for (; n; --n) {
uint8_t c;
err = readBytes(c);
if (err)
return err;
_stringStorage.append(static_cast<char>(c));
}
if (!_stringStorage.isValid())
return DeserializationError::NoMemory;
return DeserializationError::Ok;
}
template <typename TSize, typename TFilter>
DeserializationError::Code readArray(VariantData* variant, TFilter filter,
NestingLimit nestingLimit) {
DeserializationError::Code err;
TSize size;
err = readInteger(size);
if (err)
return err;
return readArray(variant, size, filter, nestingLimit);
}
template <typename TFilter>
DeserializationError::Code readArray(VariantData* variant, size_t n,
TFilter filter,
NestingLimit nestingLimit) {
DeserializationError::Code err;
if (nestingLimit.reached())
return DeserializationError::TooDeep;
bool allowArray = filter.allowArray();
CollectionData* array = allowArray ? &variant->toArray() : 0;
TFilter memberFilter = filter[0U];
for (; n; --n) {
VariantData* value;
if (memberFilter.allow()) {
value = array->addElement(_pool);
if (!value)
return DeserializationError::NoMemory;
} else {
value = 0;
}
err = parseVariant(value, memberFilter, nestingLimit.decrement());
if (err)
return err;
}
return DeserializationError::Ok;
}
template <typename TSize, typename TFilter>
DeserializationError::Code readObject(VariantData* variant, TFilter filter,
NestingLimit nestingLimit) {
DeserializationError::Code err;
TSize size;
err = readInteger(size);
if (err)
return err;
return readObject(variant, size, filter, nestingLimit);
}
template <typename TFilter>
DeserializationError::Code readObject(VariantData* variant, size_t n,
TFilter filter,
NestingLimit nestingLimit) {
DeserializationError::Code err;
if (nestingLimit.reached())
return DeserializationError::TooDeep;
CollectionData* object = filter.allowObject() ? &variant->toObject() : 0;
for (; n; --n) {
err = readKey();
if (err)
return err;
JsonString key = _stringStorage.str();
TFilter memberFilter = filter[key.c_str()];
VariantData* member;
if (memberFilter.allow()) {
ARDUINOJSON_ASSERT(object);
key = _stringStorage.save();
VariantSlot* slot = object->addSlot(_pool);
if (!slot)
return DeserializationError::NoMemory;
slot->setKey(key);
member = slot->data();
} else {
member = 0;
}
err = parseVariant(member, memberFilter, nestingLimit.decrement());
if (err)
return err;
}
return DeserializationError::Ok;
}
DeserializationError::Code readKey() {
DeserializationError::Code err;
uint8_t code;
err = readByte(code);
if (err)
return err;
if ((code & 0xe0) == 0xa0)
return readString(code & 0x1f);
switch (code) {
case 0xd9:
return readString<uint8_t>();
case 0xda:
return readString<uint16_t>();
case 0xdb:
return readString<uint32_t>();
default:
return DeserializationError::InvalidInput;
}
}
template <typename T>
DeserializationError::Code skipExt() {
DeserializationError::Code err;
T size;
err = readInteger(size);
if (err)
return err;
return skipBytes(size + 1U);
}
MemoryPool* _pool;
TReader _reader;
TStringStorage _stringStorage;
bool _foundSomething;
};
template <typename TString>
DeserializationError deserializeMsgPack(
JsonDocument& doc, const TString& input,
NestingLimit nestingLimit = NestingLimit()) {
return deserialize<MsgPackDeserializer>(doc, input, nestingLimit,
AllowAllFilter());
}
template <typename TString>
DeserializationError deserializeMsgPack(
JsonDocument& doc, const TString& input, Filter filter,
NestingLimit nestingLimit = NestingLimit()) {
return deserialize<MsgPackDeserializer>(doc, input, nestingLimit, filter);
}
template <typename TString>
DeserializationError deserializeMsgPack(JsonDocument& doc, const TString& input,
NestingLimit nestingLimit,
Filter filter) {
return deserialize<MsgPackDeserializer>(doc, input, nestingLimit, filter);
}
template <typename TStream>
DeserializationError deserializeMsgPack(
JsonDocument& doc, TStream& input,
NestingLimit nestingLimit = NestingLimit()) {
return deserialize<MsgPackDeserializer>(doc, input, nestingLimit,
AllowAllFilter());
}
template <typename TStream>
DeserializationError deserializeMsgPack(
JsonDocument& doc, TStream& input, Filter filter,
NestingLimit nestingLimit = NestingLimit()) {
return deserialize<MsgPackDeserializer>(doc, input, nestingLimit, filter);
}
template <typename TStream>
DeserializationError deserializeMsgPack(JsonDocument& doc, TStream& input,
NestingLimit nestingLimit,
Filter filter) {
return deserialize<MsgPackDeserializer>(doc, input, nestingLimit, filter);
}
template <typename TChar>
DeserializationError deserializeMsgPack(
JsonDocument& doc, TChar* input,
NestingLimit nestingLimit = NestingLimit()) {
return deserialize<MsgPackDeserializer>(doc, input, nestingLimit,
AllowAllFilter());
}
template <typename TChar>
DeserializationError deserializeMsgPack(
JsonDocument& doc, TChar* input, Filter filter,
NestingLimit nestingLimit = NestingLimit()) {
return deserialize<MsgPackDeserializer>(doc, input, nestingLimit, filter);
}
template <typename TChar>
DeserializationError deserializeMsgPack(JsonDocument& doc, TChar* input,
NestingLimit nestingLimit,
Filter filter) {
return deserialize<MsgPackDeserializer>(doc, input, nestingLimit, filter);
}
template <typename TChar>
DeserializationError deserializeMsgPack(
JsonDocument& doc, TChar* input, size_t inputSize,
NestingLimit nestingLimit = NestingLimit()) {
return deserialize<MsgPackDeserializer>(doc, input, inputSize, nestingLimit,
AllowAllFilter());
}
template <typename TChar>
DeserializationError deserializeMsgPack(
JsonDocument& doc, TChar* input, size_t inputSize, Filter filter,
NestingLimit nestingLimit = NestingLimit()) {
return deserialize<MsgPackDeserializer>(doc, input, inputSize, nestingLimit,
filter);
}
template <typename TChar>
DeserializationError deserializeMsgPack(JsonDocument& doc, TChar* input,
size_t inputSize,
NestingLimit nestingLimit,
Filter filter) {
return deserialize<MsgPackDeserializer>(doc, input, inputSize, nestingLimit,
filter);
}
template <typename TWriter>
class MsgPackSerializer : public Visitor<size_t> {
public:
static const bool producesText = false;
MsgPackSerializer(TWriter writer) : _writer(writer) {}
template <typename T>
typename enable_if<sizeof(T) == 4, size_t>::type visitFloat(T value32) {
if (canConvertNumber<JsonInteger>(value32)) {
JsonInteger truncatedValue = JsonInteger(value32);
if (value32 == T(truncatedValue))
return visitSignedInteger(truncatedValue);
}
writeByte(0xCA);
writeInteger(value32);
return bytesWritten();
}
template <typename T>
ARDUINOJSON_NO_SANITIZE("float-cast-overflow")
typename enable_if<sizeof(T) == 8, size_t>::type visitFloat(T value64) {
float value32 = float(value64);
if (value32 == value64)
return visitFloat(value32);
writeByte(0xCB);
writeInteger(value64);
return bytesWritten();
}
size_t visitArray(const CollectionData& array) {
size_t n = array.size();
if (n < 0x10) {
writeByte(uint8_t(0x90 + array.size()));
} else if (n < 0x10000) {
writeByte(0xDC);
writeInteger(uint16_t(n));
} else {
writeByte(0xDD);
writeInteger(uint32_t(n));
}
for (const VariantSlot* slot = array.head(); slot; slot = slot->next()) {
slot->data()->accept(*this);
}
return bytesWritten();
}
size_t visitObject(const CollectionData& object) {
size_t n = object.size();
if (n < 0x10) {
writeByte(uint8_t(0x80 + n));
} else if (n < 0x10000) {
writeByte(0xDE);
writeInteger(uint16_t(n));
} else {
writeByte(0xDF);
writeInteger(uint32_t(n));
}
for (const VariantSlot* slot = object.head(); slot; slot = slot->next()) {
visitString(slot->key());
slot->data()->accept(*this);
}
return bytesWritten();
}
size_t visitString(const char* value) {
return visitString(value, strlen(value));
}
size_t visitString(const char* value, size_t n) {
ARDUINOJSON_ASSERT(value != NULL);
if (n < 0x20) {
writeByte(uint8_t(0xA0 + n));
} else if (n < 0x100) {
writeByte(0xD9);
writeInteger(uint8_t(n));
} else if (n < 0x10000) {
writeByte(0xDA);
writeInteger(uint16_t(n));
} else {
writeByte(0xDB);
writeInteger(uint32_t(n));
}
writeBytes(reinterpret_cast<const uint8_t*>(value), n);
return bytesWritten();
}
size_t visitRawJson(const char* data, size_t size) {
writeBytes(reinterpret_cast<const uint8_t*>(data), size);
return bytesWritten();
}
size_t visitSignedInteger(JsonInteger value) {
if (value > 0) {
visitUnsignedInteger(static_cast<JsonUInt>(value));
} else if (value >= -0x20) {
writeInteger(int8_t(value));
} else if (value >= -0x80) {
writeByte(0xD0);
writeInteger(int8_t(value));
} else if (value >= -0x8000) {
writeByte(0xD1);
writeInteger(int16_t(value));
}
#if ARDUINOJSON_USE_LONG_LONG
else if (value >= -0x80000000LL)
#else
else
#endif
{
writeByte(0xD2);
writeInteger(int32_t(value));
}
#if ARDUINOJSON_USE_LONG_LONG
else {
writeByte(0xD3);
writeInteger(int64_t(value));
}
#endif
return bytesWritten();
}
size_t visitUnsignedInteger(JsonUInt value) {
if (value <= 0x7F) {
writeInteger(uint8_t(value));
} else if (value <= 0xFF) {
writeByte(0xCC);
writeInteger(uint8_t(value));
} else if (value <= 0xFFFF) {
writeByte(0xCD);
writeInteger(uint16_t(value));
}
#if ARDUINOJSON_USE_LONG_LONG
else if (value <= 0xFFFFFFFF)
#else
else
#endif
{
writeByte(0xCE);
writeInteger(uint32_t(value));
}
#if ARDUINOJSON_USE_LONG_LONG
else {
writeByte(0xCF);
writeInteger(uint64_t(value));
}
#endif
return bytesWritten();
}
size_t visitBoolean(bool value) {
writeByte(value ? 0xC3 : 0xC2);
return bytesWritten();
}
size_t visitNull() {
writeByte(0xC0);
return bytesWritten();
}
private:
size_t bytesWritten() const {
return _writer.count();
}
void writeByte(uint8_t c) {
_writer.write(c);
}
void writeBytes(const uint8_t* p, size_t n) {
_writer.write(p, n);
}
template <typename T>
void writeInteger(T value) {
fixEndianess(value);
writeBytes(reinterpret_cast<uint8_t*>(&value), sizeof(value));
}
CountingDecorator<TWriter> _writer;
};
template <typename TDestination>
inline size_t serializeMsgPack(JsonVariantConst source, TDestination& output) {
return serialize<MsgPackSerializer>(source, output);
}
inline size_t serializeMsgPack(JsonVariantConst source, void* output,
size_t size) {
return serialize<MsgPackSerializer>(source, output, size);
}
inline size_t measureMsgPack(JsonVariantConst source) {
return measure<MsgPackSerializer>(source);
}
} // namespace ARDUINOJSON_NAMESPACE
#ifdef __GNUC__
#define ARDUINOJSON_PRAGMA(x) _Pragma(#x)
#define ARDUINOJSON_COMPILE_ERROR(msg) ARDUINOJSON_PRAGMA(GCC error msg)
#define ARDUINOJSON_STRINGIFY(S) #S
#define ARDUINOJSON_DEPRECATION_ERROR(X, Y) \
ARDUINOJSON_COMPILE_ERROR(ARDUINOJSON_STRINGIFY(X is a Y from ArduinoJson 5. Please see https:/\/arduinojson.org/upgrade to learn how to upgrade your program to ArduinoJson version 6))
#define StaticJsonBuffer ARDUINOJSON_DEPRECATION_ERROR(StaticJsonBuffer, class)
#define DynamicJsonBuffer ARDUINOJSON_DEPRECATION_ERROR(DynamicJsonBuffer, class)
#define JsonBuffer ARDUINOJSON_DEPRECATION_ERROR(JsonBuffer, class)
#define RawJson ARDUINOJSON_DEPRECATION_ERROR(RawJson, function)
#endif
namespace ArduinoJson {
using ARDUINOJSON_NAMESPACE::BasicJsonDocument;
using ARDUINOJSON_NAMESPACE::copyArray;
using ARDUINOJSON_NAMESPACE::DeserializationError;
using ARDUINOJSON_NAMESPACE::deserializeJson;
using ARDUINOJSON_NAMESPACE::deserializeMsgPack;
using ARDUINOJSON_NAMESPACE::DynamicJsonDocument;
using ARDUINOJSON_NAMESPACE::JsonArray;
using ARDUINOJSON_NAMESPACE::JsonArrayConst;
using ARDUINOJSON_NAMESPACE::JsonDocument;
using ARDUINOJSON_NAMESPACE::JsonFloat;
using ARDUINOJSON_NAMESPACE::JsonInteger;
using ARDUINOJSON_NAMESPACE::JsonObject;
using ARDUINOJSON_NAMESPACE::JsonObjectConst;
using ARDUINOJSON_NAMESPACE::JsonPair;
using ARDUINOJSON_NAMESPACE::JsonPairConst;
using ARDUINOJSON_NAMESPACE::JsonString;
using ARDUINOJSON_NAMESPACE::JsonUInt;
using ARDUINOJSON_NAMESPACE::JsonVariant;
using ARDUINOJSON_NAMESPACE::JsonVariantConst;
using ARDUINOJSON_NAMESPACE::measureJson;
using ARDUINOJSON_NAMESPACE::serialized;
using ARDUINOJSON_NAMESPACE::serializeJson;
using ARDUINOJSON_NAMESPACE::serializeJsonPretty;
using ARDUINOJSON_NAMESPACE::serializeMsgPack;
using ARDUINOJSON_NAMESPACE::StaticJsonDocument;
namespace DeserializationOption {
using ARDUINOJSON_NAMESPACE::Filter;
using ARDUINOJSON_NAMESPACE::NestingLimit;
} // namespace DeserializationOption
} // namespace ArduinoJson
using namespace ArduinoJson;
#else
#error ArduinoJson requires a C++ compiler, please change file extension to .cc or .cpp
#endif