snes9xgx/source/snes9x/apu/SPC_DSP.h
2009-11-25 06:35:14 +00:00

318 lines
7.8 KiB
C++

// Highly accurate SNES SPC-700 DSP emulator
// snes_spc 0.9.0
#ifndef SPC_DSP_H
#define SPC_DSP_H
#include "blargg_common.h"
extern "C" { typedef void (*dsp_copy_func_t)( unsigned char** io, void* state, size_t ); }
class SPC_DSP {
public:
typedef BOOST::uint8_t uint8_t;
// Setup
// Initializes DSP and has it use the 64K RAM provided
void init( void* ram_64k );
// Sets destination for output samples. If out is NULL or out_size is 0,
// doesn't generate any.
typedef short sample_t;
void set_output( sample_t* out, int out_size );
// Number of samples written to output since it was last set, always
// a multiple of 2. Undefined if more samples were generated than
// output buffer could hold.
int sample_count() const;
// Emulation
// Resets DSP to power-on state
void reset();
// Emulates pressing reset switch on SNES
void soft_reset();
// Reads/writes DSP registers. For accuracy, you must first call run()
// to catch the DSP up to present.
int read ( int addr ) const;
void write( int addr, int data );
// Runs DSP for specified number of clocks (~1024000 per second). Every 32 clocks
// a pair of samples is be generated.
void run( int clock_count );
// Sound control
// Mutes voices corresponding to non-zero bits in mask (issues repeated KOFF events).
// Reduces emulation accuracy.
enum { voice_count = 8 };
void mute_voices( int mask );
// State
// Resets DSP and uses supplied values to initialize registers
enum { register_count = 128 };
void load( uint8_t const regs [register_count] );
// Saves/loads exact emulator state
enum { state_size = 640 }; // maximum space needed when saving
typedef dsp_copy_func_t copy_func_t;
void copy_state( unsigned char** io, copy_func_t );
// Returns non-zero if new key-on events occurred since last call
bool check_kon();
// Snes9x Accessor
int stereo_switch;
int take_spc_snapshot;
void (*spc_snapshot_callback) (void);
void set_spc_snapshot_callback( void (*callback) (void) );
void dump_spc_snapshot( void );
void set_stereo_switch( int );
uint8_t reg_value( int, int );
int envx_value( int );
// DSP register addresses
// Global registers
enum {
r_mvoll = 0x0C, r_mvolr = 0x1C,
r_evoll = 0x2C, r_evolr = 0x3C,
r_kon = 0x4C, r_koff = 0x5C,
r_flg = 0x6C, r_endx = 0x7C,
r_efb = 0x0D, r_pmon = 0x2D,
r_non = 0x3D, r_eon = 0x4D,
r_dir = 0x5D, r_esa = 0x6D,
r_edl = 0x7D,
r_fir = 0x0F // 8 coefficients at 0x0F, 0x1F ... 0x7F
};
// Voice registers
enum {
v_voll = 0x00, v_volr = 0x01,
v_pitchl = 0x02, v_pitchh = 0x03,
v_srcn = 0x04, v_adsr0 = 0x05,
v_adsr1 = 0x06, v_gain = 0x07,
v_envx = 0x08, v_outx = 0x09
};
public:
enum { extra_size = 16 };
sample_t* extra() { return m.extra; }
sample_t const* out_pos() const { return m.out; }
void disable_surround( bool ) { } // not supported
public:
BLARGG_DISABLE_NOTHROW
typedef BOOST::int8_t int8_t;
typedef BOOST::int16_t int16_t;
enum { echo_hist_size = 8 };
enum env_mode_t { env_release, env_attack, env_decay, env_sustain };
enum { brr_buf_size = 12 };
struct voice_t
{
int buf [brr_buf_size*2];// decoded samples (twice the size to simplify wrap handling)
int buf_pos; // place in buffer where next samples will be decoded
int interp_pos; // relative fractional position in sample (0x1000 = 1.0)
int brr_addr; // address of current BRR block
int brr_offset; // current decoding offset in BRR block
uint8_t* regs; // pointer to voice's DSP registers
int vbit; // bitmask for voice: 0x01 for voice 0, 0x02 for voice 1, etc.
int kon_delay; // KON delay/current setup phase
env_mode_t env_mode;
int env; // current envelope level
int hidden_env; // used by GAIN mode 7, very obscure quirk
uint8_t t_envx_out;
int voice_number;
};
private:
enum { brr_block_size = 9 };
struct state_t
{
uint8_t regs [register_count];
// Echo history keeps most recent 8 samples (twice the size to simplify wrap handling)
int echo_hist [echo_hist_size * 2] [2];
int (*echo_hist_pos) [2]; // &echo_hist [0 to 7]
int every_other_sample; // toggles every sample
int kon; // KON value when last checked
int noise;
int counter;
int echo_offset; // offset from ESA in echo buffer
int echo_length; // number of bytes that echo_offset will stop at
int phase; // next clock cycle to run (0-31)
bool kon_check; // set when a new KON occurs
// Hidden registers also written to when main register is written to
int new_kon;
uint8_t endx_buf;
uint8_t envx_buf;
uint8_t outx_buf;
// Temporary state between clocks
// read once per sample
int t_pmon;
int t_non;
int t_eon;
int t_dir;
int t_koff;
// read a few clocks ahead then used
int t_brr_next_addr;
int t_adsr0;
int t_brr_header;
int t_brr_byte;
int t_srcn;
int t_esa;
int t_echo_enabled;
// internal state that is recalculated every sample
int t_dir_addr;
int t_pitch;
int t_output;
int t_looped;
int t_echo_ptr;
// left/right sums
int t_main_out [2];
int t_echo_out [2];
int t_echo_in [2];
voice_t voices [voice_count];
// non-emulation state
uint8_t* ram; // 64K shared RAM between DSP and SMP
int mute_mask;
sample_t* out;
sample_t* out_end;
sample_t* out_begin;
sample_t extra [extra_size];
};
state_t m;
void init_counter();
void run_counters();
unsigned read_counter( int rate );
int interpolate( voice_t const* v );
void run_envelope( voice_t* const v );
void decode_brr( voice_t* v );
void misc_27();
void misc_28();
void misc_29();
void misc_30();
void voice_output( voice_t const* v, int ch );
void voice_V1( voice_t* const );
void voice_V2( voice_t* const );
void voice_V3( voice_t* const );
void voice_V3a( voice_t* const );
void voice_V3b( voice_t* const );
void voice_V3c( voice_t* const );
void voice_V4( voice_t* const );
void voice_V5( voice_t* const );
void voice_V6( voice_t* const );
void voice_V7( voice_t* const );
void voice_V8( voice_t* const );
void voice_V9( voice_t* const );
void voice_V7_V4_V1( voice_t* const );
void voice_V8_V5_V2( voice_t* const );
void voice_V9_V6_V3( voice_t* const );
void echo_read( int ch );
int echo_output( int ch );
void echo_write( int ch );
void echo_22();
void echo_23();
void echo_24();
void echo_25();
void echo_26();
void echo_27();
void echo_28();
void echo_29();
void echo_30();
void soft_reset_common();
};
#include <assert.h>
inline int SPC_DSP::sample_count() const { return m.out - m.out_begin; }
inline int SPC_DSP::read( int addr ) const
{
assert( (unsigned) addr < register_count );
return m.regs [addr];
}
inline void SPC_DSP::write( int addr, int data )
{
assert( (unsigned) addr < register_count );
m.regs [addr] = (uint8_t) data;
switch ( addr & 0x0F )
{
case v_envx:
m.envx_buf = (uint8_t) data;
break;
case v_outx:
m.outx_buf = (uint8_t) data;
break;
case 0x0C:
if ( addr == r_kon )
m.new_kon = (uint8_t) data;
if ( addr == r_endx ) // always cleared, regardless of data written
{
m.endx_buf = 0;
m.regs [r_endx] = 0;
}
break;
}
}
inline void SPC_DSP::mute_voices( int mask ) { m.mute_mask = mask; }
inline bool SPC_DSP::check_kon()
{
bool old = m.kon_check;
m.kon_check = 0;
return old;
}
#if !SPC_NO_COPY_STATE_FUNCS
class SPC_State_Copier {
SPC_DSP::copy_func_t func;
unsigned char** buf;
public:
SPC_State_Copier( unsigned char** p, SPC_DSP::copy_func_t f ) { func = f; buf = p; }
void copy( void* state, size_t size );
int copy_int( int state, int size );
void skip( int count );
void extra();
};
#define SPC_COPY( type, state )\
{\
state = (BOOST::type) copier.copy_int( state, sizeof (BOOST::type) );\
assert( (BOOST::type) state == state );\
}
#endif
#endif