* remove little unused code

* code cleanup
This commit is contained in:
giantpune 2010-09-18 23:16:05 +00:00
parent e1a36e8988
commit 9e79c9d99b
326 changed files with 87736 additions and 80266 deletions

View File

@ -2,8 +2,8 @@
<app version="1">
<name> USB Loader GX</name>
<coder>USB Loader GX Team</coder>
<version>1.0 r950</version>
<release_date>201009182245</release_date>
<version>1.0 r951</version>
<release_date>201009182308</release_date>
<short_description>Loads games from USB-devices</short_description>
<long_description>USB Loader GX is a libwiigui based USB iso loader with a wii-like GUI. You can install games to your HDDs and boot them with shorter loading times.
The interactive GUI is completely controllable with WiiMote, Classic Controller or GC Controller.

BIN
data/magic_patcher.o Normal file

Binary file not shown.

View File

@ -27,55 +27,55 @@
#include "filelist.h"
FreeTypeGX * fontSystem = NULL;
static FT_Byte * MainFont = (FT_Byte *) font_ttf;
static FT_Byte * MainFont = ( FT_Byte * ) font_ttf;
static u32 MainFontSize = font_ttf_size;
void ClearFontData()
{
if(fontSystem)
if ( fontSystem )
delete fontSystem;
fontSystem = NULL;
if(MainFont != (FT_Byte *) font_ttf)
if ( MainFont != ( FT_Byte * ) font_ttf )
{
if(MainFont != NULL)
if ( MainFont != NULL )
delete [] MainFont;
MainFont = (FT_Byte *) font_ttf;
MainFont = ( FT_Byte * ) font_ttf;
MainFontSize = font_ttf_size;
}
}
bool SetupDefaultFont(const char *path)
bool SetupDefaultFont( const char *path )
{
bool result = false;
FILE *pfile = NULL;
ClearFontData();
if(path)
pfile = fopen(path, "rb");
if ( path )
pfile = fopen( path, "rb" );
if(pfile)
if ( pfile )
{
fseek(pfile, 0, SEEK_END);
MainFontSize = ftell(pfile);
rewind(pfile);
fseek( pfile, 0, SEEK_END );
MainFontSize = ftell( pfile );
rewind( pfile );
MainFont = new (std::nothrow) FT_Byte[MainFontSize];
if(!MainFont)
MainFont = new ( std::nothrow ) FT_Byte[MainFontSize];
if ( !MainFont )
{
MainFont = (FT_Byte *) font_ttf;
MainFont = ( FT_Byte * ) font_ttf;
MainFontSize = font_ttf_size;
}
else
{
fread(MainFont, 1, MainFontSize, pfile);
fread( MainFont, 1, MainFontSize, pfile );
result = true;
}
fclose(pfile);
fclose( pfile );
}
fontSystem = new FreeTypeGX(MainFont, MainFontSize);
fontSystem = new FreeTypeGX( MainFont, MainFontSize );
return result;
}

View File

@ -26,7 +26,7 @@
#ifndef FONTSYSTEM_H_
#define FONTSYSTEM_H_
bool SetupDefaultFont(const char *path);
bool SetupDefaultFont( const char *path );
void ClearFontData();
#endif

View File

@ -34,24 +34,24 @@ using namespace std;
* @return Wide character representation of supplied character string.
*/
wchar_t* charToWideChar(const char* strChar)
wchar_t* charToWideChar( const char* strChar )
{
if(!strChar)
if ( !strChar )
return NULL;
wchar_t *strWChar = new (std::nothrow) wchar_t[strlen(strChar) + 1];
if(!strWChar)
wchar_t *strWChar = new ( std::nothrow ) wchar_t[strlen( strChar ) + 1];
if ( !strWChar )
return NULL;
int bt = mbstowcs(strWChar, strChar, strlen(strChar));
if (bt > 0)
int bt = mbstowcs( strWChar, strChar, strlen( strChar ) );
if ( bt > 0 )
{
strWChar[bt] = 0;
return strWChar;
}
wchar_t *tempDest = strWChar;
while((*tempDest++ = *strChar++));
while ( ( *tempDest++ = *strChar++ ) );
return strWChar;
}
@ -59,15 +59,15 @@ wchar_t* charToWideChar(const char* strChar)
/**
* Default constructor for the FreeTypeGX class for WiiXplorer.
*/
FreeTypeGX::FreeTypeGX(const uint8_t* fontBuffer, FT_Long bufferSize)
FreeTypeGX::FreeTypeGX( const uint8_t* fontBuffer, FT_Long bufferSize )
{
ftPointSize = 0;
FT_Init_FreeType(&ftLibrary);
FT_New_Memory_Face(ftLibrary, (FT_Byte *)fontBuffer, bufferSize, 0, &ftFace);
FT_Init_FreeType( &ftLibrary );
FT_New_Memory_Face( ftLibrary, ( FT_Byte * )fontBuffer, bufferSize, 0, &ftFace );
setVertexFormat(GX_VTXFMT1);
ftKerningEnabled = FT_HAS_KERNING(ftFace);
setVertexFormat( GX_VTXFMT1 );
ftKerningEnabled = FT_HAS_KERNING( ftFace );
}
/**
@ -76,8 +76,8 @@ FreeTypeGX::FreeTypeGX(const uint8_t* fontBuffer, FT_Long bufferSize)
FreeTypeGX::~FreeTypeGX()
{
unloadFont();
FT_Done_Face(ftFace);
FT_Done_FreeType(ftLibrary);
FT_Done_Face( ftFace );
FT_Done_FreeType( ftLibrary );
}
/**
@ -89,12 +89,12 @@ FreeTypeGX::~FreeTypeGX()
*
* @param vertexIndex Vertex format index (GX_VTXFMT*) of the glyph textures as defined by the libogc gx.h header file.
*/
void FreeTypeGX::setVertexFormat(uint8_t vertexInd)
void FreeTypeGX::setVertexFormat( uint8_t vertexInd )
{
vertexIndex = vertexInd;
GX_SetVtxAttrFmt(vertexIndex, GX_VA_POS, GX_POS_XYZ, GX_S16, 0);
GX_SetVtxAttrFmt(vertexIndex, GX_VA_TEX0, GX_TEX_ST, GX_F32, 0);
GX_SetVtxAttrFmt(vertexIndex, GX_VA_CLR0, GX_CLR_RGBA, GX_RGBA8, 0);
GX_SetVtxAttrFmt( vertexIndex, GX_VA_POS, GX_POS_XYZ, GX_S16, 0 );
GX_SetVtxAttrFmt( vertexIndex, GX_VA_TEX0, GX_TEX_ST, GX_F32, 0 );
GX_SetVtxAttrFmt( vertexIndex, GX_VA_CLR0, GX_CLR_RGBA, GX_RGBA8, 0 );
}
/**
@ -104,16 +104,16 @@ void FreeTypeGX::setVertexFormat(uint8_t vertexInd)
*/
void FreeTypeGX::unloadFont()
{
if(this->fontData.size() == 0)
if ( this->fontData.size() == 0 )
return;
map<int16_t, map<wchar_t, ftgxCharData> >::iterator itr;
map<wchar_t, ftgxCharData>::iterator itr2;
for(itr = fontData.begin(); itr != fontData.end(); itr++)
for ( itr = fontData.begin(); itr != fontData.end(); itr++ )
{
for(itr2 = itr->second.begin(); itr2 != itr->second.end(); itr2++)
free(itr2->second.glyphDataTexture);
for ( itr2 = itr->second.begin(); itr2 != itr->second.end(); itr2++ )
free( itr2->second.glyphDataTexture );
itr->second.clear();
}
@ -131,17 +131,17 @@ void FreeTypeGX::unloadFont()
* @param charCode The requested glyph's character code.
* @return A pointer to the allocated font structure.
*/
ftgxCharData * FreeTypeGX::cacheGlyphData(wchar_t charCode, int16_t pixelSize)
ftgxCharData * FreeTypeGX::cacheGlyphData( wchar_t charCode, int16_t pixelSize )
{
map<int16_t, map<wchar_t, ftgxCharData> >::iterator itr;
map<wchar_t, ftgxCharData>::iterator itr2;
itr = fontData.find(pixelSize);
if(itr != fontData.end())
itr = fontData.find( pixelSize );
if ( itr != fontData.end() )
{
itr2 = itr->second.find(charCode);
itr2 = itr->second.find( charCode );
if(itr2 != itr->second.end())
if ( itr2 != itr->second.end() )
{
return &itr2->second;
}
@ -150,43 +150,43 @@ ftgxCharData * FreeTypeGX::cacheGlyphData(wchar_t charCode, int16_t pixelSize)
FT_UInt gIndex;
uint16_t textureWidth = 0, textureHeight = 0;
if(ftPointSize != pixelSize)
if ( ftPointSize != pixelSize )
{
ftPointSize = pixelSize;
FT_Set_Pixel_Sizes(ftFace, 0, ftPointSize);
FT_Set_Pixel_Sizes( ftFace, 0, ftPointSize );
//!Cache ascender and decender as well
map<int16_t, ftgxDataOffset>::iterator itrAlign = ftgxAlign.find(ftPointSize);
if(itrAlign == ftgxAlign.end())
map<int16_t, ftgxDataOffset>::iterator itrAlign = ftgxAlign.find( ftPointSize );
if ( itrAlign == ftgxAlign.end() )
{
ftgxAlign[ftPointSize].ascender = (int16_t) ftFace->size->metrics.ascender>>6;
ftgxAlign[ftPointSize].descender = (int16_t) ftFace->size->metrics.descender>>6;
ftgxAlign[ftPointSize].ascender = ( int16_t ) ftFace->size->metrics.ascender >> 6;
ftgxAlign[ftPointSize].descender = ( int16_t ) ftFace->size->metrics.descender >> 6;
ftgxAlign[ftPointSize].max = 0;
ftgxAlign[ftPointSize].min = 0;
}
}
gIndex = FT_Get_Char_Index(ftFace, (FT_ULong) charCode);
if (gIndex != 0 && FT_Load_Glyph(ftFace, gIndex, FT_LOAD_DEFAULT | FT_LOAD_RENDER) == 0)
gIndex = FT_Get_Char_Index( ftFace, ( FT_ULong ) charCode );
if ( gIndex != 0 && FT_Load_Glyph( ftFace, gIndex, FT_LOAD_DEFAULT | FT_LOAD_RENDER ) == 0 )
{
if(ftFace->glyph->format == FT_GLYPH_FORMAT_BITMAP)
if ( ftFace->glyph->format == FT_GLYPH_FORMAT_BITMAP )
{
FT_Bitmap *glyphBitmap = &ftFace->glyph->bitmap;
textureWidth = glyphBitmap->width + (4 - glyphBitmap->width % 4) % 4;
textureHeight = glyphBitmap->rows + (4 - glyphBitmap->rows % 4) % 4;
textureWidth = glyphBitmap->width + ( 4 - glyphBitmap->width % 4 ) % 4;
textureHeight = glyphBitmap->rows + ( 4 - glyphBitmap->rows % 4 ) % 4;
fontData[pixelSize][charCode].renderOffsetX = (int16_t) ftFace->glyph->bitmap_left;
fontData[pixelSize][charCode].glyphAdvanceX = (uint16_t) (ftFace->glyph->advance.x >> 6);
fontData[pixelSize][charCode].glyphIndex = (uint32_t) gIndex;
fontData[pixelSize][charCode].textureWidth = (uint16_t) textureWidth;
fontData[pixelSize][charCode].textureHeight = (uint16_t) textureHeight;
fontData[pixelSize][charCode].renderOffsetY = (int16_t) ftFace->glyph->bitmap_top;
fontData[pixelSize][charCode].renderOffsetMax = (int16_t) ftFace->glyph->bitmap_top;
fontData[pixelSize][charCode].renderOffsetMin = (int16_t) glyphBitmap->rows - ftFace->glyph->bitmap_top;
fontData[pixelSize][charCode].renderOffsetX = ( int16_t ) ftFace->glyph->bitmap_left;
fontData[pixelSize][charCode].glyphAdvanceX = ( uint16_t ) ( ftFace->glyph->advance.x >> 6 );
fontData[pixelSize][charCode].glyphIndex = ( uint32_t ) gIndex;
fontData[pixelSize][charCode].textureWidth = ( uint16_t ) textureWidth;
fontData[pixelSize][charCode].textureHeight = ( uint16_t ) textureHeight;
fontData[pixelSize][charCode].renderOffsetY = ( int16_t ) ftFace->glyph->bitmap_top;
fontData[pixelSize][charCode].renderOffsetMax = ( int16_t ) ftFace->glyph->bitmap_top;
fontData[pixelSize][charCode].renderOffsetMin = ( int16_t ) glyphBitmap->rows - ftFace->glyph->bitmap_top;
fontData[pixelSize][charCode].glyphDataTexture = NULL;
loadGlyphData(glyphBitmap, &fontData[pixelSize][charCode]);
loadGlyphData( glyphBitmap, &fontData[pixelSize][charCode] );
return &fontData[pixelSize][charCode];
}
@ -200,7 +200,7 @@ ftgxCharData * FreeTypeGX::cacheGlyphData(wchar_t charCode, int16_t pixelSize)
* This routine locates each character in the configured font face and renders the glyph's bitmap.
* Each bitmap and relevant information is loaded into its own quickly addressible structure within an instance-specific map.
*/
uint16_t FreeTypeGX::cacheGlyphDataComplete(int16_t pixelSize)
uint16_t FreeTypeGX::cacheGlyphDataComplete( int16_t pixelSize )
{
uint32_t i = 0;
FT_UInt gIndex;
@ -208,11 +208,11 @@ uint16_t FreeTypeGX::cacheGlyphDataComplete(int16_t pixelSize)
FT_ULong charCode = FT_Get_First_Char( ftFace, &gIndex );
while ( gIndex != 0 )
{
if(cacheGlyphData(charCode, pixelSize) != NULL)
if ( cacheGlyphData( charCode, pixelSize ) != NULL )
++i;
charCode = FT_Get_Next_Char( ftFace, charCode, &gIndex );
}
return (uint16_t)(i);
return ( uint16_t )( i );
}
/**
@ -227,24 +227,24 @@ uint16_t FreeTypeGX::cacheGlyphDataComplete(int16_t pixelSize)
*
* Optimized for RGBA8 use by Dimok.
*/
void FreeTypeGX::loadGlyphData(FT_Bitmap *bmp, ftgxCharData *charData)
void FreeTypeGX::loadGlyphData( FT_Bitmap *bmp, ftgxCharData *charData )
{
int length = ((((charData->textureWidth+3)>>2)*((charData->textureHeight+3)>>2)*32*2 + 31) & ~31);
int length = ( ( ( ( charData->textureWidth + 3 ) >> 2 ) * ( ( charData->textureHeight + 3 ) >> 2 ) * 32 * 2 + 31 ) & ~31 );
uint8_t * glyphData = (uint8_t *) memalign(32, length);
if(!glyphData)
uint8_t * glyphData = ( uint8_t * ) memalign( 32, length );
if ( !glyphData )
return;
memset(glyphData, 0x00, length);
memset( glyphData, 0x00, length );
uint8_t *src = (uint8_t *)bmp->buffer;
uint8_t *src = ( uint8_t * )bmp->buffer;
uint32_t offset;
for (int imagePosY = 0; imagePosY < bmp->rows; ++imagePosY)
for ( int imagePosY = 0; imagePosY < bmp->rows; ++imagePosY )
{
for (int imagePosX = 0; imagePosX < bmp->width; ++imagePosX)
for ( int imagePosX = 0; imagePosX < bmp->width; ++imagePosX )
{
offset = ((((imagePosY >> 2) * (charData->textureWidth >> 2) + (imagePosX >> 2)) << 5) + ((imagePosY & 3) << 2) + (imagePosX & 3)) << 1;
offset = ( ( ( ( imagePosY >> 2 ) * ( charData->textureWidth >> 2 ) + ( imagePosX >> 2 ) ) << 5 ) + ( ( imagePosY & 3 ) << 2 ) + ( imagePosX & 3 ) ) << 1;
glyphData[offset] = *src;
glyphData[offset+1] = *src;
glyphData[offset+32] = *src;
@ -252,7 +252,7 @@ void FreeTypeGX::loadGlyphData(FT_Bitmap *bmp, ftgxCharData *charData)
++src;
}
}
DCFlushRange(glyphData, length);
DCFlushRange( glyphData, length );
charData->glyphDataTexture = glyphData;
}
@ -265,13 +265,13 @@ void FreeTypeGX::loadGlyphData(FT_Bitmap *bmp, ftgxCharData *charData)
* @param width Current pixel width of the string.
* @param format Positional format of the string.
*/
int16_t FreeTypeGX::getStyleOffsetWidth(uint16_t width, uint16_t format)
int16_t FreeTypeGX::getStyleOffsetWidth( uint16_t width, uint16_t format )
{
if (format & FTGX_JUSTIFY_LEFT)
if ( format & FTGX_JUSTIFY_LEFT )
return 0;
else if (format & FTGX_JUSTIFY_CENTER)
return -(width >> 1);
else if (format & FTGX_JUSTIFY_RIGHT)
else if ( format & FTGX_JUSTIFY_CENTER )
return -( width >> 1 );
else if ( format & FTGX_JUSTIFY_RIGHT )
return -width;
return 0;
}
@ -284,20 +284,20 @@ int16_t FreeTypeGX::getStyleOffsetWidth(uint16_t width, uint16_t format)
* @param offset Current pixel offset data of the string.
* @param format Positional format of the string.
*/
int16_t FreeTypeGX::getStyleOffsetHeight(int16_t format, uint16_t pixelSize)
int16_t FreeTypeGX::getStyleOffsetHeight( int16_t format, uint16_t pixelSize )
{
map<int16_t, ftgxDataOffset>::iterator itrAlign = ftgxAlign.find(pixelSize);
if(itrAlign == ftgxAlign.end())
map<int16_t, ftgxDataOffset>::iterator itrAlign = ftgxAlign.find( pixelSize );
if ( itrAlign == ftgxAlign.end() )
return 0;
switch(format & FTGX_ALIGN_MASK)
switch ( format & FTGX_ALIGN_MASK )
{
case FTGX_ALIGN_TOP:
return itrAlign->second.ascender;
case FTGX_ALIGN_MIDDLE:
default:
return (itrAlign->second.ascender + itrAlign->second.descender + 1) >> 1;
return ( itrAlign->second.ascender + itrAlign->second.descender + 1 ) >> 1;
case FTGX_ALIGN_BOTTOM:
return itrAlign->second.descender;
@ -309,7 +309,7 @@ int16_t FreeTypeGX::getStyleOffsetHeight(int16_t format, uint16_t pixelSize)
return itrAlign->second.max;
case FTGX_ALIGN_GLYPH_MIDDLE:
return (itrAlign->second.max + itrAlign->second.min + 1) >> 1;
return ( itrAlign->second.max + itrAlign->second.min + 1 ) >> 1;
case FTGX_ALIGN_GLYPH_BOTTOM:
return itrAlign->second.min;
@ -330,45 +330,45 @@ int16_t FreeTypeGX::getStyleOffsetHeight(int16_t format, uint16_t pixelSize)
* @param textStyle Flags which specify any styling which should be applied to the rendered string.
* @return The number of characters printed.
*/
uint16_t FreeTypeGX::drawText(int16_t x, int16_t y, int16_t z, const wchar_t *text, int16_t pixelSize, GXColor color, uint16_t textStyle, uint16_t textWidth, uint16_t widthLimit)
uint16_t FreeTypeGX::drawText( int16_t x, int16_t y, int16_t z, const wchar_t *text, int16_t pixelSize, GXColor color, uint16_t textStyle, uint16_t textWidth, uint16_t widthLimit )
{
if(!text)
if ( !text )
return 0;
uint16_t fullTextWidth = textWidth > 0 ? textWidth : getWidth(text, pixelSize);
uint16_t fullTextWidth = textWidth > 0 ? textWidth : getWidth( text, pixelSize );
uint16_t x_pos = x, printed = 0;
uint16_t x_offset = 0, y_offset = 0;
GXTexObj glyphTexture;
FT_Vector pairDelta;
if(textStyle & FTGX_JUSTIFY_MASK)
if ( textStyle & FTGX_JUSTIFY_MASK )
{
x_offset = getStyleOffsetWidth(fullTextWidth, textStyle);
x_offset = getStyleOffsetWidth( fullTextWidth, textStyle );
}
if(textStyle & FTGX_ALIGN_MASK)
if ( textStyle & FTGX_ALIGN_MASK )
{
y_offset = getStyleOffsetHeight(textStyle, pixelSize);
y_offset = getStyleOffsetHeight( textStyle, pixelSize );
}
int i = 0;
while (text[i])
while ( text[i] )
{
if(widthLimit > 0 && (x_pos-x) > widthLimit)
if ( widthLimit > 0 && ( x_pos - x ) > widthLimit )
break;
ftgxCharData* glyphData = cacheGlyphData(text[i], pixelSize);
ftgxCharData* glyphData = cacheGlyphData( text[i], pixelSize );
if (glyphData != NULL)
if ( glyphData != NULL )
{
if (ftKerningEnabled && i > 0)
if ( ftKerningEnabled && i > 0 )
{
FT_Get_Kerning(ftFace, fontData[pixelSize][text[i - 1]].glyphIndex, glyphData->glyphIndex, FT_KERNING_DEFAULT, &pairDelta);
FT_Get_Kerning( ftFace, fontData[pixelSize][text[i - 1]].glyphIndex, glyphData->glyphIndex, FT_KERNING_DEFAULT, &pairDelta );
x_pos += pairDelta.x >> 6;
}
GX_InitTexObj(&glyphTexture, glyphData->glyphDataTexture, glyphData->textureWidth, glyphData->textureHeight, GX_TF_RGBA8, GX_CLAMP, GX_CLAMP, GX_FALSE);
copyTextureToFramebuffer(&glyphTexture, glyphData->textureWidth, glyphData->textureHeight, x_pos + glyphData->renderOffsetX + x_offset, y - glyphData->renderOffsetY + y_offset, z, color);
GX_InitTexObj( &glyphTexture, glyphData->glyphDataTexture, glyphData->textureWidth, glyphData->textureHeight, GX_TF_RGBA8, GX_CLAMP, GX_CLAMP, GX_FALSE );
copyTextureToFramebuffer( &glyphTexture, glyphData->textureWidth, glyphData->textureHeight, x_pos + glyphData->renderOffsetX + x_offset, y - glyphData->renderOffsetY + y_offset, z, color );
x_pos += glyphData->glyphAdvanceX;
++printed;
@ -376,24 +376,24 @@ uint16_t FreeTypeGX::drawText(int16_t x, int16_t y, int16_t z, const wchar_t *te
++i;
}
if(textStyle & FTGX_STYLE_MASK)
if ( textStyle & FTGX_STYLE_MASK )
{
getOffset(text, pixelSize, widthLimit);
drawTextFeature(x + x_offset, y + y_offset, z, pixelSize, fullTextWidth, &ftgxAlign[pixelSize], textStyle, color);
getOffset( text, pixelSize, widthLimit );
drawTextFeature( x + x_offset, y + y_offset, z, pixelSize, fullTextWidth, &ftgxAlign[pixelSize], textStyle, color );
}
return printed;
}
void FreeTypeGX::drawTextFeature(int16_t x, int16_t y, int16_t z, int16_t pixelSize, uint16_t width, ftgxDataOffset *offsetData, uint16_t format, GXColor color)
void FreeTypeGX::drawTextFeature( int16_t x, int16_t y, int16_t z, int16_t pixelSize, uint16_t width, ftgxDataOffset *offsetData, uint16_t format, GXColor color )
{
uint16_t featureHeight = pixelSize >> 4 > 0 ? pixelSize >> 4 : 1;
if (format & FTGX_STYLE_UNDERLINE)
this->copyFeatureToFramebuffer(width, featureHeight, x, y + 1, z, color);
if ( format & FTGX_STYLE_UNDERLINE )
this->copyFeatureToFramebuffer( width, featureHeight, x, y + 1, z, color );
if (format & FTGX_STYLE_STRIKE)
this->copyFeatureToFramebuffer(width, featureHeight, x, y - ((offsetData->max) >> 1), z, color);
if ( format & FTGX_STYLE_STRIKE )
this->copyFeatureToFramebuffer( width, featureHeight, x, y - ( ( offsetData->max ) >> 1 ), z, color );
}
/**
@ -405,24 +405,24 @@ void FreeTypeGX::drawTextFeature(int16_t x, int16_t y, int16_t z, int16_t pixelS
* @param text NULL terminated string to calculate.
* @return The width of the text string in pixels.
*/
uint16_t FreeTypeGX::getWidth(const wchar_t *text, int16_t pixelSize)
uint16_t FreeTypeGX::getWidth( const wchar_t *text, int16_t pixelSize )
{
if(!text)
if ( !text )
return 0;
uint16_t strWidth = 0;
FT_Vector pairDelta;
int i = 0;
while (text[i])
while ( text[i] )
{
ftgxCharData* glyphData = cacheGlyphData(text[i], pixelSize);
ftgxCharData* glyphData = cacheGlyphData( text[i], pixelSize );
if (glyphData != NULL)
if ( glyphData != NULL )
{
if (ftKerningEnabled && (i > 0))
if ( ftKerningEnabled && ( i > 0 ) )
{
FT_Get_Kerning(ftFace, fontData[pixelSize][text[i - 1]].glyphIndex, glyphData->glyphIndex, FT_KERNING_DEFAULT, &pairDelta);
FT_Get_Kerning( ftFace, fontData[pixelSize][text[i - 1]].glyphIndex, glyphData->glyphIndex, FT_KERNING_DEFAULT, &pairDelta );
strWidth += pairDelta.x >> 6;
}
@ -436,17 +436,17 @@ uint16_t FreeTypeGX::getWidth(const wchar_t *text, int16_t pixelSize)
/**
* Single char width
*/
uint16_t FreeTypeGX::getCharWidth(const wchar_t wChar, int16_t pixelSize, const wchar_t prevChar)
uint16_t FreeTypeGX::getCharWidth( const wchar_t wChar, int16_t pixelSize, const wchar_t prevChar )
{
uint16_t strWidth = 0;
ftgxCharData * glyphData = cacheGlyphData(wChar, pixelSize);
ftgxCharData * glyphData = cacheGlyphData( wChar, pixelSize );
if(glyphData != NULL)
if ( glyphData != NULL )
{
if (ftKerningEnabled && prevChar != 0x0000)
if ( ftKerningEnabled && prevChar != 0x0000 )
{
FT_Vector pairDelta;
FT_Get_Kerning(ftFace, fontData[pixelSize][prevChar].glyphIndex, glyphData->glyphIndex, FT_KERNING_DEFAULT, &pairDelta);
FT_Get_Kerning( ftFace, fontData[pixelSize][prevChar].glyphIndex, glyphData->glyphIndex, FT_KERNING_DEFAULT, &pairDelta );
strWidth += pairDelta.x >> 6;
}
strWidth += glyphData->glyphAdvanceX;
@ -464,9 +464,9 @@ uint16_t FreeTypeGX::getCharWidth(const wchar_t wChar, int16_t pixelSize, const
* @param text NULL terminated string to calculate.
* @return The height of the text string in pixels.
*/
uint16_t FreeTypeGX::getHeight(const wchar_t *text, int16_t pixelSize)
uint16_t FreeTypeGX::getHeight( const wchar_t *text, int16_t pixelSize )
{
getOffset(text, pixelSize);
getOffset( text, pixelSize );
return ftgxAlign[pixelSize].max - ftgxAlign[pixelSize].min;
}
@ -481,9 +481,9 @@ uint16_t FreeTypeGX::getHeight(const wchar_t *text, int16_t pixelSize)
* @param offset returns the max and min values above and below the font origin line
*
*/
void FreeTypeGX::getOffset(const wchar_t *text, int16_t pixelSize, uint16_t widthLimit)
void FreeTypeGX::getOffset( const wchar_t *text, int16_t pixelSize, uint16_t widthLimit )
{
if(ftgxAlign.find(pixelSize) != ftgxAlign.end())
if ( ftgxAlign.find( pixelSize ) != ftgxAlign.end() )
return;
int16_t strMax = 0, strMin = 9999;
@ -491,14 +491,14 @@ void FreeTypeGX::getOffset(const wchar_t *text, int16_t pixelSize, uint16_t widt
int i = 0;
while (text[i])
while ( text[i] )
{
if(widthLimit > 0 && currWidth >= widthLimit)
if ( widthLimit > 0 && currWidth >= widthLimit )
break;
ftgxCharData* glyphData = cacheGlyphData(text[i], pixelSize);
ftgxCharData* glyphData = cacheGlyphData( text[i], pixelSize );
if(glyphData != NULL)
if ( glyphData != NULL )
{
strMax = glyphData->renderOffsetMax > strMax ? glyphData->renderOffsetMax : strMax;
strMin = glyphData->renderOffsetMin < strMin ? glyphData->renderOffsetMin : strMin;
@ -508,14 +508,14 @@ void FreeTypeGX::getOffset(const wchar_t *text, int16_t pixelSize, uint16_t widt
++i;
}
if(ftPointSize != pixelSize)
if ( ftPointSize != pixelSize )
{
ftPointSize = pixelSize;
FT_Set_Pixel_Sizes(ftFace, 0, ftPointSize);
FT_Set_Pixel_Sizes( ftFace, 0, ftPointSize );
}
ftgxAlign[pixelSize].ascender = ftFace->size->metrics.ascender>>6;
ftgxAlign[pixelSize].descender = ftFace->size->metrics.descender>>6;
ftgxAlign[pixelSize].ascender = ftFace->size->metrics.ascender >> 6;
ftgxAlign[pixelSize].descender = ftFace->size->metrics.descender >> 6;
ftgxAlign[pixelSize].max = strMax;
ftgxAlign[pixelSize].min = strMin;
}
@ -532,34 +532,34 @@ void FreeTypeGX::getOffset(const wchar_t *text, int16_t pixelSize, uint16_t widt
* @param screenY The screen Y coordinate at which to output the rendered texture.
* @param color Color to apply to the texture.
*/
void FreeTypeGX::copyTextureToFramebuffer(GXTexObj *texObj, f32 texWidth, f32 texHeight, int16_t screenX, int16_t screenY, int16_t screenZ, GXColor color)
void FreeTypeGX::copyTextureToFramebuffer( GXTexObj *texObj, f32 texWidth, f32 texHeight, int16_t screenX, int16_t screenY, int16_t screenZ, GXColor color )
{
GX_LoadTexObj(texObj, GX_TEXMAP0);
GX_LoadTexObj( texObj, GX_TEXMAP0 );
GX_InvalidateTexAll();
GX_SetTevOp (GX_TEVSTAGE0, GX_MODULATE);
GX_SetVtxDesc (GX_VA_TEX0, GX_DIRECT);
GX_SetTevOp ( GX_TEVSTAGE0, GX_MODULATE );
GX_SetVtxDesc ( GX_VA_TEX0, GX_DIRECT );
GX_Begin(GX_QUADS, this->vertexIndex, 4);
GX_Position3s16(screenX, screenY, screenZ);
GX_Color4u8(color.r, color.g, color.b, color.a);
GX_TexCoord2f32(0.0f, 0.0f);
GX_Begin( GX_QUADS, this->vertexIndex, 4 );
GX_Position3s16( screenX, screenY, screenZ );
GX_Color4u8( color.r, color.g, color.b, color.a );
GX_TexCoord2f32( 0.0f, 0.0f );
GX_Position3s16(texWidth + screenX, screenY, screenZ);
GX_Color4u8(color.r, color.g, color.b, color.a);
GX_TexCoord2f32(1.0f, 0.0f);
GX_Position3s16( texWidth + screenX, screenY, screenZ );
GX_Color4u8( color.r, color.g, color.b, color.a );
GX_TexCoord2f32( 1.0f, 0.0f );
GX_Position3s16(texWidth + screenX, texHeight + screenY, screenZ);
GX_Color4u8(color.r, color.g, color.b, color.a);
GX_TexCoord2f32(1.0f, 1.0f);
GX_Position3s16( texWidth + screenX, texHeight + screenY, screenZ );
GX_Color4u8( color.r, color.g, color.b, color.a );
GX_TexCoord2f32( 1.0f, 1.0f );
GX_Position3s16(screenX, texHeight + screenY, screenZ);
GX_Color4u8(color.r, color.g, color.b, color.a);
GX_TexCoord2f32(0.0f, 1.0f);
GX_Position3s16( screenX, texHeight + screenY, screenZ );
GX_Color4u8( color.r, color.g, color.b, color.a );
GX_TexCoord2f32( 0.0f, 1.0f );
GX_End();
GX_SetTevOp(GX_TEVSTAGE0, GX_PASSCLR);
GX_SetVtxDesc(GX_VA_TEX0, GX_NONE);
GX_SetTevOp( GX_TEVSTAGE0, GX_PASSCLR );
GX_SetVtxDesc( GX_VA_TEX0, GX_NONE );
}
/**
@ -573,25 +573,25 @@ void FreeTypeGX::copyTextureToFramebuffer(GXTexObj *texObj, f32 texWidth, f32 te
* @param screenY The screen Y coordinate at which to output the quad.
* @param color Color to apply to the texture.
*/
void FreeTypeGX::copyFeatureToFramebuffer(f32 featureWidth, f32 featureHeight, int16_t screenX, int16_t screenY, int16_t screenZ, GXColor color)
void FreeTypeGX::copyFeatureToFramebuffer( f32 featureWidth, f32 featureHeight, int16_t screenX, int16_t screenY, int16_t screenZ, GXColor color )
{
GX_SetTevOp (GX_TEVSTAGE0, GX_PASSCLR);
GX_SetVtxDesc (GX_VA_TEX0, GX_NONE);
GX_SetTevOp ( GX_TEVSTAGE0, GX_PASSCLR );
GX_SetVtxDesc ( GX_VA_TEX0, GX_NONE );
GX_Begin(GX_QUADS, this->vertexIndex, 4);
GX_Position3s16(screenX, screenY, screenZ);
GX_Color4u8(color.r, color.g, color.b, color.a);
GX_Begin( GX_QUADS, this->vertexIndex, 4 );
GX_Position3s16( screenX, screenY, screenZ );
GX_Color4u8( color.r, color.g, color.b, color.a );
GX_Position3s16(featureWidth + screenX, screenY, screenZ);
GX_Color4u8(color.r, color.g, color.b, color.a);
GX_Position3s16( featureWidth + screenX, screenY, screenZ );
GX_Color4u8( color.r, color.g, color.b, color.a );
GX_Position3s16(featureWidth + screenX, featureHeight + screenY, screenZ);
GX_Color4u8(color.r, color.g, color.b, color.a);
GX_Position3s16( featureWidth + screenX, featureHeight + screenY, screenZ );
GX_Color4u8( color.r, color.g, color.b, color.a );
GX_Position3s16(screenX, featureHeight + screenY, screenZ);
GX_Color4u8(color.r, color.g, color.b, color.a);
GX_Position3s16( screenX, featureHeight + screenY, screenZ );
GX_Color4u8( color.r, color.g, color.b, color.a );
GX_End();
GX_SetTevOp(GX_TEVSTAGE0, GX_PASSCLR);
GX_SetVtxDesc(GX_VA_TEX0, GX_NONE);
GX_SetTevOp( GX_TEVSTAGE0, GX_PASSCLR );
GX_SetVtxDesc( GX_VA_TEX0, GX_NONE );
}

View File

@ -37,7 +37,8 @@
*
* Font face character glyph relevant data structure.
*/
typedef struct ftgxCharData_ {
typedef struct ftgxCharData_
{
int16_t renderOffsetX; /**< Texture X axis bearing offset. */
uint16_t glyphAdvanceX; /**< Character glyph X coordinate advance in pixels. */
uint32_t glyphIndex; /**< Charachter glyph index in the font face. */
@ -56,7 +57,8 @@ typedef struct ftgxCharData_ {
*
* Offset structure which hold both a maximum and minimum value.
*/
typedef struct ftgxDataOffset_ {
typedef struct ftgxDataOffset_
{
int16_t ascender; /**< Maximum data offset. */
int16_t descender; /**< Minimum data offset. */
int16_t max; /**< Maximum data offset. */
@ -87,9 +89,9 @@ typedef struct ftgxDataOffset_ ftgxDataOffset;
#define FTGX_STYLE_STRIKE 0x2000
#define FTGX_STYLE_MASK 0xf000
const GXColor ftgxWhite = (GXColor){0xff, 0xff, 0xff, 0xff}; /**< Constant color value used only to sanitize Doxygen documentation. */
const GXColor ftgxWhite = ( GXColor ) {0xff, 0xff, 0xff, 0xff}; /**< Constant color value used only to sanitize Doxygen documentation. */
wchar_t* charToWideChar(const char* p);
wchar_t* charToWideChar( const char* p );
/*! \class FreeTypeGX
* \brief Wrapper class for the libFreeType library with GX rendering.
@ -111,32 +113,32 @@ class FreeTypeGX
std::map<int16_t, std::map<wchar_t, ftgxCharData> > fontData; /**< Map which holds the glyph data structures for the corresponding characters in one size. */
std::map<int16_t, ftgxDataOffset> ftgxAlign; /**< Map which holds the ascender and decender for different sizes. */
int16_t getStyleOffsetWidth(uint16_t width, uint16_t format);
int16_t getStyleOffsetHeight(int16_t format, uint16_t pixelSize);
int16_t getStyleOffsetWidth( uint16_t width, uint16_t format );
int16_t getStyleOffsetHeight( int16_t format, uint16_t pixelSize );
void unloadFont();
ftgxCharData *cacheGlyphData(wchar_t charCode, int16_t pixelSize);
uint16_t cacheGlyphDataComplete(int16_t pixelSize);
void loadGlyphData(FT_Bitmap *bmp, ftgxCharData *charData);
ftgxCharData *cacheGlyphData( wchar_t charCode, int16_t pixelSize );
uint16_t cacheGlyphDataComplete( int16_t pixelSize );
void loadGlyphData( FT_Bitmap *bmp, ftgxCharData *charData );
void setDefaultMode();
void drawTextFeature(int16_t x, int16_t y,int16_t z, int16_t pixelSize, uint16_t width, ftgxDataOffset *offsetData, uint16_t format, GXColor color);
void copyTextureToFramebuffer(GXTexObj *texObj, f32 texWidth, f32 texHeight, int16_t screenX, int16_t screenY, int16_t screenZ, GXColor color);
void copyFeatureToFramebuffer(f32 featureWidth, f32 featureHeight, int16_t screenX, int16_t screenY, int16_t screenZ, GXColor color);
void drawTextFeature( int16_t x, int16_t y, int16_t z, int16_t pixelSize, uint16_t width, ftgxDataOffset *offsetData, uint16_t format, GXColor color );
void copyTextureToFramebuffer( GXTexObj *texObj, f32 texWidth, f32 texHeight, int16_t screenX, int16_t screenY, int16_t screenZ, GXColor color );
void copyFeatureToFramebuffer( f32 featureWidth, f32 featureHeight, int16_t screenX, int16_t screenY, int16_t screenZ, GXColor color );
public:
FreeTypeGX(const uint8_t* fontBuffer, FT_Long bufferSize);
FreeTypeGX( const uint8_t* fontBuffer, FT_Long bufferSize );
~FreeTypeGX();
void setVertexFormat(uint8_t vertexIndex);
void setVertexFormat( uint8_t vertexIndex );
uint16_t drawText(int16_t x, int16_t y, int16_t z, const wchar_t *text, int16_t pixelSize, GXColor color = ftgxWhite, uint16_t textStyling = FTGX_NULL, uint16_t textWidth = 0, uint16_t widthLimit = 0);
uint16_t drawText( int16_t x, int16_t y, int16_t z, const wchar_t *text, int16_t pixelSize, GXColor color = ftgxWhite, uint16_t textStyling = FTGX_NULL, uint16_t textWidth = 0, uint16_t widthLimit = 0 );
uint16_t getWidth(const wchar_t *text, int16_t pixelSize);
uint16_t getCharWidth(const wchar_t wChar, int16_t pixelSize, const wchar_t prevChar = 0x0000);
uint16_t getHeight(const wchar_t *text, int16_t pixelSize);
void getOffset(const wchar_t *text, int16_t pixelSize, uint16_t widthLimit = 0);
uint16_t getWidth( const wchar_t *text, int16_t pixelSize );
uint16_t getCharWidth( const wchar_t wChar, int16_t pixelSize, const wchar_t prevChar = 0x0000 );
uint16_t getHeight( const wchar_t *text, int16_t pixelSize );
void getOffset( const wchar_t *text, int16_t pixelSize, uint16_t widthLimit = 0 );
};
#endif /* FREETYPEGX_H_ */

View File

@ -39,16 +39,16 @@
#include "ZipFile.h"
#include "language/gettext.h"
ZipFile::ZipFile(const char *filepath)
ZipFile::ZipFile( const char *filepath )
{
File = unzOpen(filepath);
if(File)
File = unzOpen( filepath );
if ( File )
this->LoadList();
}
ZipFile::~ZipFile()
{
unzClose(File);
unzClose( File );
}
bool ZipFile::LoadList()
@ -56,78 +56,79 @@ bool ZipFile::LoadList()
return true;
}
bool ZipFile::ExtractAll(const char *dest)
bool ZipFile::ExtractAll( const char *dest )
{
if(!File)
if ( !File )
return false;
bool Stop = false;
u32 blocksize = 1024*50;
u32 blocksize = 1024 * 50;
u8 *buffer = new u8[blocksize];
if(!buffer)
if ( !buffer )
return false;
char writepath[MAXPATHLEN];
char filename[MAXPATHLEN];
memset(filename, 0, sizeof(filename));
memset( filename, 0, sizeof( filename ) );
int ret = unzGoToFirstFile(File);
if(ret != UNZ_OK)
int ret = unzGoToFirstFile( File );
if ( ret != UNZ_OK )
Stop = true;
while(!Stop)
while ( !Stop )
{
if(unzGetCurrentFileInfo(File, &cur_file_info, filename, sizeof(filename), NULL, NULL, NULL, NULL) != UNZ_OK)
if ( unzGetCurrentFileInfo( File, &cur_file_info, filename, sizeof( filename ), NULL, NULL, NULL, NULL ) != UNZ_OK )
Stop = true;
if(!Stop && filename[strlen(filename)-1] != '/')
if ( !Stop && filename[strlen( filename )-1] != '/' )
{
u32 uncompressed_size = cur_file_info.uncompressed_size;
u32 done = 0;
char *pointer = NULL;
ret = unzOpenCurrentFile(File);
ret = unzOpenCurrentFile( File );
snprintf(writepath, sizeof(writepath), "%s/%s", dest, filename);
snprintf( writepath, sizeof( writepath ), "%s/%s", dest, filename );
pointer = strrchr(writepath, '/');
int position = pointer-writepath+2;
pointer = strrchr( writepath, '/' );
int position = pointer - writepath + 2;
char temppath[strlen(writepath)];
snprintf(temppath, position, "%s", writepath);
char temppath[strlen( writepath )];
snprintf( temppath, position, "%s", writepath );
subfoldercreate(temppath);
subfoldercreate( temppath );
if(ret == UNZ_OK)
if ( ret == UNZ_OK )
{
FILE *pfile = fopen(writepath, "wb");
FILE *pfile = fopen( writepath, "wb" );
do
{
ShowProgress(tr("Extracting files..."), 0, pointer+1, done, uncompressed_size);
ShowProgress( tr( "Extracting files..." ), 0, pointer + 1, done, uncompressed_size );
if(uncompressed_size - done < blocksize)
if ( uncompressed_size - done < blocksize )
blocksize = uncompressed_size - done;
ret = unzReadCurrentFile(File, buffer, blocksize);
ret = unzReadCurrentFile( File, buffer, blocksize );
if(ret == 0)
if ( ret == 0 )
break;
fwrite(buffer, 1, blocksize, pfile);
fwrite( buffer, 1, blocksize, pfile );
done += ret;
} while(done < uncompressed_size);
}
while ( done < uncompressed_size );
fclose(pfile);
unzCloseCurrentFile(File);
fclose( pfile );
unzCloseCurrentFile( File );
}
}
if(unzGoToNextFile(File) != UNZ_OK)
if ( unzGoToNextFile( File ) != UNZ_OK )
Stop = true;
}

View File

@ -42,12 +42,12 @@ class ZipFile
{
public:
//!Constructor
ZipFile(const char *filepath);
ZipFile( const char *filepath );
//!Destructor
~ZipFile();
//!Extract all files from a zip file to a directory
//!\param dest Destination path to where to extract
bool ExtractAll(const char *dest);
bool ExtractAll( const char *dest );
protected:
bool LoadList();
unzFile File;

View File

@ -15,10 +15,11 @@
*
* Initializes the Wii's audio subsystem
***************************************************************************/
void InitAudio() {
AUDIO_Init(NULL);
void InitAudio()
{
AUDIO_Init( NULL );
ASND_Init();
ASND_Pause(0);
ASND_Pause( 0 );
}
/****************************************************************************
@ -27,7 +28,8 @@ void InitAudio() {
* Shuts down audio subsystem. Useful to avoid unpleasant sounds if a
* crash occurs during shutdown.
***************************************************************************/
void ShutdownAudio() {
ASND_Pause(1);
void ShutdownAudio()
{
ASND_Pause( 1 );
ASND_End();
}

View File

@ -111,24 +111,24 @@
*/
static const uint8_t K[3][16] =
{
{
/* Round 1: skipped (since it is simply sequential). */
{ 1, 6, 11, 0, 5, 10, 15, 4, 9, 14, 3, 8, 13, 2, 7, 12 }, /* R2 */
{ 5, 8, 11, 14, 1, 4, 7, 10, 13, 0, 3, 6, 9, 12, 15, 2 }, /* R3 */
{ 0, 7, 14, 5, 12, 3, 10, 1, 8, 15, 6, 13, 4, 11, 2, 9 } /* R4 */
};
};
static const uint8_t S[4][4] =
{
{
{ 7, 12, 17, 22 }, /* Round 1 */
{ 5, 9, 14, 20 }, /* Round 2 */
{ 4, 11, 16, 23 }, /* Round 3 */
{ 6, 10, 15, 21 } /* Round 4 */
};
};
static const uint32_t T[4][16] =
{
{
{ 0xd76aa478, 0xe8c7b756, 0x242070db, 0xc1bdceee, /* Round 1 */
0xf57c0faf, 0x4787c62a, 0xa8304613, 0xfd469501,
0x698098d8, 0x8b44f7af, 0xffff5bb1, 0x895cd7be,
@ -148,7 +148,7 @@ static const uint32_t T[4][16] =
0x655b59c3, 0x8f0ccc92, 0xffeff47d, 0x85845dd1,
0x6fa87e4f, 0xfe2ce6e0, 0xa3014314, 0x4e0811a1,
0xf7537e82, 0xbd3af235, 0x2ad7d2bb, 0xeb86d391 },
};
};
/* -------------------------------------------------------------------------- **
@ -178,7 +178,7 @@ static const uint32_t T[4][16] =
*/
static void Permute( uint32_t ABCD[4], const unsigned char block[64] )
/* ------------------------------------------------------------------------ **
/* ------------------------------------------------------------------------ **
* Permute the ABCD "registers" using the 64-byte <block> as a driver.
*
* Input: ABCD - Pointer to an array of four unsigned longwords.
@ -210,7 +210,7 @@ static void Permute( uint32_t ABCD[4], const unsigned char block[64] )
*
* ------------------------------------------------------------------------ **
*/
{
{
int round;
int i, j;
uint8_t s;
@ -220,19 +220,19 @@ static void Permute( uint32_t ABCD[4], const unsigned char block[64] )
/* Store the current ABCD values for later re-use.
*/
for( i = 0; i < 4; i++ )
for ( i = 0; i < 4; i++ )
KeepABCD[i] = ABCD[i];
/* Convert the input block into an array of unsigned longs, taking care
* to read the block in Little Endian order (the algorithm assumes this).
* The uint32_t values are then handled in host order.
*/
for( i = 0, j = 0; i < 16; i++ )
for ( i = 0, j = 0; i < 16; i++ )
{
X[i] = (uint32_t)block[j++];
X[i] |= ((uint32_t)block[j++] << 8);
X[i] |= ((uint32_t)block[j++] << 16);
X[i] |= ((uint32_t)block[j++] << 24);
X[i] = ( uint32_t )block[j++];
X[i] |= ( ( uint32_t )block[j++] << 8 );
X[i] |= ( ( uint32_t )block[j++] << 16 );
X[i] |= ( ( uint32_t )block[j++] << 24 );
}
/* This loop performs the four rounds of permutations.
@ -249,21 +249,21 @@ static void Permute( uint32_t ABCD[4], const unsigned char block[64] )
* (My implementation appears to be a poor compromise between speed, size,
* and clarity. Ugh. [crh])
*/
for( round = 0; round < 4; round++ )
for ( round = 0; round < 4; round++ )
{
for( i = 0; i < 16; i++ )
for ( i = 0; i < 16; i++ )
{
j = (4 - (i % 4)) & 0x3; /* <j> handles the rotation of ABCD. */
j = ( 4 - ( i % 4 ) ) & 0x3; /* <j> handles the rotation of ABCD. */
s = S[round][i%4]; /* <s> is the bit shift for this iteration. */
b = ABCD[(j+1) & 0x3]; /* Copy the b,c,d values per ABCD rotation. */
c = ABCD[(j+2) & 0x3]; /* This isn't really necessary, it just looks */
d = ABCD[(j+3) & 0x3]; /* clean & will hopefully be optimized away. */
b = ABCD[( j+1 ) & 0x3]; /* Copy the b,c,d values per ABCD rotation. */
c = ABCD[( j+2 ) & 0x3]; /* This isn't really necessary, it just looks */
d = ABCD[( j+3 ) & 0x3]; /* clean & will hopefully be optimized away. */
/* The actual perumation function.
* This is broken out to minimize the code within the switch().
*/
switch( round )
switch ( round )
{
case 0:
/* round 1 */
@ -283,17 +283,17 @@ static void Permute( uint32_t ABCD[4], const unsigned char block[64] )
break;
}
a = 0xFFFFFFFF & ( ABCD[j] + a + T[round][i] );
ABCD[j] = b + (0xFFFFFFFF & (( a << s ) | ( a >> (32 - s) )));
ABCD[j] = b + ( 0xFFFFFFFF & ( ( a << s ) | ( a >> ( 32 - s ) ) ) );
}
}
/* Use the stored original A, B, C, D values to perform
* one last convolution.
*/
for( i = 0; i < 4; i++ )
for ( i = 0; i < 4; i++ )
ABCD[i] = 0xFFFFFFFF & ( ABCD[i] + KeepABCD[i] );
} /* Permute */
} /* Permute */
/* -------------------------------------------------------------------------- **
@ -301,7 +301,7 @@ static void Permute( uint32_t ABCD[4], const unsigned char block[64] )
*/
auth_md5Ctx *auth_md5InitCtx( auth_md5Ctx *ctx )
/* ------------------------------------------------------------------------ **
/* ------------------------------------------------------------------------ **
* Initialize an MD5 context.
*
* Input: ctx - A pointer to the MD5 context structure to be initialized.
@ -328,7 +328,7 @@ auth_md5Ctx *auth_md5InitCtx( auth_md5Ctx *ctx )
*
* ------------------------------------------------------------------------ **
*/
{
{
ctx->len = 0;
ctx->b_used = 0;
@ -345,13 +345,13 @@ auth_md5Ctx *auth_md5InitCtx( auth_md5Ctx *ctx )
/* here are provided as 32-bit values in C language format, */
/* so they are endian-agnostic. */
return( ctx );
} /* auth_md5InitCtx */
} /* auth_md5InitCtx */
auth_md5Ctx *auth_md5SumCtx( auth_md5Ctx *ctx,
const unsigned char *src,
const int len )
/* ------------------------------------------------------------------------ **
/* ------------------------------------------------------------------------ **
* Build an MD5 Message Digest within the given context.
*
* Input: ctx - Pointer to the context in which the MD5 sum is being
@ -366,21 +366,21 @@ auth_md5Ctx *auth_md5SumCtx( auth_md5Ctx *ctx,
*
* ------------------------------------------------------------------------ **
*/
{
{
int i;
/* Add the new block's length to the total length.
*/
ctx->len += (uint32_t)len;
ctx->len += ( uint32_t )len;
/* Copy the new block's data into the context block.
* Call the Permute() function whenever the context block is full.
*/
for( i = 0; i < len; i++ )
for ( i = 0; i < len; i++ )
{
ctx->block[ ctx->b_used ] = src[i];
(ctx->b_used)++;
if( 64 == ctx->b_used )
( ctx->b_used )++;
if ( 64 == ctx->b_used )
{
Permute( ctx->ABCD, ctx->block );
ctx->b_used = 0;
@ -390,11 +390,11 @@ auth_md5Ctx *auth_md5SumCtx( auth_md5Ctx *ctx,
/* Return the updated context.
*/
return( ctx );
} /* auth_md5SumCtx */
} /* auth_md5SumCtx */
auth_md5Ctx *auth_md5CloseCtx( auth_md5Ctx *ctx, unsigned char *dst )
/* ------------------------------------------------------------------------ **
/* ------------------------------------------------------------------------ **
* Close an MD5 Message Digest context and generate the final MD5 sum.
*
* Input: ctx - Pointer to the context in which the MD5 sum is being
@ -412,7 +412,7 @@ auth_md5Ctx *auth_md5CloseCtx( auth_md5Ctx *ctx, unsigned char *dst )
*
* ------------------------------------------------------------------------ **
*/
{
{
int i;
uint32_t l;
@ -422,20 +422,20 @@ auth_md5Ctx *auth_md5CloseCtx( auth_md5Ctx *ctx, unsigned char *dst )
* free byte in the context block.
*/
ctx->block[ctx->b_used] = 0x80;
(ctx->b_used)++;
( ctx->b_used )++;
/* Zero out any remaining free bytes in the context block.
*/
for( i = ctx->b_used; i < 64; i++ )
for ( i = ctx->b_used; i < 64; i++ )
ctx->block[i] = 0;
/* We need 8 bytes to store the length field.
* If we don't have 8, call Permute() and reset the context block.
*/
if( 56 < ctx->b_used )
if ( 56 < ctx->b_used )
{
Permute( ctx->ABCD, ctx->block );
for( i = 0; i < 64; i++ )
for ( i = 0; i < 64; i++ )
ctx->block[i] = 0;
}
@ -445,14 +445,14 @@ auth_md5Ctx *auth_md5CloseCtx( auth_md5Ctx *ctx, unsigned char *dst )
* any MAXINT numeric overflow issues.
*/
l = ctx->len << 3;
for( i = 0; i < 4; i++ )
for ( i = 0; i < 4; i++ )
ctx->block[56+i] |= GetLongByte( l, i );
ctx->block[60] = ((GetLongByte( ctx->len, 3 ) & 0xE0) >> 5); /* See Above! */
ctx->block[60] = ( ( GetLongByte( ctx->len, 3 ) & 0xE0 ) >> 5 ); /* See Above! */
Permute( ctx->ABCD, ctx->block );
/* Now copy the result into the output buffer and we're done.
*/
for( i = 0; i < 4; i++ )
for ( i = 0; i < 4; i++ )
{
dst[ 0+i] = GetLongByte( ctx->ABCD[0], i );
dst[ 4+i] = GetLongByte( ctx->ABCD[1], i );
@ -464,11 +464,11 @@ auth_md5Ctx *auth_md5CloseCtx( auth_md5Ctx *ctx, unsigned char *dst )
* This is done for compatibility with the other auth_md5*Ctx() functions.
*/
return( ctx );
} /* auth_md5CloseCtx */
} /* auth_md5CloseCtx */
unsigned char * MD5(unsigned char *dst, const unsigned char *src, const int len )
/* ------------------------------------------------------------------------ **
unsigned char * MD5( unsigned char *dst, const unsigned char *src, const int len )
/* ------------------------------------------------------------------------ **
* Compute an MD5 message digest.
*
* Input: dst - Destination buffer into which the result will be written.
@ -500,20 +500,20 @@ unsigned char * MD5(unsigned char *dst, const unsigned char *src, const int len
*
* ------------------------------------------------------------------------ **
*/
{
{
auth_md5Ctx ctx[1];
(void)auth_md5InitCtx( ctx ); /* Open a context. */
(void)auth_md5SumCtx( ctx, src, len ); /* Pass only one block. */
(void)auth_md5CloseCtx( ctx, dst ); /* Close the context. */
( void )auth_md5InitCtx( ctx ); /* Open a context. */
( void )auth_md5SumCtx( ctx, src, len ); /* Pass only one block. */
( void )auth_md5CloseCtx( ctx, dst ); /* Close the context. */
return( dst ); /* Makes life easy. */
} /* auth_md5Sum */
} /* auth_md5Sum */
unsigned char * MD5fromFile(unsigned char *dst, const char *src)
/* ------------------------------------------------------------------------ **
unsigned char * MD5fromFile( unsigned char *dst, const char *src )
/* ------------------------------------------------------------------------ **
* Compute an MD5 message digest.
*
* Input: dst - Destination buffer into which the result will be written.
@ -543,62 +543,65 @@ unsigned char * MD5fromFile(unsigned char *dst, const char *src)
*
* ------------------------------------------------------------------------ **
*/
{
{
auth_md5Ctx ctx[1];
FILE * file;
unsigned int blksize = 0;
unsigned int read = 0;
file = fopen(src, "rb");
file = fopen( src, "rb" );
if (file==NULL){
if ( file == NULL )
{
return NULL;
}
(void)auth_md5InitCtx( ctx ); /* Open a context. */
( void )auth_md5InitCtx( ctx ); /* Open a context. */
fseek (file , 0 , SEEK_END);
unsigned long long filesize = ftell(file);
rewind (file);
fseek ( file , 0 , SEEK_END );
unsigned long long filesize = ftell( file );
rewind ( file );
if(filesize < 1048576) //1MB cache for files bigger than 1 MB
if ( filesize < 1048576 ) //1MB cache for files bigger than 1 MB
blksize = filesize;
else
blksize = 1048576;
unsigned char * buffer = malloc(blksize);
unsigned char * buffer = malloc( blksize );
if(buffer == NULL){
if ( buffer == NULL )
{
//no memory
fclose(file);
fclose( file );
return NULL;
}
do
{
read = fread(buffer, 1, blksize, file);
(void)auth_md5SumCtx( ctx, buffer, read ); /* Pass only one block. */
read = fread( buffer, 1, blksize, file );
( void )auth_md5SumCtx( ctx, buffer, read ); /* Pass only one block. */
} while(read > 0);
}
while ( read > 0 );
fclose(file);
free(buffer);
fclose( file );
free( buffer );
(void)auth_md5CloseCtx( ctx, dst ); /* Close the context. */
( void )auth_md5CloseCtx( ctx, dst ); /* Close the context. */
return( dst ); /* Makes life easy. */
} /* auth_md5Sum */
} /* auth_md5Sum */
const char * MD5ToString(const unsigned char * hash, char * dst)
const char * MD5ToString( const unsigned char * hash, char * dst )
{
char hexchar[3];
short i = 0, n = 0;
for (i = 0; i < 16; i++)
for ( i = 0; i < 16; i++ )
{
sprintf(hexchar, "%02X", hash[i]);
sprintf( hexchar, "%02X", hash[i] );
dst[n++] = hexchar[0];
dst[n++] = hexchar[1];
@ -609,19 +612,19 @@ const char * MD5ToString(const unsigned char * hash, char * dst)
return dst;
}
unsigned char * StringToMD5(const char * hash, unsigned char * dst)
unsigned char * StringToMD5( const char * hash, unsigned char * dst )
{
char hexchar[2];
short i = 0, n = 0;
for (i = 0; i < 16; i++)
for ( i = 0; i < 16; i++ )
{
hexchar[0] = hash[n++];
hexchar[1] = hash[n++];
dst[i] = STR2HEX(hexchar[0]);
dst[i] = STR2HEX( hexchar[0] );
dst[i] <<= 4;
dst[i] += STR2HEX(hexchar[1]);
dst[i] += STR2HEX( hexchar[1] );
}
return dst;

View File

@ -5,7 +5,7 @@
extern "C"
{
#endif
/* ========================================================================== **
/* ========================================================================== **
*
* MD5.h
*
@ -81,11 +81,11 @@ extern "C"
*
* ========================================================================== **
*/
/* -------------------------------------------------------------------------- **
/* -------------------------------------------------------------------------- **
* Typedefs:
*/
typedef struct
typedef struct
{
unsigned int len;
unsigned int ABCD[4];
@ -94,11 +94,11 @@ typedef struct
} auth_md5Ctx;
/* -------------------------------------------------------------------------- **
/* -------------------------------------------------------------------------- **
* Functions:
*/
auth_md5Ctx *auth_md5InitCtx( auth_md5Ctx *ctx );
auth_md5Ctx *auth_md5InitCtx( auth_md5Ctx *ctx );
/* ------------------------------------------------------------------------ **
* Initialize an MD5 context.
*
@ -128,7 +128,7 @@ auth_md5Ctx *auth_md5InitCtx( auth_md5Ctx *ctx );
*/
auth_md5Ctx *auth_md5SumCtx( auth_md5Ctx *ctx,
auth_md5Ctx *auth_md5SumCtx( auth_md5Ctx *ctx,
const unsigned char *src,
const int len );
/* ------------------------------------------------------------------------ **
@ -148,7 +148,7 @@ auth_md5Ctx *auth_md5SumCtx( auth_md5Ctx *ctx,
*/
auth_md5Ctx *auth_md5CloseCtx( auth_md5Ctx *ctx, unsigned char *dst );
auth_md5Ctx *auth_md5CloseCtx( auth_md5Ctx *ctx, unsigned char *dst );
/* ------------------------------------------------------------------------ **
* Close an MD5 Message Digest context and generate the final MD5 sum.
*
@ -169,7 +169,7 @@ auth_md5Ctx *auth_md5CloseCtx( auth_md5Ctx *ctx, unsigned char *dst );
*/
unsigned char * MD5(unsigned char * hash, const unsigned char *src, const int len );
unsigned char * MD5( unsigned char * hash, const unsigned char *src, const int len );
/* ------------------------------------------------------------------------ **
* Compute an MD5 message digest.
*
@ -203,7 +203,7 @@ unsigned char * MD5(unsigned char * hash, const unsigned char *src, const int le
* ------------------------------------------------------------------------ **
*/
unsigned char * MD5fromFile(unsigned char *dst, const char *src);
unsigned char * MD5fromFile( unsigned char *dst, const char *src );
/* ------------------------------------------------------------------------ **
* Compute an MD5 message digest.
*
@ -235,10 +235,10 @@ unsigned char * MD5fromFile(unsigned char *dst, const char *src);
* ------------------------------------------------------------------------ **
*/
const char * MD5ToString(const unsigned char *hash, char *dst);
unsigned char * StringToMD5(const char * hash, unsigned char * dst);
const char * MD5ToString( const unsigned char *hash, char *dst );
unsigned char * StringToMD5( const char * hash, unsigned char * dst );
/* ========================================================================== */
/* ========================================================================== */
#ifdef __cplusplus
}

View File

@ -22,105 +22,106 @@
#include "patches/fst.h"
#include "usbloader/fstfile.h"
s32 dump_banner(const u8* discid,const char * dest)
s32 dump_banner( const u8* discid, const char * dest )
{
// Mount the disc
//Disc_SetWBFS(1, (u8*)discid);
Disc_SetUSB(discid);
Disc_SetUSB( discid );
Disc_Open();
u64 offset;
s32 ret;
ret = __Disc_FindPartition(&offset);
if (ret < 0)
ret = __Disc_FindPartition( &offset );
if ( ret < 0 )
return ret;
ret = WDVD_OpenPartition(offset);
ret = WDVD_OpenPartition( offset );
if (ret < 0) {
if ( ret < 0 )
{
//printf("ERROR: OpenPartition(0x%llx) %d\n", offset, ret);
return ret;
}
// Read where to find the fst.bin
u32 *buffer = memalign(32, 0x20);
u32 *buffer = memalign( 32, 0x20 );
if (buffer == NULL)
if ( buffer == NULL )
{
//Out of memory
return -1;
}
ret = WDVD_Read(buffer, 0x20, 0x420);
if (ret < 0)
ret = WDVD_Read( buffer, 0x20, 0x420 );
if ( ret < 0 )
return ret;
// Read fst.bin
void *fstbuffer = memalign(32, buffer[2]*4);
FST_ENTRY *fst = (FST_ENTRY *)fstbuffer;
void *fstbuffer = memalign( 32, buffer[2] * 4 );
FST_ENTRY *fst = ( FST_ENTRY * )fstbuffer;
if (fst == NULL)
if ( fst == NULL )
{
//Out of memory
free(buffer);
free( buffer );
return -1;
}
ret = WDVD_Read(fstbuffer, buffer[2]*4, buffer[1]*4);
if (ret < 0)
ret = WDVD_Read( fstbuffer, buffer[2] * 4, buffer[1] * 4 );
if ( ret < 0 )
return ret;
free(buffer);
free( buffer );
// Search the fst.bin
u32 count = fst[0].filelen;
int i;
u32 index = 0;
for (i=1;i<count;i++)
for ( i = 1; i < count; i++ )
{
if (strstr(fstfiles(fst, i), "opening.bnr") != NULL)
if ( strstr( fstfiles( fst, i ), "opening.bnr" ) != NULL )
{
index = i;
}
}
if (index == 0)
if ( index == 0 )
{
//opening.bnr not found
free(fstbuffer);
free( fstbuffer );
return -1;
}
// Load the .bnr
u8 *banner = memalign(32, fst[index].filelen);
u8 *banner = memalign( 32, fst[index].filelen );
if (banner == NULL)
if ( banner == NULL )
{
//Out of memory
free(fstbuffer);
free( fstbuffer );
return -1;
}
ret = WDVD_Read((void *)banner, fst[index].filelen, fst[index].fileoffset * 4);
if (ret < 0)
ret = WDVD_Read( ( void * )banner, fst[index].filelen, fst[index].fileoffset * 4 );
if ( ret < 0 )
return ret;
WDVD_Reset();
WDVD_ClosePartition();
//fatInitDefault();
//SDCard_Init();
WDVD_SetUSBMode(NULL, 0);
FILE *fp = fopen(dest, "wb");
if(fp)
WDVD_SetUSBMode( NULL, 0 );
FILE *fp = fopen( dest, "wb" );
if ( fp )
{
fwrite(banner, 1, fst[index].filelen, fp);
fclose(fp);
fwrite( banner, 1, fst[index].filelen, fp );
fclose( fp );
}
free(fstbuffer);
free(banner);
free( fstbuffer );
free( banner );
return 1;
}

View File

@ -13,7 +13,7 @@ extern "C"
{
#endif
s32 dump_banner(const u8 *discid,const char * dest);
s32 dump_banner( const u8 *discid, const char * dest );
#ifdef __cplusplus
}

View File

@ -6,65 +6,71 @@
***************************************************************************/
#include "gui_banner.h"
GuiBanner::GuiBanner(const char *tplfilepath)
GuiBanner::GuiBanner( const char *tplfilepath )
{
memory = NULL;
tplfilesize = 0;
width = 0;
height = 0;
FILE *tplfp = fopen(tplfilepath,"rb");
FILE *tplfp = fopen( tplfilepath, "rb" );
if(tplfp !=NULL) {
if ( tplfp != NULL )
{
unsigned short heighttemp = 0;
unsigned short widthtemp = 0;
fseek(tplfp , 0x14, SEEK_SET);
fread((void*)&heighttemp,1,2,tplfp);
fread((void*)&widthtemp,1,2,tplfp);
fseek (tplfp , 0 , SEEK_END);
tplfilesize = ftell (tplfp);
rewind (tplfp);
memory = memalign(32, tplfilesize);
if(!memory) {
fclose(tplfp);
fseek( tplfp , 0x14, SEEK_SET );
fread( ( void* )&heighttemp, 1, 2, tplfp );
fread( ( void* )&widthtemp, 1, 2, tplfp );
fseek ( tplfp , 0 , SEEK_END );
tplfilesize = ftell ( tplfp );
rewind ( tplfp );
memory = memalign( 32, tplfilesize );
if ( !memory )
{
fclose( tplfp );
return;
}
fread(memory, 1, tplfilesize, tplfp);
fclose(tplfp);
fread( memory, 1, tplfilesize, tplfp );
fclose( tplfp );
TPLFile tplfile;
int ret;
ret = TPL_OpenTPLFromMemory(&tplfile, memory, tplfilesize);
if(ret < 0) {
free(memory);
ret = TPL_OpenTPLFromMemory( &tplfile, memory, tplfilesize );
if ( ret < 0 )
{
free( memory );
memory = NULL;
return;
}
ret = TPL_GetTexture(&tplfile,0,&texObj);
if(ret < 0) {
free(memory);
ret = TPL_GetTexture( &tplfile, 0, &texObj );
if ( ret < 0 )
{
free( memory );
memory = NULL;
return;
}
TPL_CloseTPLFile(&tplfile);
TPL_CloseTPLFile( &tplfile );
width = widthtemp;
height = heighttemp;
widescreen = 0;
filecheck = true;
} else {
}
else
{
filecheck = false;
fclose(tplfp);
fclose( tplfp );
}
}
GuiBanner::GuiBanner(void *mem, u32 len, int w, int h)
GuiBanner::GuiBanner( void *mem, u32 len, int w, int h )
{
if(!mem || !len)
if ( !mem || !len )
return;
memory = mem;
tplfilesize = len;
@ -75,40 +81,43 @@ GuiBanner::GuiBanner(void *mem, u32 len, int w, int h)
int ret;
ret = TPL_OpenTPLFromMemory(&tplfile, memory, tplfilesize);
if(ret < 0) {
free(memory);
ret = TPL_OpenTPLFromMemory( &tplfile, memory, tplfilesize );
if ( ret < 0 )
{
free( memory );
memory = NULL;
return;
}
ret = TPL_GetTexture(&tplfile,0,&texObj);
if(ret < 0) {
free(memory);
ret = TPL_GetTexture( &tplfile, 0, &texObj );
if ( ret < 0 )
{
free( memory );
memory = NULL;
return;
}
TPL_CloseTPLFile(&tplfile);
TPL_CloseTPLFile( &tplfile );
filecheck = true;
}
GuiBanner::~GuiBanner()
{
if(memory != NULL) {
free(memory);
if ( memory != NULL )
{
free( memory );
memory = NULL;
}
}
void GuiBanner::Draw()
{
LOCK(this);
if(!filecheck ||!this->IsVisible())
LOCK( this );
if ( !filecheck || !this->IsVisible() )
return;
float currScale = this->GetScale();
Menu_DrawTPLImg(this->GetLeft(), this->GetTop(), 0, width, height, &texObj, imageangle, widescreen ? currScale*0.80 : currScale, currScale, this->GetAlpha(), xx1,yy1,xx2,yy2,xx3,yy3,xx4,yy4);
Menu_DrawTPLImg( this->GetLeft(), this->GetTop(), 0, width, height, &texObj, imageangle, widescreen ? currScale*0.80 : currScale, currScale, this->GetAlpha(), xx1, yy1, xx2, yy2, xx3, yy3, xx4, yy4 );
this->UpdateEffects();
}

View File

@ -12,20 +12,20 @@
class GuiBanner : public GuiImage
{
public:
public:
//!Constructor
//!\param tplfilepath Path of the tpl file
GuiBanner(const char *tplfilepath);
GuiBanner( const char *tplfilepath );
//!Constructor
//!\param mem Memory of the loaded tpl
//!\param len Filesize of the tpl
//!\param w Width of the tpl
//!\param h Height of the tpl
GuiBanner(void *mem, u32 len, int w, int h);
GuiBanner( void *mem, u32 len, int w, int h );
//!Destructor
~GuiBanner();
void Draw();
protected:
protected:
void * memory;
bool filecheck;
u32 tplfilesize;

View File

@ -28,51 +28,52 @@
#include "../ramdisk/ramdisk.h"
#include "../listfiles.h"
u16 be16(const u8 *p)
u16 be16( const u8 *p )
{
return (p[0] << 8) | p[1];
return ( p[0] << 8 ) | p[1];
}
u32 be32(const u8 *p)
u32 be32( const u8 *p )
{
return (p[0] << 24) | (p[1] << 16) | (p[2] << 8) | p[3];
return ( p[0] << 24 ) | ( p[1] << 16 ) | ( p[2] << 8 ) | p[3];
}
u64 be64(const u8 *p)
u64 be64( const u8 *p )
{
return ((u64)be32(p) << 32) | be32(p + 4);
return ( ( u64 )be32( p ) << 32 ) | be32( p + 4 );
}
u64 be34(const u8 *p)
u64 be34( const u8 *p )
{
return 4 * (u64)be32(p);
return 4 * ( u64 )be32( p );
}
void wbe16(u8 *p, u16 x)
void wbe16( u8 *p, u16 x )
{
p[0] = x >> 8;
p[1] = x;
}
void wbe32(u8 *p, u32 x)
void wbe32( u8 *p, u32 x )
{
wbe16(p, x >> 16);
wbe16(p + 2, x);
wbe16( p, x >> 16 );
wbe16( p + 2, x );
}
void wbe64(u8 *p, u64 x)
void wbe64( u8 *p, u64 x )
{
wbe32(p, x >> 32);
wbe32(p + 4, x);
wbe32( p, x >> 32 );
wbe32( p + 4, x );
}
void md5(u8 *data, u32 len, u8 *hash)
void md5( u8 *data, u32 len, u8 *hash )
{
MD5(hash, data, len);
MD5( hash, data, len );
}
typedef struct {
typedef struct
{
u8 zeroes[0x40];
u32 imet; // "IMET"
u8 zero_six_zero_three[8]; // fixed, unknown purpose
@ -89,7 +90,8 @@ typedef struct {
u8 crypto[0x10];
} imet_data_t;
typedef struct {
typedef struct
{
u32 imd5_tag; // 0x494D4435 "IMD5";
u32 size; // size of the rest of part B, starting from next field.
u8 zeroes[8];
@ -115,20 +117,20 @@ typedef struct
u8 zeroes[16];
} U8_archive_header;
static int write_file(void* data, size_t size, char* name)
static int write_file( void* data, size_t size, char* name )
{
size_t written=0;
size_t written = 0;
FILE *out;
out = fopen(name, "wb");
if(out)
out = fopen( name, "wb" );
if ( out )
{
written = fwrite(data, 1, size, out);
fclose(out);
written = fwrite( data, 1, size, out );
fclose( out );
}
return (written == size) ? 1 : -1;
return ( written == size ) ? 1 : -1;
}
u8* decompress_lz77(u8 *data, size_t data_size, size_t* decompressed_size)
u8* decompress_lz77( u8 *data, size_t data_size, size_t* decompressed_size )
{
u8 *data_end;
u8 *decompressed_data;
@ -143,49 +145,58 @@ u8* decompress_lz77(u8 *data, size_t data_size, size_t* decompressed_size)
// Assume this for now and grow when needed
unpacked_size = data_size;
decompressed_data = malloc(unpacked_size);
decompressed_data = malloc( unpacked_size );
out_end = decompressed_data + unpacked_size;
out_ptr = decompressed_data;
while (in_ptr < data_end) {
while ( in_ptr < data_end )
{
int bit;
u8 bitmask = *in_ptr;
in_ptr++;
for (bit = 0x80; bit != 0; bit >>= 1) {
if (bitmask & bit) {
for ( bit = 0x80; bit != 0; bit >>= 1 )
{
if ( bitmask & bit )
{
// Next section is compressed
u8 rep_length;
u16 rep_offset;
rep_length = (*in_ptr >> 4) + 3;
rep_length = ( *in_ptr >> 4 ) + 3;
rep_offset = *in_ptr & 0x0f;
in_ptr++;
rep_offset = *in_ptr | (rep_offset << 8);
rep_offset = *in_ptr | ( rep_offset << 8 );
in_ptr++;
if (out_ptr-decompressed_data < rep_offset) {
if ( out_ptr - decompressed_data < rep_offset )
{
return NULL;
}
for ( ; rep_length > 0; rep_length--) {
for ( ; rep_length > 0; rep_length-- )
{
*out_ptr = out_ptr[-rep_offset-1];
out_ptr++;
if (out_ptr >= out_end) {
if ( out_ptr >= out_end )
{
// Need to grow buffer
decompressed_data = realloc(decompressed_data, unpacked_size*2);
decompressed_data = realloc( decompressed_data, unpacked_size * 2 );
out_ptr = decompressed_data + unpacked_size;
unpacked_size *= 2;
out_end = decompressed_data + unpacked_size;
}
}
} else {
}
else
{
// Just copy byte
*out_ptr = *in_ptr;
out_ptr++;
if (out_ptr >= out_end) {
if ( out_ptr >= out_end )
{
// Need to grow buffer
decompressed_data = realloc(decompressed_data, unpacked_size*2);
decompressed_data = realloc( decompressed_data, unpacked_size * 2 );
out_ptr = decompressed_data + unpacked_size;
unpacked_size *= 2;
out_end = decompressed_data + unpacked_size;
@ -195,52 +206,58 @@ u8* decompress_lz77(u8 *data, size_t data_size, size_t* decompressed_size)
}
}
*decompressed_size = (out_ptr - decompressed_data);
*decompressed_size = ( out_ptr - decompressed_data );
return decompressed_data;
}
static int write_imd5_lz77(u8* data, size_t size, char* outname)
static int write_imd5_lz77( u8* data, size_t size, char* outname )
{
imd5_header_t* header = (imd5_header_t*) data;
imd5_header_t* header = ( imd5_header_t* ) data;
u32 tag;
u32 size_in_imd5;
u8 md5_calc[16];
u8 *decompressed_data;
size_t decompressed_size;
tag = be32((u8*) &header->imd5_tag);
if (tag != 0x494D4435) {
tag = be32( ( u8* ) & header->imd5_tag );
if ( tag != 0x494D4435 )
{
return -4;
}
md5(data+32, size-32, md5_calc);
if (memcmp(&header->md5, md5_calc, 0x10)) {
md5( data + 32, size - 32, md5_calc );
if ( memcmp( &header->md5, md5_calc, 0x10 ) )
{
return -5;
}
size_in_imd5 = be32((u8*) &header->size);
if (size_in_imd5 != size - 32) {
size_in_imd5 = be32( ( u8* ) & header->size );
if ( size_in_imd5 != size - 32 )
{
return -6;
}
tag = be32((u8*) &header->payload_tag);
if (tag == 0x4C5A3737) {
tag = be32( ( u8* ) & header->payload_tag );
if ( tag == 0x4C5A3737 )
{
// "LZ77" - uncompress
decompressed_data = decompress_lz77(data + sizeof(imd5_header_t), size - sizeof(imd5_header_t), &decompressed_size);
if(decompressed_data == NULL)
decompressed_data = decompress_lz77( data + sizeof( imd5_header_t ), size - sizeof( imd5_header_t ), &decompressed_size );
if ( decompressed_data == NULL )
return -7;
write_file(decompressed_data, decompressed_size, outname);
write_file( decompressed_data, decompressed_size, outname );
//printf(", uncompressed %d bytes, md5 ok", decompressed_size);
free(decompressed_data);
} else {
write_file(&header->payload_tag, size-32, outname);
free( decompressed_data );
}
else
{
write_file( &header->payload_tag, size - 32, outname );
//printf(", md5 ok");
}
return 0;
}
static int do_U8_archive(FILE *fp)
static int do_U8_archive( FILE *fp )
{
U8_archive_header header;
U8_node root_node;
@ -255,93 +272,103 @@ static int do_U8_archive(FILE *fp)
u16 dir_stack[16];
int dir_index = 0;
fread(&header, 1, sizeof header, fp);
tag = be32((u8*) &header.tag);
if (tag != 0x55AA382D) {
fread( &header, 1, sizeof header, fp );
tag = be32( ( u8* ) & header.tag );
if ( tag != 0x55AA382D )
{
return -1;
}
fread(&root_node, 1, sizeof(root_node), fp);
num_nodes = be32((u8*) &root_node.size) - 1;
fread( &root_node, 1, sizeof( root_node ), fp );
num_nodes = be32( ( u8* ) & root_node.size ) - 1;
//printf("Number of files: %d\n", num_nodes);
nodes = malloc(sizeof(U8_node) * (num_nodes));
fread(nodes, 1, num_nodes * sizeof(U8_node), fp);
nodes = malloc( sizeof( U8_node ) * ( num_nodes ) );
fread( nodes, 1, num_nodes * sizeof( U8_node ), fp );
data_offset = be32((u8*) &header.data_offset);
rest_size = data_offset - sizeof(header) - (num_nodes+1)*sizeof(U8_node);
data_offset = be32( ( u8* ) & header.data_offset );
rest_size = data_offset - sizeof( header ) - ( num_nodes + 1 ) * sizeof( U8_node );
string_table = malloc(rest_size);
fread(string_table, 1, rest_size, fp);
string_table = malloc( rest_size );
fread( string_table, 1, rest_size, fp );
current_offset = data_offset;
for (i = 0; i < num_nodes; i++) {
for ( i = 0; i < num_nodes; i++ )
{
U8_node* node = &nodes[i];
u16 type = be16((u8*)&node->type);
u16 name_offset = be16((u8*)&node->name_offset);
u32 my_data_offset = be32((u8*)&node->data_offset);
u32 size = be32((u8*)&node->size);
char* name = (char*) &string_table[name_offset];
u16 type = be16( ( u8* ) & node->type );
u16 name_offset = be16( ( u8* ) & node->name_offset );
u32 my_data_offset = be32( ( u8* ) & node->data_offset );
u32 size = be32( ( u8* ) & node->size );
char* name = ( char* ) & string_table[name_offset];
u8* file_data;
if (type == 0x0100) {
if ( type == 0x0100 )
{
// Directory
mkdir(name, 0777);
chdir(name);
mkdir( name, 0777 );
chdir( name );
dir_stack[++dir_index] = size;
//printf("%*s%s/\n", dir_index, "", name);
} else {
}
else
{
// Normal file
u8 padding[32];
if (type != 0x0000) {
free(string_table);
if ( type != 0x0000 )
{
free( string_table );
return -2;
}
if (current_offset < my_data_offset) {
if ( current_offset < my_data_offset )
{
int diff = my_data_offset - current_offset;
if (diff > 32) {
free(string_table);
if ( diff > 32 )
{
free( string_table );
return -3;
}
fread(padding, 1, diff, fp);
fread( padding, 1, diff, fp );
current_offset += diff;
}
file_data = malloc(size);
fread(file_data, 1, size, fp);
file_data = malloc( size );
fread( file_data, 1, size, fp );
//printf("%*s %s (%d bytes", dir_index, "", name, size);
int result;
result = write_imd5_lz77(file_data, size, name);
if(result < 0)
{free(string_table);
result = write_imd5_lz77( file_data, size, name );
if ( result < 0 )
{
free( string_table );
return result;
}
//printf(")\n");
current_offset += size;
}
while (dir_stack[dir_index] == i+2 && dir_index > 0) {
chdir("..");
while ( dir_stack[dir_index] == i + 2 && dir_index > 0 )
{
chdir( ".." );
dir_index--;
}
}
free(string_table);
free( string_table );
return 0;
}
static void do_imet_header(FILE *fp)
static void do_imet_header( FILE *fp )
{
imet_data_t header;
fread(&header, 1, sizeof header, fp);
fread( &header, 1, sizeof header, fp );
write_file(&header, sizeof(header), "header.imet");
write_file( &header, sizeof( header ), "header.imet" );
}
void do_U8_archivebanner(FILE *fp)
void do_U8_archivebanner( FILE *fp )
{
U8_archive_header header;
U8_node root_node;
@ -355,92 +382,99 @@ void do_U8_archivebanner(FILE *fp)
u16 dir_stack[16];
int dir_index = 0;
fread(&header, 1, sizeof header, fp);
tag = be32((u8*) &header.tag);
if (tag != 0x55AA382D) {
fread( &header, 1, sizeof header, fp );
tag = be32( ( u8* ) & header.tag );
if ( tag != 0x55AA382D )
{
//printf("No U8 tag");
exit(0);
exit( 0 );
}
fread(&root_node, 1, sizeof(root_node), fp);
num_nodes = be32((u8*) &root_node.size) - 1;
printf("Number of files: %d\n", num_nodes);
fread( &root_node, 1, sizeof( root_node ), fp );
num_nodes = be32( ( u8* ) & root_node.size ) - 1;
printf( "Number of files: %d\n", num_nodes );
nodes = malloc(sizeof(U8_node) * (num_nodes));
fread(nodes, 1, num_nodes * sizeof(U8_node), fp);
nodes = malloc( sizeof( U8_node ) * ( num_nodes ) );
fread( nodes, 1, num_nodes * sizeof( U8_node ), fp );
data_offset = be32((u8*) &header.data_offset);
rest_size = data_offset - sizeof(header) - (num_nodes+1)*sizeof(U8_node);
data_offset = be32( ( u8* ) & header.data_offset );
rest_size = data_offset - sizeof( header ) - ( num_nodes + 1 ) * sizeof( U8_node );
string_table = malloc(rest_size);
fread(string_table, 1, rest_size, fp);
string_table = malloc( rest_size );
fread( string_table, 1, rest_size, fp );
for (i = 0; i < num_nodes; i++) {
for ( i = 0; i < num_nodes; i++ )
{
U8_node* node = &nodes[i];
u16 type = be16((u8*)&node->type);
u16 name_offset = be16((u8*)&node->name_offset);
u32 my_data_offset = be32((u8*)&node->data_offset);
u32 size = be32((u8*)&node->size);
char* name = (char*) &string_table[name_offset];
u16 type = be16( ( u8* ) & node->type );
u16 name_offset = be16( ( u8* ) & node->name_offset );
u32 my_data_offset = be32( ( u8* ) & node->data_offset );
u32 size = be32( ( u8* ) & node->size );
char* name = ( char* ) & string_table[name_offset];
u8* file_data;
if (type == 0x0100) {
if ( type == 0x0100 )
{
// Directory
mkdir(name, 0777);
chdir(name);
mkdir( name, 0777 );
chdir( name );
dir_stack[++dir_index] = size;
//printf("%*s%s/\n", dir_index, "", name);
} else {
}
else
{
// Normal file
if (type != 0x0000) {
printf("Unknown type");
exit(0);
if ( type != 0x0000 )
{
printf( "Unknown type" );
exit( 0 );
}
fseek(fp, my_data_offset, SEEK_SET);
file_data = malloc(size);
fread(file_data, 1, size, fp);
write_file(file_data, size, name);
free(file_data);
fseek( fp, my_data_offset, SEEK_SET );
file_data = malloc( size );
fread( file_data, 1, size, fp );
write_file( file_data, size, name );
free( file_data );
//printf("%*s %s (%d bytes)\n", dir_index, "", name, size);
}
while (dir_stack[dir_index] == i+2 && dir_index > 0) {
chdir("..");
while ( dir_stack[dir_index] == i + 2 && dir_index > 0 )
{
chdir( ".." );
dir_index--;
}
}
free(string_table);
free( string_table );
}
int extractbnrfile(const char * filepath, const char * destpath)
int extractbnrfile( const char * filepath, const char * destpath )
{
int ret = -1;
FILE *fp = fopen(filepath, "rb");
if(fp)
FILE *fp = fopen( filepath, "rb" );
if ( fp )
{
subfoldercreate(destpath);
chdir(destpath);
subfoldercreate( destpath );
chdir( destpath );
do_imet_header(fp);
ret = do_U8_archive(fp);
do_imet_header( fp );
ret = do_U8_archive( fp );
fclose(fp);
fclose( fp );
}
return ret;
}
int unpackBin(const char * filename,const char * outdir)
int unpackBin( const char * filename, const char * outdir )
{
FILE *fp = fopen(filename,"rb");;
if(fp)
FILE *fp = fopen( filename, "rb" );;
if ( fp )
{
subfoldercreate(outdir);
chdir(outdir);
subfoldercreate( outdir );
chdir( outdir );
do_U8_archivebanner(fp);
fclose(fp);
do_U8_archivebanner( fp );
fclose( fp );
return 1;
}
return 0;
@ -449,81 +483,81 @@ int unpackBin(const char * filename,const char * outdir)
#define TMP_PATH(s) "BANNER:/dump"s
//#define TMP_PATH(s) "SD:/dump"s
int unpackBanner(const u8 *gameid, int what, const char *outdir)
int unpackBanner( const u8 *gameid, int what, const char *outdir )
{
char path[256];
if(!ramdiskMount("BANNER", NULL)) return -1;
if ( !ramdiskMount( "BANNER", NULL ) ) return -1;
subfoldercreate(TMP_PATH("/"));
s32 ret = dump_banner(gameid, TMP_PATH("/opening.bnr"));
if (ret != 1)
subfoldercreate( TMP_PATH( "/" ) );
s32 ret = dump_banner( gameid, TMP_PATH( "/opening.bnr" ) );
if ( ret != 1 )
{
ret = -1;
goto error2;
}
ret = extractbnrfile(TMP_PATH("/opening.bnr"), TMP_PATH("/"));
if (ret != 0)
ret = extractbnrfile( TMP_PATH( "/opening.bnr" ), TMP_PATH( "/" ) );
if ( ret != 0 )
{
ret = -1;
goto error2;
}
if(what & UNPACK_BANNER_BIN)
if ( what & UNPACK_BANNER_BIN )
{
snprintf(path, sizeof(path),"%sbanner/", outdir);
ret = unpackBin(TMP_PATH("/meta/banner.bin"), path);
if (ret != 1)
snprintf( path, sizeof( path ), "%sbanner/", outdir );
ret = unpackBin( TMP_PATH( "/meta/banner.bin" ), path );
if ( ret != 1 )
{
ret = -1;
goto error2;
}
}
if(what & UNPACK_ICON_BIN)
if ( what & UNPACK_ICON_BIN )
{
snprintf(path, sizeof(path),"%sicon/", outdir);
ret = unpackBin(TMP_PATH("/meta/icon.bin"), path);
if (ret != 1)
snprintf( path, sizeof( path ), "%sicon/", outdir );
ret = unpackBin( TMP_PATH( "/meta/icon.bin" ), path );
if ( ret != 1 )
{
ret = -1;
goto error2;
}
}
if(what & UNPACK_SOUND_BIN)
if ( what & UNPACK_SOUND_BIN )
{
snprintf(path, sizeof(path),"%ssound.bin", outdir);
FILE *fp = fopen(TMP_PATH("/meta/sound.bin"), "rb");
if(fp)
snprintf( path, sizeof( path ), "%ssound.bin", outdir );
FILE *fp = fopen( TMP_PATH( "/meta/sound.bin" ), "rb" );
if ( fp )
{
size_t size;
u8 *data;
fseek(fp, 0, SEEK_END);
size = ftell(fp);
if(!size)
fseek( fp, 0, SEEK_END );
size = ftell( fp );
if ( !size )
{
ret = -1;
goto error;
}
fseek(fp, 0, SEEK_SET);
data = (u8 *)malloc(size);
if(!data)
fseek( fp, 0, SEEK_SET );
data = ( u8 * )malloc( size );
if ( !data )
{
ret = -1;
goto error;
}
if(fread(data, 1, size, fp) != size)
if ( fread( data, 1, size, fp ) != size )
{
ret = -1;
goto error;
}
ret = write_file(data, size, path);
ret = write_file( data, size, path );
}
error: fclose(fp);
error: fclose( fp );
}
ramdiskUnmount("BANNER");
ramdiskUnmount( "BANNER" );
error2:
if(ret < 0)
if ( ret < 0 )
return ret;
return 1;
}

View File

@ -13,32 +13,32 @@ extern "C"
{
#endif
/***********************************************************
* Error description:
* 0 Successfully extracted
* -1 No U8 tag
* -2 Unknown type
* -3 Archive inconsistency, too much padding
* -4 No IMD5 tag
* -5 MD5 mismatch
* -6 Size mismatch
* -7 Inconsistency in LZ77 encoding
************************************************************/
/***********************************************************
* Error description:
* 0 Successfully extracted
* -1 No U8 tag
* -2 Unknown type
* -3 Archive inconsistency, too much padding
* -4 No IMD5 tag
* -5 MD5 mismatch
* -6 Size mismatch
* -7 Inconsistency in LZ77 encoding
************************************************************/
//! Extract opening.bnr from filepath to destpath
//! Files extracted: banner.bin icon.bin and sound.bin
int extractbnrfile(const char * filepath, const char * destpath);
int unpackBin(const char * filename,const char * outdir);
int extractbnrfile( const char * filepath, const char * destpath );
int unpackBin( const char * filename, const char * outdir );
#define UNPACK_BANNER_BIN 1 /* extract banner.bin to outdir/banner/ */
#define UNPACK_ICON_BIN 2 /* extract icon.bin to outdir/icon/ */
#define UNPACK_SOUND_BIN 4 /* copies sound.bin to outdir/sound.bin */
#define UNPACK_ALL (UNPACK_SOUND_BIN | UNPACK_ICON_BIN | UNPACK_BANNER_BIN)
int unpackBanner(const u8 * gameid, int what, const char *outdir);
int unpackBanner( const u8 * gameid, int what, const char *outdir );
//! Extract the lz77 compressed banner, icon and sound .bin
u8* decompress_lz77(u8 *data, size_t data_size, size_t* decompressed_size);
u8* decompress_lz77( u8 *data, size_t data_size, size_t* decompressed_size );
u16 be16(const u8 *p);
u32 be32(const u8 *p);
u16 be16( const u8 *p );
u32 be32( const u8 *p );
#ifdef __cplusplus
}

View File

@ -17,7 +17,7 @@ struct IMD5Header
u32 filesize;
u8 zeroes[8];
u8 crypto[16];
} __attribute__((packed));
} __attribute__( ( packed ) );
struct IMETHeader
{
@ -31,7 +31,7 @@ struct IMETHeader
u8 names[7][84];
u8 zeroes_2[0x348];
u8 crypto[16];
} __attribute__((packed));
} __attribute__( ( packed ) );
struct U8Header
{
@ -40,7 +40,7 @@ struct U8Header
u32 headerSize;
u32 dataOffset;
u8 zeroes[16];
} __attribute__((packed));
} __attribute__( ( packed ) );
struct U8Entry
{
@ -55,59 +55,59 @@ struct U8Entry
u32 fileLength;
u32 numEntries;
};
} __attribute__((packed));
} __attribute__( ( packed ) );
struct LZ77Info
{
u16 length : 4;
u16 offset : 12;
} __attribute__((packed));
} __attribute__( ( packed ) );
static char *u8Filename(const U8Entry *fst, int i)
static char *u8Filename( const U8Entry *fst, int i )
{
return (char *)(fst + fst[0].numEntries) + fst[i].nameOffset;
return ( char * )( fst + fst[0].numEntries ) + fst[i].nameOffset;
}
inline u32 le32(u32 i)
inline u32 le32( u32 i )
{
return ((i & 0xFF) << 24) | ((i & 0xFF00) << 8) | ((i & 0xFF0000) >> 8) | ((i & 0xFF000000) >> 24);
return ( ( i & 0xFF ) << 24 ) | ( ( i & 0xFF00 ) << 8 ) | ( ( i & 0xFF0000 ) >> 8 ) | ( ( i & 0xFF000000 ) >> 24 );
}
inline u16 le16(u16 i)
inline u16 le16( u16 i )
{
return ((i & 0xFF) << 8) | ((i & 0xFF00) >> 8);
return ( ( i & 0xFF ) << 8 ) | ( ( i & 0xFF00 ) >> 8 );
}
static u8 *uncompressLZ77(const u8 *inBuf, u32 inLength, u32 &size)
static u8 *uncompressLZ77( const u8 *inBuf, u32 inLength, u32 &size )
{
u8 *buffer = NULL;
if (inLength <= 0x8 || *((const u32 *)inBuf) != 0x4C5A3737 /*"LZ77"*/ || inBuf[4] != 0x10)
if ( inLength <= 0x8 || *( ( const u32 * )inBuf ) != 0x4C5A3737 /*"LZ77"*/ || inBuf[4] != 0x10 )
return NULL;
u32 uncSize = le32(((const u32 *)inBuf)[1] << 8);
u32 uncSize = le32( ( ( const u32 * )inBuf )[1] << 8 );
const u8 *inBufEnd = inBuf + inLength;
inBuf += 8;
buffer = new(std::nothrow) u8[uncSize];
if (!buffer)
buffer = new( std::nothrow ) u8[uncSize];
if ( !buffer )
return buffer;
u8 *bufCur = buffer;
u8 *bufEnd = buffer + uncSize;
while (bufCur < bufEnd && inBuf < inBufEnd)
while ( bufCur < bufEnd && inBuf < inBufEnd )
{
u8 flags = *inBuf;
++inBuf;
for (int i = 0; i < 8 && bufCur < bufEnd && inBuf < inBufEnd; ++i)
for ( int i = 0; i < 8 && bufCur < bufEnd && inBuf < inBufEnd; ++i )
{
if ((flags & 0x80) != 0)
if ( ( flags & 0x80 ) != 0 )
{
const LZ77Info &info = *(const LZ77Info *)inBuf;
inBuf += sizeof (LZ77Info);
const LZ77Info &info = *( const LZ77Info * )inBuf;
inBuf += sizeof ( LZ77Info );
int length = info.length + 3;
if (bufCur - info.offset - 1 < buffer || bufCur + length > bufEnd)
if ( bufCur - info.offset - 1 < buffer || bufCur + length > bufEnd )
return buffer;
memcpy(bufCur, bufCur - info.offset - 1, length);
memcpy( bufCur, bufCur - info.offset - 1, length );
bufCur += length;
}
else
@ -123,87 +123,87 @@ static u8 *uncompressLZ77(const u8 *inBuf, u32 inLength, u32 &size)
return buffer;
}
const u8 *LoadBannerSound(const u8 *discid, u32 *size)
const u8 *LoadBannerSound( const u8 *discid, u32 *size )
{
if(!discid)
if ( !discid )
return NULL;
Disc_SetUSB(NULL);
wbfs_disc_t *disc = WBFS_OpenDisc((u8 *) discid);
if(!disc)
Disc_SetUSB( NULL );
wbfs_disc_t *disc = WBFS_OpenDisc( ( u8 * ) discid );
if ( !disc )
{
// WindowPrompt(tr("Can't find disc"), 0, tr("OK"));
return NULL;
}
wiidisc_t *wdisc = wd_open_disc((int (*)(void *, u32, u32, void *))wbfs_disc_read, disc);
if(!wdisc)
wiidisc_t *wdisc = wd_open_disc( ( int ( * )( void *, u32, u32, void * ) )wbfs_disc_read, disc );
if ( !wdisc )
{
//WindowPrompt(tr("Could not open Disc"), 0, tr("OK"));
return NULL;
}
u8 * opening_bnr = wd_extract_file(wdisc, ALL_PARTITIONS, (char *) "opening.bnr");
if(!opening_bnr)
u8 * opening_bnr = wd_extract_file( wdisc, ALL_PARTITIONS, ( char * ) "opening.bnr" );
if ( !opening_bnr )
{
//WindowPrompt(tr("ERROR"), tr("Failed to extract opening.bnr"), tr("OK"));
return NULL;
}
wd_close_disc(wdisc);
WBFS_CloseDisc(disc);
wd_close_disc( wdisc );
WBFS_CloseDisc( disc );
const U8Entry *fst;
const IMETHeader *imetHdr = (IMETHeader *)opening_bnr;
const IMETHeader *imetHdr = ( IMETHeader * )opening_bnr;
if ( imetHdr->fcc != 0x494D4554 /*"IMET"*/ )
{
// WindowPrompt(tr("IMET Header wrong."), 0, tr("OK"));
free(opening_bnr);
free( opening_bnr );
return NULL;
}
const U8Header *bnrArcHdr = (U8Header *)(imetHdr + 1);
const U8Header *bnrArcHdr = ( U8Header * )( imetHdr + 1 );
fst = (const U8Entry *)( ((const u8 *)bnrArcHdr) + bnrArcHdr->rootNodeOffset);
fst = ( const U8Entry * )( ( ( const u8 * )bnrArcHdr ) + bnrArcHdr->rootNodeOffset );
u32 i;
for (i = 1; i < fst[0].numEntries; ++i)
if (fst[i].fileType == 0 && strcasecmp(u8Filename(fst, i), "sound.bin") == 0)
for ( i = 1; i < fst[0].numEntries; ++i )
if ( fst[i].fileType == 0 && strcasecmp( u8Filename( fst, i ), "sound.bin" ) == 0 )
break;
if (i >= fst[0].numEntries)
if ( i >= fst[0].numEntries )
{
/* Not all games have a sound.bin and this message is annoying **/
//WindowPrompt(tr("sound.bin not found."), 0, tr("OK"));
free(opening_bnr);
free( opening_bnr );
return NULL;
}
const u8 *sound_bin = ((const u8 *)bnrArcHdr) + fst[i].fileOffset;
if ( ((IMD5Header *)sound_bin)->fcc != 0x494D4435 /*"IMD5"*/ )
const u8 *sound_bin = ( ( const u8 * )bnrArcHdr ) + fst[i].fileOffset;
if ( ( ( IMD5Header * )sound_bin )->fcc != 0x494D4435 /*"IMD5"*/ )
{
// WindowPrompt(tr("IMD5 Header not right."), 0, tr("OK"));
free(opening_bnr);
free( opening_bnr );
return NULL;
}
const u8 *soundChunk = sound_bin + sizeof (IMD5Header);;
u32 soundChunkSize = fst[i].fileLength - sizeof (IMD5Header);
const u8 *soundChunk = sound_bin + sizeof ( IMD5Header );;
u32 soundChunkSize = fst[i].fileLength - sizeof ( IMD5Header );
if ( *((u32*)soundChunk) == 0x4C5A3737 /*"LZ77"*/ )
if ( *( ( u32* )soundChunk ) == 0x4C5A3737 /*"LZ77"*/ )
{
u32 uncSize = NULL;
u8 * uncompressed_data = uncompressLZ77(soundChunk, soundChunkSize, uncSize);
if (!uncompressed_data)
u8 * uncompressed_data = uncompressLZ77( soundChunk, soundChunkSize, uncSize );
if ( !uncompressed_data )
{
// WindowPrompt(tr("Can't decompress LZ77"), 0, tr("OK"));
free(opening_bnr);
free( opening_bnr );
return NULL;
}
if(size) *size=uncSize;
free(opening_bnr);
if ( size ) *size = uncSize;
free( opening_bnr );
return uncompressed_data;
}
u8 *out = new(std::nothrow) u8[soundChunkSize];
if(out)
u8 *out = new( std::nothrow ) u8[soundChunkSize];
if ( out )
{
memcpy(out, soundChunk, soundChunkSize);
if(size) *size=soundChunkSize;
memcpy( out, soundChunk, soundChunkSize );
if ( size ) *size = soundChunkSize;
}
free(opening_bnr);
free( opening_bnr );
return out;
}

View File

@ -1,6 +1,6 @@
#ifndef BANNERSOUND_H
#define BANNERSOUND_H
const u8 *LoadBannerSound(const u8 *discid, u32 *size);
const u8 *LoadBannerSound( const u8 *discid, u32 *size );
#endif /* BANNERSOUND_H */

View File

@ -23,140 +23,157 @@ extern GuiWindow * mainWindow;
/****************************************************************************
* CheatMenu
***************************************************************************/
int CheatMenu(const char * gameID) {
int CheatMenu( const char * gameID )
{
int choice = 0;
bool exit = false;
int ret = 1;
// because destroy GuiSound must wait while sound playing is finished, we use a global sound
if(!btnClick2) btnClick2=new GuiSound(button_click2_pcm, button_click2_pcm_size, Settings.sfxvolume);
if ( !btnClick2 ) btnClick2 = new GuiSound( button_click2_pcm, button_click2_pcm_size, Settings.sfxvolume );
// GuiSound btnClick(button_click2_pcm, button_click2_pcm_size, Settings.sfxvolume);
char imgPath[100];
snprintf(imgPath, sizeof(imgPath), "%sbutton_dialogue_box.png", CFG.theme_path);
GuiImageData btnOutline(imgPath, button_dialogue_box_png);
snprintf(imgPath, sizeof(imgPath), "%ssettings_background.png", CFG.theme_path);
GuiImageData settingsbg(imgPath, settings_background_png);
GuiImage settingsbackground(&settingsbg);
snprintf( imgPath, sizeof( imgPath ), "%sbutton_dialogue_box.png", CFG.theme_path );
GuiImageData btnOutline( imgPath, button_dialogue_box_png );
snprintf( imgPath, sizeof( imgPath ), "%ssettings_background.png", CFG.theme_path );
GuiImageData settingsbg( imgPath, settings_background_png );
GuiImage settingsbackground( &settingsbg );
GuiTrigger trigA;
trigA.SetSimpleTrigger(-1, WPAD_BUTTON_A | WPAD_CLASSIC_BUTTON_A, PAD_BUTTON_A);
trigA.SetSimpleTrigger( -1, WPAD_BUTTON_A | WPAD_CLASSIC_BUTTON_A, PAD_BUTTON_A );
GuiTrigger trigB;
trigB.SetButtonOnlyTrigger(-1, WPAD_BUTTON_B | WPAD_CLASSIC_BUTTON_B, PAD_BUTTON_B);
trigB.SetButtonOnlyTrigger( -1, WPAD_BUTTON_B | WPAD_CLASSIC_BUTTON_B, PAD_BUTTON_B );
GuiText backBtnTxt(tr("Back") , 22, THEME.prompttext);
backBtnTxt.SetMaxWidth(btnOutline.GetWidth()-30);
GuiImage backBtnImg(&btnOutline);
GuiButton backBtn(&backBtnImg,&backBtnImg, 2, 3, -140, 400, &trigA, NULL, btnClick2,1);
backBtn.SetLabel(&backBtnTxt);
backBtn.SetTrigger(&trigB);
GuiText backBtnTxt( tr( "Back" ) , 22, THEME.prompttext );
backBtnTxt.SetMaxWidth( btnOutline.GetWidth() - 30 );
GuiImage backBtnImg( &btnOutline );
GuiButton backBtn( &backBtnImg, &backBtnImg, 2, 3, -140, 400, &trigA, NULL, btnClick2, 1 );
backBtn.SetLabel( &backBtnTxt );
backBtn.SetTrigger( &trigB );
GuiText createBtnTxt(tr("Create") , 22, THEME.prompttext);
createBtnTxt.SetMaxWidth(btnOutline.GetWidth()-30);
GuiImage createBtnImg(&btnOutline);
GuiButton createBtn(&createBtnImg,&createBtnImg, 2, 3, 160, 400, &trigA, NULL, btnClick2,1);
createBtn.SetLabel(&createBtnTxt);
GuiText createBtnTxt( tr( "Create" ) , 22, THEME.prompttext );
createBtnTxt.SetMaxWidth( btnOutline.GetWidth() - 30 );
GuiImage createBtnImg( &btnOutline );
GuiButton createBtn( &createBtnImg, &createBtnImg, 2, 3, 160, 400, &trigA, NULL, btnClick2, 1 );
createBtn.SetLabel( &createBtnTxt );
char txtfilename[55];
snprintf(txtfilename,sizeof(txtfilename),"%s%s.txt",Settings.TxtCheatcodespath,gameID);
snprintf( txtfilename, sizeof( txtfilename ), "%s%s.txt", Settings.TxtCheatcodespath, gameID );
GCTCheats c;
int check = c.openTxtfile(txtfilename);
int check = c.openTxtfile( txtfilename );
int download =0;
int download = 0;
switch (check) {
switch ( check )
{
case -1:
WindowPrompt(tr("Error"),tr("Cheatfile is blank"),tr("OK"));
WindowPrompt( tr( "Error" ), tr( "Cheatfile is blank" ), tr( "OK" ) );
break;
case 0:
download = WindowPrompt(tr("Error"),tr("No Cheatfile found"),tr("Download Now"),tr("Cancel"));
if (download==1)
download = WindowPrompt( tr( "Error" ), tr( "No Cheatfile found" ), tr( "Download Now" ), tr( "Cancel" ) );
if ( download == 1 )
{
download = CodeDownload(gameID);
if(download < 0 || c.openTxtfile(txtfilename) != 1)
download = CodeDownload( gameID );
if ( download < 0 || c.openTxtfile( txtfilename ) != 1 )
break;
}
else
break;
case 1:
int cntcheats = c.getCnt();
customOptionList cheatslst(cntcheats);
GuiCustomOptionBrowser chtBrowser(400, 280, &cheatslst, CFG.theme_path, "bg_options_settings.png", bg_options_settings_png, 1, 90);
chtBrowser.SetPosition(0, 90);
chtBrowser.SetAlignment(ALIGN_CENTRE, ALIGN_TOP);
chtBrowser.SetClickable(true);
customOptionList cheatslst( cntcheats );
GuiCustomOptionBrowser chtBrowser( 400, 280, &cheatslst, CFG.theme_path, "bg_options_settings.png", bg_options_settings_png, 1, 90 );
chtBrowser.SetPosition( 0, 90 );
chtBrowser.SetAlignment( ALIGN_CENTRE, ALIGN_TOP );
chtBrowser.SetClickable( true );
GuiText titleTxt(c.getGameName().c_str(), 28, (GXColor) {0, 0, 0, 255});
titleTxt.SetAlignment(ALIGN_CENTRE, ALIGN_TOP);
titleTxt.SetMaxWidth(350, SCROLL_HORIZONTAL);
titleTxt.SetPosition(12,40);
GuiText titleTxt( c.getGameName().c_str(), 28, ( GXColor ) {0, 0, 0, 255} );
titleTxt.SetAlignment( ALIGN_CENTRE, ALIGN_TOP );
titleTxt.SetMaxWidth( 350, SCROLL_HORIZONTAL );
titleTxt.SetPosition( 12, 40 );
for (int i = 0; i <= cntcheats; i++) {
cheatslst.SetValue(i, "%s",c.getCheatName(i).c_str());
cheatslst.SetName(i, "OFF");
for ( int i = 0; i <= cntcheats; i++ )
{
cheatslst.SetValue( i, "%s", c.getCheatName( i ).c_str() );
cheatslst.SetName( i, "OFF" );
}
HaltGui();
GuiWindow w(screenwidth, screenheight);
w.Append(&settingsbackground);
w.Append(&titleTxt);
w.Append(&backBtn);
w.Append(&createBtn);
w.Append(&chtBrowser);
mainWindow->SetState(STATE_DISABLED);
mainWindow->ChangeFocus(&w);
mainWindow->Append(&w);
GuiWindow w( screenwidth, screenheight );
w.Append( &settingsbackground );
w.Append( &titleTxt );
w.Append( &backBtn );
w.Append( &createBtn );
w.Append( &chtBrowser );
mainWindow->SetState( STATE_DISABLED );
mainWindow->ChangeFocus( &w );
mainWindow->Append( &w );
ResumeGui();
while (!exit) {
while ( !exit )
{
VIDEO_WaitVSync ();
ret = chtBrowser.GetClickedOption();
if (ret != -1) {
const char *strCheck = cheatslst.GetName(ret);
if (strncmp(strCheck,"ON",2) == 0) {
cheatslst.SetName(ret,"%s","OFF");
} else if (strncmp(strCheck,"OFF",3) == 0) {
cheatslst.SetName(ret,"%s","ON");
if ( ret != -1 )
{
const char *strCheck = cheatslst.GetName( ret );
if ( strncmp( strCheck, "ON", 2 ) == 0 )
{
cheatslst.SetName( ret, "%s", "OFF" );
}
else if ( strncmp( strCheck, "OFF", 3 ) == 0 )
{
cheatslst.SetName( ret, "%s", "ON" );
}
}
if (createBtn.GetState() == STATE_CLICKED) {
if ( createBtn.GetState() == STATE_CLICKED )
{
createBtn.ResetState();
if (cntcheats > 0) {
if ( cntcheats > 0 )
{
int selectednrs[30];
int x = 0;
for (int i = 0; i <= cntcheats; i++) {
const char *strCheck = cheatslst.GetName(i);
if (strncmp(strCheck,"ON",2) == 0) {
for ( int i = 0; i <= cntcheats; i++ )
{
const char *strCheck = cheatslst.GetName( i );
if ( strncmp( strCheck, "ON", 2 ) == 0 )
{
selectednrs[x] = i;
x++;
}
}
if (x == 0) {
WindowPrompt(tr("Error"),tr("No cheats were selected"),tr("OK"));
} else {
subfoldercreate(Settings.Cheatcodespath);
if ( x == 0 )
{
WindowPrompt( tr( "Error" ), tr( "No cheats were selected" ), tr( "OK" ) );
}
else
{
subfoldercreate( Settings.Cheatcodespath );
string chtpath = Settings.Cheatcodespath;
string gctfname = chtpath + c.getGameID() + ".gct";
c.createGCT(selectednrs,x,gctfname.c_str());
WindowPrompt(tr("GCT File created"),NULL,tr("OK"));
c.createGCT( selectednrs, x, gctfname.c_str() );
WindowPrompt( tr( "GCT File created" ), NULL, tr( "OK" ) );
exit = true;
break;
}
} else WindowPrompt(tr("Error"),tr("Could not create GCT file"),tr("OK"));
}
else WindowPrompt( tr( "Error" ), tr( "Could not create GCT file" ), tr( "OK" ) );
}
if (backBtn.GetState() == STATE_CLICKED) {
if ( backBtn.GetState() == STATE_CLICKED )
{
backBtn.ResetState();
exit = true;
break;
}
}
HaltGui();
mainWindow->SetState(STATE_DEFAULT);
mainWindow->Remove(&w);
mainWindow->SetState( STATE_DEFAULT );
mainWindow->Remove( &w );
ResumeGui();
break;
}

View File

@ -8,6 +8,6 @@
#ifndef _CHEATMENU_H_
#define _CHEATMENU_H_
int CheatMenu(const char * gameID);
int CheatMenu( const char * gameID );
#endif

View File

@ -12,96 +12,116 @@
#define ERRORRANGE "Error: CheatNr out of range"
GCTCheats::GCTCheats(void) {
GCTCheats::GCTCheats( void )
{
iCntCheats = 0;
}
GCTCheats::~GCTCheats(void) {
GCTCheats::~GCTCheats( void )
{
string sGameID ="";
string sGameID = "";
string sGameTitle = "";
/*string sCheatName[MAXCHEATS];
string sCheats[MAXCHEATS];
string sCheatComment[MAXCHEATS];*/
}
int GCTCheats::getCnt() {
int GCTCheats::getCnt()
{
return iCntCheats;
}
string GCTCheats::getGameName(void) {
string GCTCheats::getGameName( void )
{
return sGameTitle;
}
string GCTCheats::getGameID(void) {
string GCTCheats::getGameID( void )
{
return sGameID;
}
string GCTCheats::getCheat(int nr) {
if (nr <= (iCntCheats-1)) {
string GCTCheats::getCheat( int nr )
{
if ( nr <= ( iCntCheats - 1 ) )
{
return sCheats[nr];
} else {
}
else
{
return ERRORRANGE;
}
}
string GCTCheats::getCheatName(int nr) {
if (nr <= (iCntCheats-1)) {
string GCTCheats::getCheatName( int nr )
{
if ( nr <= ( iCntCheats - 1 ) )
{
return sCheatName[nr];
} else {
}
else
{
return ERRORRANGE;
}
}
string GCTCheats::getCheatComment(int nr) {
if (nr <= (iCntCheats-1)) {
string GCTCheats::getCheatComment( int nr )
{
if ( nr <= ( iCntCheats - 1 ) )
{
return sCheatComment[nr];
} else {
}
else
{
return ERRORRANGE;
}
}
int GCTCheats::createGCT(int nr,const char * filename) {
int GCTCheats::createGCT( int nr, const char * filename )
{
if (nr == 0)
if ( nr == 0 )
return 0;
ofstream filestr;
filestr.open(filename);
filestr.open( filename );
if (filestr.fail())
if ( filestr.fail() )
return 0;
//Header and Footer
char header[] = { 0x00, 0xd0, 0xc0, 0xde, 0x00, 0xd0, 0xc0, 0xde};
char footer[] = { 0xF0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
string buf = getCheat(nr);
filestr.write(header,sizeof(header));
string buf = getCheat( nr );
filestr.write( header, sizeof( header ) );
int x = 0;
long int li;
int len = buf.size();
while (x < len) {
string temp = buf.substr(x,2);
li = strtol(temp.c_str(),NULL,16);
while ( x < len )
{
string temp = buf.substr( x, 2 );
li = strtol( temp.c_str(), NULL, 16 );
temp = li;
filestr.write(temp.c_str(),1);
x +=2;
filestr.write( temp.c_str(), 1 );
x += 2;
}
filestr.write(footer,sizeof(footer));
filestr.write( footer, sizeof( footer ) );
filestr.close();
return 1;
}
int GCTCheats::createGCT(const char * chtbuffer,const char * filename) {
int GCTCheats::createGCT( const char * chtbuffer, const char * filename )
{
ofstream filestr;
filestr.open(filename);
filestr.open( filename );
if (filestr.fail())
if ( filestr.fail() )
return 0;
//Header and Footer
@ -109,144 +129,160 @@ int GCTCheats::createGCT(const char * chtbuffer,const char * filename) {
char footer[] = { 0xF0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
string buf = chtbuffer;
filestr.write(header,sizeof(header));
filestr.write( header, sizeof( header ) );
int x = 0;
long int li;
int len = buf.size();
while (x < len) {
string temp = buf.substr(x,2);
li = strtol(temp.c_str(),NULL,16);
while ( x < len )
{
string temp = buf.substr( x, 2 );
li = strtol( temp.c_str(), NULL, 16 );
temp = li;
filestr.write(temp.c_str(),1);
x +=2;
filestr.write( temp.c_str(), 1 );
x += 2;
}
filestr.write(footer,sizeof(footer));
filestr.write( footer, sizeof( footer ) );
filestr.close();
return 1;
}
int GCTCheats::createGCT(int nr[],int cnt,const char * filename) {
int GCTCheats::createGCT( int nr[], int cnt, const char * filename )
{
if (cnt == 0)
if ( cnt == 0 )
return 0;
ofstream filestr;
filestr.open(filename);
filestr.open( filename );
if (filestr.fail())
if ( filestr.fail() )
return 0;
//Header and Footer
char header[] = { 0x00, 0xd0, 0xc0, 0xde, 0x00, 0xd0, 0xc0, 0xde};
char footer[] = { 0xF0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
filestr.write(header,sizeof(header));
filestr.write( header, sizeof( header ) );
int c = 0;
while (c != cnt) {
while ( c != cnt )
{
int actnr = nr[c];
string buf = getCheat(actnr);
string buf = getCheat( actnr );
long int li;
int len = buf.size();
int x = 0;
while (x < len) {
string temp = buf.substr(x,2);
li = strtol(temp.c_str(),NULL,16);
while ( x < len )
{
string temp = buf.substr( x, 2 );
li = strtol( temp.c_str(), NULL, 16 );
temp = li;
filestr.write(temp.c_str(),1);
x +=2;
filestr.write( temp.c_str(), 1 );
x += 2;
}
c++;
}
filestr.write(footer,sizeof(footer));
filestr.write( footer, sizeof( footer ) );
filestr.close();
return 1;
}
int GCTCheats::openTxtfile(const char * filename) {
int GCTCheats::openTxtfile( const char * filename )
{
ifstream filestr;
int i = 0;
string str;
filestr.open(filename);
filestr.open( filename );
if (filestr.fail())
if ( filestr.fail() )
return 0;
filestr.seekg(0,ios_base::end);
filestr.seekg( 0, ios_base::end );
int size = filestr.tellg();
if (size <= 0) return -1;
filestr.seekg(0,ios_base::beg);
if ( size <= 0 ) return -1;
filestr.seekg( 0, ios_base::beg );
getline(filestr,sGameID);
if (sGameID[sGameID.length() - 1] == '\r')
sGameID.erase(sGameID.length() - 1);
getline( filestr, sGameID );
if ( sGameID[sGameID.length() - 1] == '\r' )
sGameID.erase( sGameID.length() - 1 );
getline(filestr,sGameTitle);
if (sGameTitle[sGameTitle.length() - 1] == '\r')
sGameTitle.erase(sGameTitle.length() - 1);
getline( filestr, sGameTitle );
if ( sGameTitle[sGameTitle.length() - 1] == '\r' )
sGameTitle.erase( sGameTitle.length() - 1 );
getline(filestr,sCheatName[i]); // skip first line if file uses CRLF
if (!sGameTitle[sGameTitle.length() - 1] == '\r')
filestr.seekg(0,ios_base::beg);
getline( filestr, sCheatName[i] ); // skip first line if file uses CRLF
if ( !sGameTitle[sGameTitle.length() - 1] == '\r' )
filestr.seekg( 0, ios_base::beg );
while (!filestr.eof()) {
getline(filestr,sCheatName[i]); // '\n' delimiter by default
if (sCheatName[i][sCheatName[i].length() - 1] == '\r')
sCheatName[i].erase(sCheatName[i].length() - 1);
while ( !filestr.eof() )
{
getline( filestr, sCheatName[i] ); // '\n' delimiter by default
if ( sCheatName[i][sCheatName[i].length() - 1] == '\r' )
sCheatName[i].erase( sCheatName[i].length() - 1 );
string cheatdata;
bool emptyline = false;
do {
getline(filestr,str);
if (str[str.length() - 1] == '\r')
str.erase(str.length() - 1);
do
{
getline( filestr, str );
if ( str[str.length() - 1] == '\r' )
str.erase( str.length() - 1 );
if (str == "" || str[0] == '\r' || str[0] == '\n') {
if ( str == "" || str[0] == '\r' || str[0] == '\n' )
{
emptyline = true;
break;
}
if (IsCode(str)) {
if ( IsCode( str ) )
{
// remove any garbage (comment) after code
while (str.size() > 17) {
str.erase(str.length() - 1);
while ( str.size() > 17 )
{
str.erase( str.length() - 1 );
}
cheatdata.append(str);
size_t found=cheatdata.find(' ');
cheatdata.replace(found,1,"");
} else {
cheatdata.append( str );
size_t found = cheatdata.find( ' ' );
cheatdata.replace( found, 1, "" );
}
else
{
//printf("%i",str.size());
sCheatComment[i] = str;
}
if (filestr.eof()) break;
if ( filestr.eof() ) break;
} while (!emptyline);
}
while ( !emptyline );
sCheats[i] = cheatdata;
i++;
if (i == MAXCHEATS) break;
if ( i == MAXCHEATS ) break;
}
iCntCheats = i;
filestr.close();
return 1;
}
bool GCTCheats::IsCode(const std::string& str) {
if (str[8] == ' ' && str.size() >= 17) {
bool GCTCheats::IsCode( const std::string& str )
{
if ( str[8] == ' ' && str.size() >= 17 )
{
// accept strings longer than 17 in case there is a comment on the same line as the code
char part1[9];
char part2[9];
snprintf(part1,sizeof(part1),"%c%c%c%c%c%c%c%c",str[0],str[1],str[2],str[3],str[4],str[5],str[6],str[7]);
snprintf(part2,sizeof(part2),"%c%c%c%c%c%c%c%c",str[9],str[10],str[11],str[12],str[13],str[14],str[15],str[16]);
if ((strtok(part1,"0123456789ABCDEFabcdef") == NULL) && (strtok(part2,"0123456789ABCDEFabcdef") == NULL)) {
snprintf( part1, sizeof( part1 ), "%c%c%c%c%c%c%c%c", str[0], str[1], str[2], str[3], str[4], str[5], str[6], str[7] );
snprintf( part2, sizeof( part2 ), "%c%c%c%c%c%c%c%c", str[9], str[10], str[11], str[12], str[13], str[14], str[15], str[16] );
if ( ( strtok( part1, "0123456789ABCDEFabcdef" ) == NULL ) && ( strtok( part2, "0123456789ABCDEFabcdef" ) == NULL ) )
{
return true;
}
}

View File

@ -14,8 +14,9 @@
using namespace std;
//!Handles Ocarina TXT Cheatfiles
class GCTCheats {
private:
class GCTCheats
{
private:
string sGameID;
string sGameTitle;
string sCheatName[MAXCHEATS];
@ -23,52 +24,52 @@ private:
string sCheatComment[MAXCHEATS];
int iCntCheats;
public:
public:
//!Constructor
GCTCheats(void);
GCTCheats( void );
//!Destructor
~GCTCheats(void);
~GCTCheats( void );
//!Open txt file with cheats
//!\param filename name of TXT file
//!\return error code
int openTxtfile(const char * filename);
int openTxtfile( const char * filename );
//!Creates GCT file for one cheat
//!\param nr selected Cheat Numbers
//!\param filename name of GCT file
//!\return error code
int createGCT(int nr,const char * filename);
int createGCT( int nr, const char * filename );
//!Creates GCT file from a buffer
//!\param chtbuffer buffer that holds the cheat data
//!\param filename name of GCT file
//!\return error code
int createGCT(const char * chtbuffer,const char * filename);
int createGCT( const char * chtbuffer, const char * filename );
//!Creates GCT file
//!\param nr[] array of selected Cheat Numbers
//!\param cnt size of array
//!\param filename name of GCT file
//!\return error code
int createGCT(int nr[],int cnt,const char * filename);
int createGCT( int nr[], int cnt, const char * filename );
//!Gets Count cheats
//!\return Count cheats
int getCnt();
//!Gets Game Name
//!\return Game Name
string getGameName(void);
string getGameName( void );
//!Gets GameID
//!\return GameID
string getGameID(void);
string getGameID( void );
//!Gets cheat data
//!\return cheat data
string getCheat(int nr);
string getCheat( int nr );
//!Gets Cheat Name
//!\return Cheat Name
string getCheatName(int nr);
string getCheatName( int nr );
//!Gets Cheat Comment
//!\return Cheat Comment
string getCheatComment(int nr);
string getCheatComment( int nr );
//!Check if string is a code
//!\return true/false
bool IsCode(const std::string& s);
bool IsCode( const std::string& s );
};
#endif /* _GCT_H */

View File

@ -44,20 +44,22 @@ sec_t fat_wbfs_sec = 0;
int fs_ntfs_mount = 0;
sec_t fs_ntfs_sec = 0;
int USBDevice_Init() {
int USBDevice_Init()
{
#ifdef DEBUG_FAT
gprintf("\nUSBDevice_Init()");
gprintf( "\nUSBDevice_Init()" );
#endif
//closing all open Files write back the cache and then shutdown em!
fatUnmount("USB:/");
fatUnmount( "USB:/" );
//right now mounts first FAT-partition
//try first mount with cIOS
// if (!fatMount("USB", &__io_wiiums, 0, CACHE, SECTORS)) {
// //try now mount with libogc
if (!fatMount("USB", &__io_usbstorage2, 0, CACHE, SECTORS)) {
if ( !fatMount( "USB", &__io_usbstorage2, 0, CACHE, SECTORS ) )
{
#ifdef DEBUG_FAT
gprintf(":-1");
gprintf( ":-1" );
#endif
return -1;
}
@ -66,94 +68,104 @@ int USBDevice_Init() {
fat_usb_mount = 1;
fat_usb_sec = _FAT_startSector;
#ifdef DEBUG_FAT
gprintf(":0");
gprintf( ":0" );
#endif
return 0;
}
void USBDevice_deInit() {
void USBDevice_deInit()
{
#ifdef DEBUG_FAT
gprintf("\nUSBDevice_deInit()");
gprintf( "\nUSBDevice_deInit()" );
#endif
//closing all open Files write back the cache and then shutdown em!
fatUnmount("USB:/");
fatUnmount( "USB:/" );
fat_usb_mount = 0;
fat_usb_sec = 0;
}
int WBFSDevice_Init(u32 sector) {
int WBFSDevice_Init( u32 sector )
{
//closing all open Files write back the cache and then shutdown em!
fatUnmount("WBFS:/");
fatUnmount( "WBFS:/" );
//right now mounts first FAT-partition
//try first mount with cIOS
// if (!fatMount("WBFS", &__io_wiiums, 0, CACHE, SECTORS)) {
//try now mount with libogc
if (!fatMount("WBFS", &__io_usbstorage2, 0, CACHE, SECTORS)) {
if ( !fatMount( "WBFS", &__io_usbstorage2, 0, CACHE, SECTORS ) )
{
return -1;
}
// }
fat_wbfs_mount = 1;
fat_wbfs_sec = _FAT_startSector;
if (sector && fat_wbfs_sec != sector) {
if ( sector && fat_wbfs_sec != sector )
{
// This is an error situation...actually, but is ignored in Config loader also
// Should ask Oggzee about it...
}
return 0;
}
void WBFSDevice_deInit() {
void WBFSDevice_deInit()
{
//closing all open Files write back the cache and then shutdown em!
fatUnmount("WBFS:/");
fatUnmount( "WBFS:/" );
fat_wbfs_mount = 0;
fat_wbfs_sec = 0;
}
int isInserted(const char *path) {
if (!strncmp(path, "USB:", 4))
int isInserted( const char *path )
{
if ( !strncmp( path, "USB:", 4 ) )
return 1;
return __io_sdhc.isInserted() || __io_wiisd.isInserted();
}
int SDCard_Init() {
int SDCard_Init()
{
#ifdef DEBUG_FAT
gprintf("\nSDCard_Init()");
gprintf( "\nSDCard_Init()" );
#endif
//closing all open Files write back the cache and then shutdown em!
fatUnmount("SD:/");
fatUnmount( "SD:/" );
//right now mounts first FAT-partition
if (fatMount("SD", &__io_wiisd, 0, CACHE, SECTORS)) {
if ( fatMount( "SD", &__io_wiisd, 0, CACHE, SECTORS ) )
{
fat_sd_mount = MOUNT_SD;
fat_sd_sec = _FAT_startSector;
#ifdef DEBUG_FAT
gprintf(":1");
gprintf( ":1" );
#endif
return 1;
}
else if (fatMount("SD", &__io_sdhc, 0, CACHE, SDHC_SECTOR_SIZE)) {
else if ( fatMount( "SD", &__io_sdhc, 0, CACHE, SDHC_SECTOR_SIZE ) )
{
fat_sd_mount = MOUNT_SDHC;
fat_sd_sec = _FAT_startSector;
#ifdef DEBUG_FAT
gprintf(":1");
gprintf( ":1" );
#endif
return 1;
}
#ifdef DEBUG_FAT
gprintf(":-1");
gprintf( ":-1" );
#endif
return -1;
}
void SDCard_deInit() {
void SDCard_deInit()
{
#ifdef DEBUG_FAT
gprintf("\nSDCard_deInit()");
gprintf( "\nSDCard_deInit()" );
#endif
//closing all open Files write back the cache and then shutdown em!
fatUnmount("SD:/");
fatUnmount( "SD:/" );
fat_sd_mount = MOUNT_NONE;
fat_sd_sec = 0;
@ -161,11 +173,11 @@ void SDCard_deInit() {
void ntfsInit();
s32 MountNTFS(u32 sector)
s32 MountNTFS( u32 sector )
{
s32 ret;
if (fs_ntfs_mount) return 0;
if ( fs_ntfs_mount ) return 0;
//printf("mounting NTFS\n");
//Wpad_WaitButtons();
_FAT_mem_init();
@ -175,31 +187,40 @@ s32 MountNTFS(u32 sector)
// ntfsInit resets locale settings
// which breaks unicode in console
// so we change it back to C-UTF-8
setlocale(LC_CTYPE, "C-UTF-8");
setlocale(LC_MESSAGES, "C-UTF-8");
setlocale( LC_CTYPE, "C-UTF-8" );
setlocale( LC_MESSAGES, "C-UTF-8" );
if (wbfsDev == WBFS_DEVICE_USB) {
if ( wbfsDev == WBFS_DEVICE_USB )
{
/* Initialize WBFS interface */
// if (!__io_wiiums.startup()) {
ret = __io_usbstorage2.startup();
if (!ret) {
if ( !ret )
{
return -1;
}
// }
/* Mount device */
// if (!ntfsMount("NTFS", &__io_wiiums, sector, CACHE, SECTORS, NTFS_SHOW_HIDDEN_FILES | NTFS_RECOVER)) {
ret = ntfsMount("NTFS", &__io_usbstorage2, sector, CACHE, SECTORS, NTFS_SHOW_HIDDEN_FILES | NTFS_READ_ONLY | NTFS_RECOVER);
if (!ret) {
ret = ntfsMount( "NTFS", &__io_usbstorage2, sector, CACHE, SECTORS, NTFS_SHOW_HIDDEN_FILES | NTFS_READ_ONLY | NTFS_RECOVER );
if ( !ret )
{
return -2;
}
// }
} else if (wbfsDev == WBFS_DEVICE_SDHC) {
if (sdhc_mode_sd == 0) {
ret = ntfsMount("NTFS", &__io_sdhc, 0, CACHE, SECTORS, NTFS_SHOW_HIDDEN_FILES | NTFS_READ_ONLY | NTFS_RECOVER);
} else {
ret = ntfsMount("NTFS", &__io_sdhc, 0, CACHE, SECTORS_SD, NTFS_SHOW_HIDDEN_FILES | NTFS_READ_ONLY | NTFS_RECOVER);
}
if (!ret) {
else if ( wbfsDev == WBFS_DEVICE_SDHC )
{
if ( sdhc_mode_sd == 0 )
{
ret = ntfsMount( "NTFS", &__io_sdhc, 0, CACHE, SECTORS, NTFS_SHOW_HIDDEN_FILES | NTFS_READ_ONLY | NTFS_RECOVER );
}
else
{
ret = ntfsMount( "NTFS", &__io_sdhc, 0, CACHE, SECTORS_SD, NTFS_SHOW_HIDDEN_FILES | NTFS_READ_ONLY | NTFS_RECOVER );
}
if ( !ret )
{
return -5;
}
}
@ -210,10 +231,10 @@ s32 MountNTFS(u32 sector)
return 0;
}
s32 UnmountNTFS(void)
s32 UnmountNTFS( void )
{
/* Unmount device */
ntfsUnmount("NTFS:/", true);
ntfsUnmount( "NTFS:/", true );
fs_ntfs_mount = 0;
fs_ntfs_sec = 0;
@ -225,17 +246,17 @@ void _FAT_mem_init()
{
}
void* _FAT_mem_allocate(size_t size)
void* _FAT_mem_allocate( size_t size )
{
return malloc(size);
return malloc( size );
}
void* _FAT_mem_align(size_t size)
void* _FAT_mem_align( size_t size )
{
return memalign(32, size);
return memalign( 32, size );
}
void _FAT_mem_free(void *mem)
void _FAT_mem_free( void *mem )
{
free(mem);
free( mem );
}

View File

@ -2,7 +2,8 @@
#define _FATMOUNTER_H_
#ifdef __cplusplus
extern "C" {
extern "C"
{
#endif
extern int fat_sd_mount;
@ -14,14 +15,14 @@ extern "C" {
int USBDevice_Init();
void USBDevice_deInit();
int WBFSDevice_Init(u32 sector);
int WBFSDevice_Init( u32 sector );
void WBFSDevice_deInit();
int isInserted(const char *path);
int isInserted( const char *path );
int SDCard_Init();
void SDCard_deInit();
s32 MountNTFS(u32 sector);
s32 UnmountNTFS(void);
s32 MountNTFS( u32 sector );
s32 UnmountNTFS( void );
extern int fat_usb_mount;
extern sec_t fat_usb_sec;

View File

@ -12,67 +12,67 @@ bool textVideoInit = false;
//using the gprintf from crediar because it is smaller than mine
void gprintf( const char *str, ... )
{
if (!(geckoinit))return;
if ( !( geckoinit ) )return;
char astr[4096];
va_list ap;
va_start(ap,str);
va_start( ap, str );
vsprintf( astr, str, ap );
va_end(ap);
va_end( ap );
usb_sendbuffer( 1, astr, strlen(astr) );
usb_sendbuffer( 1, astr, strlen( astr ) );
//usb_sendbuffer_safe( 1, astr, strlen(astr) );
}
bool InitGecko()
{
u32 geckoattached = usb_isgeckoalive(EXI_CHANNEL_1);
if (geckoattached)
u32 geckoattached = usb_isgeckoalive( EXI_CHANNEL_1 );
if ( geckoattached )
{
usb_flush(EXI_CHANNEL_1);
usb_flush( EXI_CHANNEL_1 );
CON_EnableGecko( 1, true );
return true;
}
else return false;
}
char ascii(char s)
char ascii( char s )
{
if(s < 0x20)
if ( s < 0x20 )
return '.';
if(s > 0x7E)
if ( s > 0x7E )
return '.';
return s;
}
void hexdump(void *d, int len)
void hexdump( void *d, int len )
{
u8 *data;
int i, off;
data = (u8*)d;
data = ( u8* )d;
gprintf("\n 0 1 2 3 4 5 6 7 8 9 A B C D E F 0123456789ABCDEF");
gprintf("\n==== =============================================== ================\n");
gprintf( "\n 0 1 2 3 4 5 6 7 8 9 A B C D E F 0123456789ABCDEF" );
gprintf( "\n==== =============================================== ================\n" );
for (off=0; off<len; off += 16)
for ( off = 0; off < len; off += 16 )
{
gprintf("%04x ",off);
for(i=0; i<16; i++)
if((i+off)>=len)
gprintf(" ");
gprintf( "%04x ", off );
for ( i = 0; i < 16; i++ )
if ( ( i + off ) >= len )
gprintf( " " );
else
gprintf("%02x ",data[off+i]);
gprintf( "%02x ", data[off+i] );
gprintf(" ");
for(i=0; i<16; i++)
if((i+off)>=len)
gprintf(" ");
gprintf( " " );
for ( i = 0; i < 16; i++ )
if ( ( i + off ) >= len )
gprintf( " " );
else
gprintf("%c",ascii(data[off+i]));
gprintf("\n");
gprintf( "%c", ascii( data[off+i] ) );
gprintf( "\n" );
}
}

View File

@ -4,20 +4,21 @@
#define _GECKO_H_
#ifdef __cplusplus
extern "C" {
extern "C"
{
#endif
char ascii(char s);
char ascii( char s );
#ifndef NO_DEBUG
//use this just like printf();
void gprintf(const char *str, ...);
void gprintf( const char *str, ... );
bool InitGecko();
void hexdump(void *d, int len);
void hexdump( void *d, int len );
#else
#define gprintf(...)
#define InitGecko() false
#define hexdump( x, y )
#define gprintf(...)
#define InitGecko() false
#define hexdump( x, y )
#endif /* NO_DEBUG */

View File

@ -17,59 +17,59 @@
extern const u8 app_booter_dol[];
extern const u32 app_booter_dol_size;
static u8 *homebrewbuffer = (u8 *) 0x92000000;
static u8 *homebrewbuffer = ( u8 * ) 0x92000000;
static int homebrewsize = 0;
static std::vector<std::string> Arguments;
void AddBootArgument(const char * argv)
void AddBootArgument( const char * argv )
{
std::string arg(argv);
Arguments.push_back(arg);
std::string arg( argv );
Arguments.push_back( arg );
}
int CopyHomebrewMemory(u8 *temp, u32 pos, u32 len)
int CopyHomebrewMemory( u8 *temp, u32 pos, u32 len )
{
homebrewsize += len;
memcpy((homebrewbuffer)+pos, temp, len);
memcpy( ( homebrewbuffer ) + pos, temp, len );
return 1;
}
void FreeHomebrewBuffer()
{
homebrewbuffer = (u8 *)0x92000000;
homebrewbuffer = ( u8 * )0x92000000;
homebrewsize = 0;
}
static int SetupARGV(struct __argv * args)
static int SetupARGV( struct __argv * args )
{
if(!args)
if ( !args )
return -1;
bzero(args, sizeof(struct __argv));
bzero( args, sizeof( struct __argv ) );
args->argvMagic = ARGV_MAGIC;
u32 stringlength = 1;
/** Append Arguments **/
for(u32 i = 0; i < Arguments.size(); i++)
for ( u32 i = 0; i < Arguments.size(); i++ )
{
stringlength += Arguments[i].size()+1;
stringlength += Arguments[i].size() + 1;
}
args->length = stringlength;
args->commandLine = (char*) malloc(args->length);
if (!args->commandLine)
args->commandLine = ( char* ) malloc( args->length );
if ( !args->commandLine )
return -1;
u32 argc = 0;
u32 position = 0;
/** Append Arguments **/
for(u32 i = 0; i < Arguments.size(); i++)
for ( u32 i = 0; i < Arguments.size(); i++ )
{
strcpy(&args->commandLine[position], Arguments[i].c_str());
position += Arguments[i].size()+1;
strcpy( &args->commandLine[position], Arguments[i].c_str() );
position += Arguments[i].size() + 1;
argc++;
}
@ -86,7 +86,7 @@ static int SetupARGV(struct __argv * args)
int BootHomebrew()
{
if(homebrewsize <= 0)
if ( homebrewsize <= 0 )
Sys_BackToLoader();
SDCard_deInit();
@ -94,43 +94,43 @@ int BootHomebrew()
USBStorage2_Deinit();
struct __argv args;
SetupARGV(&args);
SetupARGV( &args );
u32 cpu_isr;
entrypoint entry = (entrypoint) load_dol(app_booter_dol, &args);
entrypoint entry = ( entrypoint ) load_dol( app_booter_dol, &args );
if (!entry)
if ( !entry )
Sys_BackToLoader();
VIDEO_SetBlack(true);
VIDEO_SetBlack( true );
VIDEO_Flush();
VIDEO_WaitVSync();
SYS_ResetSystem(SYS_SHUTDOWN, 0, 0);
_CPU_ISR_Disable (cpu_isr);
SYS_ResetSystem( SYS_SHUTDOWN, 0, 0 );
_CPU_ISR_Disable ( cpu_isr );
__exception_closeall();
entry();
_CPU_ISR_Restore (cpu_isr);
_CPU_ISR_Restore ( cpu_isr );
return 0;
}
int BootHomebrew(const char * filepath)
int BootHomebrew( const char * filepath )
{
FILE * file = fopen(filepath, "rb");
if(!file)
FILE * file = fopen( filepath, "rb" );
if ( !file )
Sys_BackToLoader();
fseek(file, 0, SEEK_END);
fseek( file, 0, SEEK_END );
int size = ftell(file);
rewind(file);
int size = ftell( file );
rewind( file );
homebrewsize = fread(homebrewbuffer, 1, size, file);
fclose(file);
homebrewsize = fread( homebrewbuffer, 1, size, file );
fclose( file );
AddBootArgument(filepath);
AddBootArgument( filepath );
return BootHomebrew();
}
@ -155,7 +155,7 @@ int BootHomebrew(const char * filepath)
void *innetbuffer = NULL;
static u8 *homebrewbuffer =( u8 * )0x92000000;
static u8 *homebrewbuffer = ( u8 * )0x92000000;
u32 homebrewsize = 0;
static std::vector<std::string> Arguments;
@ -182,7 +182,7 @@ void AddBootArgument( const char * argv )
int CopyHomebrewMemory( u8 *temp, u32 pos, u32 len )
{
homebrewsize += len;
memcpy(( homebrewbuffer ) + pos, temp, len );
memcpy( ( homebrewbuffer ) + pos, temp, len );
return 1;
}
@ -255,7 +255,7 @@ static int RunAppbooter()
u32 cpu_isr;
entrypoint entry = ( entrypoint ) load_dol(( void* ) app_booter_dol, &args );
entrypoint entry = ( entrypoint ) load_dol( ( void* ) app_booter_dol, &args );
if ( !entry )
{
@ -320,7 +320,7 @@ int BootHomebrew( char * filepath )
fclose( file );
CopyHomebrewMemory(( u8* ) buffer, 0, filesize );
CopyHomebrewMemory( ( u8* ) buffer, 0, filesize );
if ( buffer )
{
@ -344,7 +344,7 @@ int BootHomebrewFromMem()
Sys_BackToLoader();
}
CopyHomebrewMemory(( u8* ) innetbuffer, 0, homebrewsize );
CopyHomebrewMemory( ( u8* ) innetbuffer, 0, homebrewsize );
free( innetbuffer );
return RunAppbooter();

View File

@ -3,11 +3,11 @@
//int BootHomebrew();
int BootHomebrewFromMem();
int BootHomebrew( char * filepath);
int CopyHomebrewMemory(u8 *temp, u32 pos, u32 len);
void AddBootArgument(const char * arg);
int BootHomebrew( char * filepath );
int CopyHomebrewMemory( u8 *temp, u32 pos, u32 len );
void AddBootArgument( const char * arg );
void FreeHomebrewBuffer();
int LoadHomebrew(const char * filepath);
int LoadHomebrew( const char * filepath );
int AllocHomebrewMemory( u32 filesize );
extern void *innetbuffer;
extern u32 homebrewsize;

File diff suppressed because it is too large Load Diff

View File

@ -10,7 +10,7 @@
#ifndef _HOMEBREWBROWSE_H_
#define _HOMEBREWBROWSE_H_
int roundup(float number);
int roundup( float number );
int MenuHomebrewBrowse();
#endif

View File

@ -9,108 +9,128 @@
#include "HomebrewFiles.h"
HomebrewFiles::HomebrewFiles(const char * path) {
HomebrewFiles::HomebrewFiles( const char * path )
{
filecount = 0;
FileInfo = (FileInfos *) malloc(sizeof(FileInfos));
if (!FileInfo) {
FileInfo = ( FileInfos * ) malloc( sizeof( FileInfos ) );
if ( !FileInfo )
{
return;
}
memset(&FileInfo[filecount], 0, sizeof(FileInfos));
memset( &FileInfo[filecount], 0, sizeof( FileInfos ) );
this->LoadPath(path);
this->LoadPath( path );
this->SortList();
}
HomebrewFiles::~HomebrewFiles() {
if (FileInfo) {
free(FileInfo);
HomebrewFiles::~HomebrewFiles()
{
if ( FileInfo )
{
free( FileInfo );
FileInfo = NULL;
}
}
bool HomebrewFiles::LoadPath(const char * folderpath) {
bool HomebrewFiles::LoadPath( const char * folderpath )
{
struct stat st;
DIR_ITER *dir = NULL;
char filename[1024];
dir = diropen(folderpath);
if (dir == NULL) {
dir = diropen( folderpath );
if ( dir == NULL )
{
return false;
}
while (dirnext(dir,filename,&st) == 0) {
if ((st.st_mode & S_IFDIR) != 0) {
if (strcmp(filename,".") != 0 && strcmp(filename,"..") != 0) {
while ( dirnext( dir, filename, &st ) == 0 )
{
if ( ( st.st_mode & S_IFDIR ) != 0 )
{
if ( strcmp( filename, "." ) != 0 && strcmp( filename, ".." ) != 0 )
{
char currentname[200];
snprintf(currentname, sizeof(currentname), "%s%s/", folderpath, filename);
this->LoadPath(currentname);
snprintf( currentname, sizeof( currentname ), "%s%s/", folderpath, filename );
this->LoadPath( currentname );
}
} else {
}
else
{
char temp[5];
for (int i = 0; i < 5; i++) {
temp[i] = filename[strlen(filename)-4+i];
for ( int i = 0; i < 5; i++ )
{
temp[i] = filename[strlen( filename )-4+i];
}
if ((strncasecmp(temp, ".dol", 4) == 0 || strncasecmp(temp, ".elf", 4) == 0)
&& filecount < MAXHOMEBREWS && filename[0]!='.') {
if ( ( strncasecmp( temp, ".dol", 4 ) == 0 || strncasecmp( temp, ".elf", 4 ) == 0 )
&& filecount < MAXHOMEBREWS && filename[0] != '.' )
{
FileInfo = (FileInfos *) realloc(FileInfo, (filecount+1)*sizeof(FileInfos));
FileInfo = ( FileInfos * ) realloc( FileInfo, ( filecount + 1 ) * sizeof( FileInfos ) );
if (!FileInfo) {
free(FileInfo);
if ( !FileInfo )
{
free( FileInfo );
FileInfo = NULL;
filecount = 0;
dirclose(dir);
dirclose( dir );
return false;
}
memset(&(FileInfo[filecount]), 0, sizeof(FileInfo));
memset( &( FileInfo[filecount] ), 0, sizeof( FileInfo ) );
strlcpy(FileInfo[filecount].FilePath, folderpath, sizeof(FileInfo[filecount].FilePath));
strlcpy(FileInfo[filecount].FileName, filename, sizeof(FileInfo[filecount].FileName));
strlcpy( FileInfo[filecount].FilePath, folderpath, sizeof( FileInfo[filecount].FilePath ) );
strlcpy( FileInfo[filecount].FileName, filename, sizeof( FileInfo[filecount].FileName ) );
FileInfo[filecount].FileSize = st.st_size;
filecount++;
}
}
}
dirclose(dir);
dirclose( dir );
return true;
}
char * HomebrewFiles::GetFilename(int ind) {
if (ind > filecount)
char * HomebrewFiles::GetFilename( int ind )
{
if ( ind > filecount )
return NULL;
else
return FileInfo[ind].FileName;
}
char * HomebrewFiles::GetFilepath(int ind) {
if (ind > filecount)
char * HomebrewFiles::GetFilepath( int ind )
{
if ( ind > filecount )
return NULL;
else
return FileInfo[ind].FilePath;
}
unsigned int HomebrewFiles::GetFilesize(int ind) {
if (ind > filecount || !filecount || !FileInfo)
unsigned int HomebrewFiles::GetFilesize( int ind )
{
if ( ind > filecount || !filecount || !FileInfo )
return NULL;
else
return FileInfo[ind].FileSize;
}
int HomebrewFiles::GetFilecount() {
int HomebrewFiles::GetFilecount()
{
return filecount;
}
static int ListCompare(const void *a, const void *b) {
FileInfos *ab = (FileInfos*) a;
FileInfos *bb = (FileInfos*) b;
static int ListCompare( const void *a, const void *b )
{
FileInfos *ab = ( FileInfos* ) a;
FileInfos *bb = ( FileInfos* ) b;
return stricmp((char *) ab->FilePath, (char *) bb->FilePath);
return stricmp( ( char * ) ab->FilePath, ( char * ) bb->FilePath );
}
void HomebrewFiles::SortList() {
qsort(FileInfo, filecount, sizeof(FileInfos), ListCompare);
void HomebrewFiles::SortList()
{
qsort( FileInfo, filecount, sizeof( FileInfos ), ListCompare );
}

View File

@ -7,36 +7,38 @@
#define MAXHOMEBREWS 500
typedef struct {
typedef struct
{
char FileName[100];
char FilePath[150];
unsigned int FileSize;
} FileInfos;
class HomebrewFiles {
public:
class HomebrewFiles
{
public:
//!Constructor
//!\param path Path where to check for homebrew files
HomebrewFiles(const char * path);
HomebrewFiles( const char * path );
//!Destructor
~HomebrewFiles();
//! Load the dol/elf list of a path
//!\param path Path where to check for homebrew files
bool LoadPath(const char * path);
bool LoadPath( const char * path );
//! Get the a filename of the list
//!\param list index
char * GetFilename(int index);
char * GetFilename( int index );
//! Get the a filepath of the list
//!\param list index
char * GetFilepath(int index);
char * GetFilepath( int index );
//! Get the a filesize of the list
//!\param list index
unsigned int GetFilesize(int index);
unsigned int GetFilesize( int index );
//! Get the filecount of the whole list
int GetFilecount();
//! Sort list by filepath
void SortList();
protected:
protected:
int filecount;
FileInfos *FileInfo;
};

View File

@ -11,58 +11,58 @@
#define ENTRIE_SIZE 8192
int HomebrewXML::LoadHomebrewXMLData(const char* filename)
int HomebrewXML::LoadHomebrewXMLData( const char* filename )
{
mxml_node_t *nodedataHB = NULL;
mxml_node_t *nodetreeHB = NULL;
/* Load XML file */
FILE *filexml;
filexml = fopen(filename, "rb");
if (!filexml)
filexml = fopen( filename, "rb" );
if ( !filexml )
return -1;
nodetreeHB = mxmlLoadFile(NULL, filexml, MXML_OPAQUE_CALLBACK);
fclose(filexml);
nodetreeHB = mxmlLoadFile( NULL, filexml, MXML_OPAQUE_CALLBACK );
fclose( filexml );
if (nodetreeHB == NULL)
if ( nodetreeHB == NULL )
return -2;
nodedataHB = mxmlFindElement(nodetreeHB, nodetreeHB, "app", NULL, NULL, MXML_DESCEND);
if (nodedataHB == NULL)
nodedataHB = mxmlFindElement( nodetreeHB, nodetreeHB, "app", NULL, NULL, MXML_DESCEND );
if ( nodedataHB == NULL )
return -5;
char * Entrie = new char[ENTRIE_SIZE];
GetTextFromNode(nodedataHB, nodedataHB, (char*) "name", NULL, NULL, MXML_DESCEND, Entrie, ENTRIE_SIZE);
GetTextFromNode( nodedataHB, nodedataHB, ( char* ) "name", NULL, NULL, MXML_DESCEND, Entrie, ENTRIE_SIZE );
Name = Entrie;
GetTextFromNode(nodedataHB, nodedataHB, (char*) "coder", NULL, NULL, MXML_DESCEND, Entrie, ENTRIE_SIZE);
GetTextFromNode( nodedataHB, nodedataHB, ( char* ) "coder", NULL, NULL, MXML_DESCEND, Entrie, ENTRIE_SIZE );
Coder = Entrie;
GetTextFromNode(nodedataHB, nodedataHB, (char*) "version", NULL, NULL, MXML_DESCEND, Entrie, ENTRIE_SIZE);
GetTextFromNode( nodedataHB, nodedataHB, ( char* ) "version", NULL, NULL, MXML_DESCEND, Entrie, ENTRIE_SIZE );
Version = Entrie;
GetTextFromNode(nodedataHB, nodedataHB, (char*) "short_description", NULL, NULL, MXML_DESCEND, Entrie, ENTRIE_SIZE);
GetTextFromNode( nodedataHB, nodedataHB, ( char* ) "short_description", NULL, NULL, MXML_DESCEND, Entrie, ENTRIE_SIZE );
ShortDescription = Entrie;
GetTextFromNode(nodedataHB, nodedataHB, (char*) "long_description", NULL, NULL, MXML_DESCEND, Entrie, ENTRIE_SIZE);
GetTextFromNode( nodedataHB, nodedataHB, ( char* ) "long_description", NULL, NULL, MXML_DESCEND, Entrie, ENTRIE_SIZE );
LongDescription = Entrie;
GetTextFromNode(nodedataHB, nodedataHB, (char*) "release_date", NULL, NULL, MXML_DESCEND, Entrie, ENTRIE_SIZE);
GetTextFromNode( nodedataHB, nodedataHB, ( char* ) "release_date", NULL, NULL, MXML_DESCEND, Entrie, ENTRIE_SIZE );
int len = (strlen(Entrie)-6); //length of the date string without the 200000 at the end
if (len == 8)
snprintf(Entrie, ENTRIE_SIZE, "%c%c/%c%c/%c%c%c%c", Entrie[4],Entrie[5],Entrie[6],Entrie[7],Entrie[0],Entrie[1],Entrie[2],Entrie[3]);
else if (len == 6)
snprintf(Entrie, ENTRIE_SIZE, "%c%c/%c%c%c%c", Entrie[4],Entrie[5],Entrie[0],Entrie[1],Entrie[2],Entrie[3]);
int len = ( strlen( Entrie ) - 6 ); //length of the date string without the 200000 at the end
if ( len == 8 )
snprintf( Entrie, ENTRIE_SIZE, "%c%c/%c%c/%c%c%c%c", Entrie[4], Entrie[5], Entrie[6], Entrie[7], Entrie[0], Entrie[1], Entrie[2], Entrie[3] );
else if ( len == 6 )
snprintf( Entrie, ENTRIE_SIZE, "%c%c/%c%c%c%c", Entrie[4], Entrie[5], Entrie[0], Entrie[1], Entrie[2], Entrie[3] );
else
snprintf(Entrie, ENTRIE_SIZE, "%s", Entrie);
snprintf( Entrie, ENTRIE_SIZE, "%s", Entrie );
Releasedate = Entrie;
free(nodedataHB);
free(nodetreeHB);
free( nodedataHB );
free( nodetreeHB );
delete [] Entrie;

View File

@ -16,7 +16,7 @@ class HomebrewXML
//!Destructor
~HomebrewXML() { };
//!\param filename Filepath of the XML file
int LoadHomebrewXMLData(const char* filename);
int LoadHomebrewXMLData( const char* filename );
//! Get name
const char * GetName() { return Name.c_str(); };
//! Get coder
@ -30,7 +30,7 @@ class HomebrewXML
//! Get longdescription
const char * GetLongDescription() { return LongDescription.c_str(); };
//! Set Name
void SetName(char * newName) { Name = newName; };
void SetName( char * newName ) { Name = newName; };
protected:
std::string Name;
std::string Coder;

View File

@ -8,7 +8,8 @@
#include "dolloader.h"
typedef struct _dolheader {
typedef struct _dolheader
{
u32 text_pos[7];
u32 data_pos[11];
u32 text_start[7];
@ -20,31 +21,36 @@ typedef struct _dolheader {
u32 entry_point;
} dolheader;
u32 load_dol(const void *dolstart, struct __argv *argv) {
u32 load_dol( const void *dolstart, struct __argv *argv )
{
u32 i;
dolheader *dolfile;
if (dolstart) {
dolfile = (dolheader *) dolstart;
for (i = 0; i < 7; i++) {
if ((!dolfile->text_size[i]) || (dolfile->text_start[i] < 0x100)) continue;
ICInvalidateRange ((void *) dolfile->text_start[i],dolfile->text_size[i]);
memcpy((void *) dolfile->text_start[i],dolstart+dolfile->text_pos[i],dolfile->text_size[i]);
if ( dolstart )
{
dolfile = ( dolheader * ) dolstart;
for ( i = 0; i < 7; i++ )
{
if ( ( !dolfile->text_size[i] ) || ( dolfile->text_start[i] < 0x100 ) ) continue;
ICInvalidateRange ( ( void * ) dolfile->text_start[i], dolfile->text_size[i] );
memcpy( ( void * ) dolfile->text_start[i], dolstart + dolfile->text_pos[i], dolfile->text_size[i] );
}
for (i = 0; i < 11; i++) {
if ((!dolfile->data_size[i]) || (dolfile->data_start[i] < 0x100)) continue;
memcpy((void *) dolfile->data_start[i],dolstart+dolfile->data_pos[i],dolfile->data_size[i]);
DCFlushRangeNoSync ((void *) dolfile->data_start[i],dolfile->data_size[i]);
for ( i = 0; i < 11; i++ )
{
if ( ( !dolfile->data_size[i] ) || ( dolfile->data_start[i] < 0x100 ) ) continue;
memcpy( ( void * ) dolfile->data_start[i], dolstart + dolfile->data_pos[i], dolfile->data_size[i] );
DCFlushRangeNoSync ( ( void * ) dolfile->data_start[i], dolfile->data_size[i] );
}
memset ((void *) dolfile->bss_start, 0, dolfile->bss_size);
DCFlushRange((void *) dolfile->bss_start, dolfile->bss_size);
memset ( ( void * ) dolfile->bss_start, 0, dolfile->bss_size );
DCFlushRange( ( void * ) dolfile->bss_start, dolfile->bss_size );
if (argv && argv->argvMagic == ARGV_MAGIC) {
void *new_argv = (void *)(dolfile->entry_point + 8);
memcpy(new_argv, argv, sizeof(*argv));
DCFlushRange(new_argv, sizeof(*argv));
if ( argv && argv->argvMagic == ARGV_MAGIC )
{
void *new_argv = ( void * )( dolfile->entry_point + 8 );
memcpy( new_argv, argv, sizeof( *argv ) );
DCFlushRange( new_argv, sizeof( *argv ) );
}
return dolfile->entry_point;

View File

@ -2,13 +2,14 @@
#define _DOLLOADER_H_
#ifdef __cplusplus
extern "C" {
extern "C"
{
#endif
extern void __exception_closeall();
typedef void (*entrypoint) (void);
extern void __exception_closeall();
typedef void ( *entrypoint ) ( void );
u32 load_dol(const void *dolstart, struct __argv *argv);
u32 load_dol( const void *dolstart, struct __argv *argv );
#ifdef __cplusplus

View File

@ -20,9 +20,9 @@
#include "input.h"
#include "libwiigui/gui.h"
int rumbleRequest[4] = {0,0,0,0};
int rumbleRequest[4] = {0, 0, 0, 0};
GuiTrigger userInput[4];
static int rumbleCount[4] = {0,0,0,0};
static int rumbleCount[4] = {0, 0, 0, 0};
/****************************************************************************
* UpdatePads
@ -34,22 +34,22 @@ void UpdatePads()
WPAD_ScanPads();
PAD_ScanPads();
for (int i=3; i >= 0; i--)
for ( int i = 3; i >= 0; i-- )
{
memcpy(&userInput[i].wpad, WPAD_Data(i), sizeof(WPADData));
memcpy( &userInput[i].wpad, WPAD_Data( i ), sizeof( WPADData ) );
userInput[i].chan = i;
userInput[i].pad.btns_d = PAD_ButtonsDown(i);
userInput[i].pad.btns_u = PAD_ButtonsUp(i);
userInput[i].pad.btns_h = PAD_ButtonsHeld(i);
userInput[i].pad.stickX = PAD_StickX(i);
userInput[i].pad.stickY = PAD_StickY(i);
userInput[i].pad.substickX = PAD_SubStickX(i);
userInput[i].pad.substickY = PAD_SubStickY(i);
userInput[i].pad.triggerL = PAD_TriggerL(i);
userInput[i].pad.triggerR = PAD_TriggerR(i);
userInput[i].pad.btns_d = PAD_ButtonsDown( i );
userInput[i].pad.btns_u = PAD_ButtonsUp( i );
userInput[i].pad.btns_h = PAD_ButtonsHeld( i );
userInput[i].pad.stickX = PAD_StickX( i );
userInput[i].pad.stickY = PAD_StickY( i );
userInput[i].pad.substickX = PAD_SubStickX( i );
userInput[i].pad.substickY = PAD_SubStickY( i );
userInput[i].pad.triggerL = PAD_TriggerL( i );
userInput[i].pad.triggerR = PAD_TriggerR( i );
if(Settings.rumble == RumbleOn)
DoRumble(i);
if ( Settings.rumble == RumbleOn )
DoRumble( i );
}
}
@ -64,10 +64,10 @@ void SetupPads()
WPAD_Init();
// read wiimote accelerometer and IR data
WPAD_SetDataFormat(WPAD_CHAN_ALL,WPAD_FMT_BTNS_ACC_IR);
WPAD_SetVRes(WPAD_CHAN_ALL, screenwidth, screenheight);
WPAD_SetDataFormat( WPAD_CHAN_ALL, WPAD_FMT_BTNS_ACC_IR );
WPAD_SetVRes( WPAD_CHAN_ALL, screenwidth, screenheight );
for(int i=0; i < 4; i++)
for ( int i = 0; i < 4; i++ )
{
userInput[i].chan = i;
}
@ -77,9 +77,11 @@ void SetupPads()
* ShutoffRumble
***************************************************************************/
void ShutoffRumble() {
for (int i=0;i<4;i++) {
WPAD_Rumble(i, 0);
void ShutoffRumble()
{
for ( int i = 0; i < 4; i++ )
{
WPAD_Rumble( i, 0 );
rumbleCount[i] = 0;
}
}
@ -88,17 +90,23 @@ void ShutoffRumble() {
* DoRumble
***************************************************************************/
void DoRumble(int i) {
if (rumbleRequest[i] && rumbleCount[i] < 3) {
WPAD_Rumble(i, 1); // rumble on
void DoRumble( int i )
{
if ( rumbleRequest[i] && rumbleCount[i] < 3 )
{
WPAD_Rumble( i, 1 ); // rumble on
rumbleCount[i]++;
} else if (rumbleRequest[i]) {
}
else if ( rumbleRequest[i] )
{
rumbleCount[i] = 20;
rumbleRequest[i] = 0;
} else {
if (rumbleCount[i])
}
else
{
if ( rumbleCount[i] )
rumbleCount[i]--;
WPAD_Rumble(i, 0); // rumble off
WPAD_Rumble( i, 0 ); // rumble off
}
}
@ -108,25 +116,31 @@ void DoRumble(int i) {
* Get X/Y value from Wii Joystick (classic, nunchuk) input
***************************************************************************/
s8 WPAD_Stick(u8 chan, u8 right, int axis) {
s8 WPAD_Stick( u8 chan, u8 right, int axis )
{
float mag = 0.0;
float ang = 0.0;
WPADData *data = WPAD_Data(chan);
WPADData *data = WPAD_Data( chan );
switch (data->exp.type) {
switch ( data->exp.type )
{
case WPAD_EXP_NUNCHUK:
case WPAD_EXP_GUITARHERO3:
if (right == 0) {
if ( right == 0 )
{
mag = data->exp.nunchuk.js.mag;
ang = data->exp.nunchuk.js.ang;
}
break;
case WPAD_EXP_CLASSIC:
if (right == 0) {
if ( right == 0 )
{
mag = data->exp.classic.ljs.mag;
ang = data->exp.classic.ljs.ang;
} else {
}
else
{
mag = data->exp.classic.rjs.mag;
ang = data->exp.classic.rjs.ang;
}
@ -137,14 +151,14 @@ s8 WPAD_Stick(u8 chan, u8 right, int axis) {
}
/* calculate x/y value (angle need to be converted into radian) */
if (mag > 1.0) mag = 1.0;
else if (mag < -1.0) mag = -1.0;
if ( mag > 1.0 ) mag = 1.0;
else if ( mag < -1.0 ) mag = -1.0;
double val;
if (axis == 0) // x-axis
val = mag * sin((PI * ang)/180.0f);
if ( axis == 0 ) // x-axis
val = mag * sin( ( PI * ang ) / 180.0f );
else // y-axis
val = mag * cos((PI * ang)/180.0f);
val = mag * cos( ( PI * ang ) / 180.0f );
return (s8)(val * 128.0f);
return ( s8 )( val * 128.0f );
}

View File

@ -20,6 +20,6 @@ extern int rumbleRequest[4];
void SetupPads();
void UpdatePads();
void ShutoffRumble();
void DoRumble(int i);
void DoRumble( int i );
#endif

View File

@ -13,46 +13,53 @@
#include "network/networkops.h"
#include "network/http.h"
int updateLanguageFiles() {
int updateLanguageFiles()
{
char languageFiles[50][MAXLANGUAGEFILES];
//get all the files in the language path
int countfiles = GetAllDirFiles(Settings.languagefiles_path);
int countfiles = GetAllDirFiles( Settings.languagefiles_path );
//give up now if we didn't find any
if (!countfiles) return -2;
if ( !countfiles ) return -2;
//now from the files we got, get only the .lang files
for (int cnt = 0; cnt < countfiles; cnt++) {
for ( int cnt = 0; cnt < countfiles; cnt++ )
{
char filename[64];
strlcpy(filename, GetFileName(cnt),sizeof(filename));
if (strcasestr(filename,".lang")) {
strcpy(languageFiles[cnt],filename);
strlcpy( filename, GetFileName( cnt ), sizeof( filename ) );
if ( strcasestr( filename, ".lang" ) )
{
strcpy( languageFiles[cnt], filename );
}
}
subfoldercreate(Settings.languagefiles_path);
subfoldercreate( Settings.languagefiles_path );
//we assume that the network will already be init by another function
// ( that has gui eletents in it because this one doesn't)
int done = 0,j = 0;
if (IsNetworkInit()) {
int done = 0, j = 0;
if ( IsNetworkInit() )
{
//build the URL, save path, and download each file and save it
while (j<countfiles) {
while ( j < countfiles )
{
char savepath[150];
char codeurl[200];
snprintf(codeurl, sizeof(codeurl), "http://usbloader-gui.googlecode.com/svn/trunk/Languages/%s",languageFiles[j]);
snprintf(savepath, sizeof(savepath), "%s%s",Settings.languagefiles_path,languageFiles[j]);
snprintf( codeurl, sizeof( codeurl ), "http://usbloader-gui.googlecode.com/svn/trunk/Languages/%s", languageFiles[j] );
snprintf( savepath, sizeof( savepath ), "%s%s", Settings.languagefiles_path, languageFiles[j] );
struct block file = downloadfile(codeurl);
struct block file = downloadfile( codeurl );
if (file.data != NULL) {
if ( file.data != NULL )
{
FILE * pfile;
pfile = fopen(savepath, "wb");
if(pfile != NULL) {
fwrite(file.data,1,file.size,pfile);
fclose(pfile);
free(file.data);
pfile = fopen( savepath, "wb" );
if ( pfile != NULL )
{
fwrite( file.data, 1, file.size, pfile );
fclose( pfile );
free( file.data );
done++;
}
}

View File

@ -4,12 +4,13 @@
#include <gctypes.h>
#include "gettext.h"
typedef struct _MSG {
typedef struct _MSG
{
u32 id;
char* msgstr;
struct _MSG *next;
} MSG;
static MSG *baseMSG=0;
static MSG *baseMSG = 0;
#define HASHWORDBITS 32
@ -18,18 +19,21 @@ static MSG *baseMSG=0;
[see Aho/Sethi/Ullman, COMPILERS: Principles, Techniques and Tools,
1986, 1987 Bell Telephone Laboratories, Inc.] */
static inline u32
hash_string (const char *str_param) {
hash_string ( const char *str_param )
{
u32 hval, g;
const char *str = str_param;
/* Compute the hash value for the given string. */
hval = 0;
while (*str != '\0') {
while ( *str != '\0' )
{
hval <<= 4;
hval += (u8) *str++;
g = hval & ((u32) 0xf << (HASHWORDBITS - 4));
if (g != 0) {
hval ^= g >> (HASHWORDBITS - 8);
hval += ( u8 ) * str++;
g = hval & ( ( u32 ) 0xf << ( HASHWORDBITS - 4 ) );
if ( g != 0 )
{
hval ^= g >> ( HASHWORDBITS - 8 );
hval ^= g;
}
}
@ -38,22 +42,25 @@ hash_string (const char *str_param) {
/* Expand some escape sequences found in the argument string. */
static char *
expand_escape (const char *str) {
expand_escape ( const char *str )
{
char *retval, *rp;
const char *cp = str;
retval = (char *) malloc (strlen (str)+1);
if (retval==NULL) return NULL;
retval = ( char * ) malloc ( strlen ( str ) + 1 );
if ( retval == NULL ) return NULL;
rp = retval;
while (cp[0] != '\0' && cp[0] != '\\')
while ( cp[0] != '\0' && cp[0] != '\\' )
*rp++ = *cp++;
if (cp[0] == '\0')
if ( cp[0] == '\0' )
goto terminate;
do {
do
{
/* Here cp[0] == '\\'. */
switch (*++cp) {
switch ( *++cp )
{
case '\"': /* " */
*rp++ = '\"';
++cp;
@ -97,14 +104,17 @@ expand_escape (const char *str) {
case '4':
case '5':
case '6':
case '7': {
case '7':
{
int ch = *cp++ - '0';
if (*cp >= '0' && *cp <= '7') {
if ( *cp >= '0' && *cp <= '7' )
{
ch *= 8;
ch += *cp++ - '0';
if (*cp >= '0' && *cp <= '7') {
if ( *cp >= '0' && *cp <= '7' )
{
ch *= 8;
ch += *cp++ - '0';
}
@ -117,9 +127,10 @@ expand_escape (const char *str) {
break;
}
while (cp[0] != '\0' && cp[0] != '\\')
while ( cp[0] != '\0' && cp[0] != '\\' )
*rp++ = *cp++;
} while (cp[0] != '\0');
}
while ( cp[0] != '\0' );
/* Terminate string. */
terminate:
@ -127,95 +138,112 @@ terminate:
return retval;
}
static MSG *findMSG(u32 id) {
static MSG *findMSG( u32 id )
{
MSG *msg;
for (msg=baseMSG; msg; msg=msg->next) {
if (msg->id == id)
for ( msg = baseMSG; msg; msg = msg->next )
{
if ( msg->id == id )
return msg;
}
return NULL;
}
static MSG *setMSG(const char *msgid, const char *msgstr) {
u32 id = hash_string(msgid);
MSG *msg = findMSG(id);
if (!msg) {
msg = (MSG *)malloc(sizeof(MSG));
static MSG *setMSG( const char *msgid, const char *msgstr )
{
u32 id = hash_string( msgid );
MSG *msg = findMSG( id );
if ( !msg )
{
msg = ( MSG * )malloc( sizeof( MSG ) );
msg->id = id;
msg->msgstr = NULL;
msg->next = baseMSG;
baseMSG = msg;
}
if (msg) {
if (msgstr) {
if (msg->msgstr) free(msg->msgstr);
if ( msg )
{
if ( msgstr )
{
if ( msg->msgstr ) free( msg->msgstr );
//msg->msgstr = strdup(msgstr);
msg->msgstr = expand_escape(msgstr);
msg->msgstr = expand_escape( msgstr );
}
return msg;
}
return NULL;
}
void gettextCleanUp(void) {
while (baseMSG) {
MSG *nextMsg =baseMSG->next;
free(baseMSG->msgstr);
free(baseMSG);
void gettextCleanUp( void )
{
while ( baseMSG )
{
MSG *nextMsg = baseMSG->next;
free( baseMSG->msgstr );
free( baseMSG );
baseMSG = nextMsg;
}
}
bool gettextLoadLanguage(const char* langFile) {
bool gettextLoadLanguage( const char* langFile )
{
FILE *f;
char line[200];
char *lastID=NULL;
char *lastID = NULL;
gettextCleanUp();
f = fopen(langFile, "r");
if (!f)
f = fopen( langFile, "r" );
if ( !f )
return false;
while (fgets(line, sizeof(line), f)) {
while ( fgets( line, sizeof( line ), f ) )
{
// lines starting with # are comments
if (line[0] == '#')
if ( line[0] == '#' )
continue;
else if (strncmp(line, "msgid \"", 7) == 0) {
else if ( strncmp( line, "msgid \"", 7 ) == 0 )
{
char *msgid, *end;
if (lastID) {
free(lastID);
lastID=NULL;
if ( lastID )
{
free( lastID );
lastID = NULL;
}
msgid = &line[7];
end = strrchr(msgid, '"');
if (end && end-msgid>1) {
end = strrchr( msgid, '"' );
if ( end && end - msgid > 1 )
{
*end = 0;
lastID = strdup(msgid);
lastID = strdup( msgid );
}
} else if (strncmp(line, "msgstr \"", 8) == 0) {
}
else if ( strncmp( line, "msgstr \"", 8 ) == 0 )
{
char *msgstr, *end;
if (lastID == NULL)
if ( lastID == NULL )
continue;
msgstr = &line[8];
end = strrchr(msgstr, '"');
if (end && end-msgstr>1) {
end = strrchr( msgstr, '"' );
if ( end && end - msgstr > 1 )
{
*end = 0;
setMSG(lastID, msgstr);
setMSG( lastID, msgstr );
}
free(lastID);
lastID=NULL;
free( lastID );
lastID = NULL;
}
}
fclose(f);
fclose( f );
return true;
}
const char *gettext(const char *msgid) {
MSG *msg = findMSG(hash_string(msgid));
if (msg && msg->msgstr) return msg->msgstr;
const char *gettext( const char *msgid )
{
MSG *msg = findMSG( hash_string( msgid ) );
if ( msg && msg->msgstr ) return msg->msgstr;
return msgid;
}

View File

@ -2,17 +2,18 @@
#define _GETTEXT_H_
#ifdef __cplusplus
extern "C" {
extern "C"
{
#endif
bool gettextLoadLanguage(const char* langFile);
void gettextCleanUp(void);
bool gettextLoadLanguage( const char* langFile );
void gettextCleanUp( void );
/*
* input msg = a text in ASCII
* output = the translated msg in utf-8
*/
const char *gettext(const char *msg);
const char *gettext( const char *msg );
#define tr(s) gettext(s)
#define trNOOP(s) (s)

View File

@ -34,24 +34,28 @@
/*-----------------------------------------------------------------
Functions to deal with little endian values stored in uint8_t arrays
-----------------------------------------------------------------*/
static inline uint16_t u8array_to_u16 (const uint8_t* item, int offset) {
return ( item[offset] | (item[offset + 1] << 8));
static inline uint16_t u8array_to_u16 ( const uint8_t* item, int offset )
{
return ( item[offset] | ( item[offset + 1] << 8 ) );
}
static inline uint32_t u8array_to_u32 (const uint8_t* item, int offset) {
return ( item[offset] | (item[offset + 1] << 8) | (item[offset + 2] << 16) | (item[offset + 3] << 24));
static inline uint32_t u8array_to_u32 ( const uint8_t* item, int offset )
{
return ( item[offset] | ( item[offset + 1] << 8 ) | ( item[offset + 2] << 16 ) | ( item[offset + 3] << 24 ) );
}
static inline void u16_to_u8array (uint8_t* item, int offset, uint16_t value) {
item[offset] = (uint8_t) value;
item[offset + 1] = (uint8_t)(value >> 8);
static inline void u16_to_u8array ( uint8_t* item, int offset, uint16_t value )
{
item[offset] = ( uint8_t ) value;
item[offset + 1] = ( uint8_t )( value >> 8 );
}
static inline void u32_to_u8array (uint8_t* item, int offset, uint32_t value) {
item[offset] = (uint8_t) value;
item[offset + 1] = (uint8_t)(value >> 8);
item[offset + 2] = (uint8_t)(value >> 16);
item[offset + 3] = (uint8_t)(value >> 24);
static inline void u32_to_u8array ( uint8_t* item, int offset, uint32_t value )
{
item[offset] = ( uint8_t ) value;
item[offset + 1] = ( uint8_t )( value >> 8 );
item[offset + 2] = ( uint8_t )( value >> 16 );
item[offset + 3] = ( uint8_t )( value >> 24 );
}
#endif // _BIT_OPS_H

View File

@ -42,7 +42,8 @@
#define PAGE_SECTORS 64
#define CACHE_PAGE_SIZE (BYTES_PER_READ * PAGE_SECTORS)
typedef struct {
typedef struct
{
sec_t sector;
unsigned int count;
unsigned int last_access;
@ -50,7 +51,8 @@ typedef struct {
uint8_t* cache;
} CACHE_ENTRY;
typedef struct {
typedef struct
{
const DISC_INTERFACE* disc;
sec_t endOfPartition;
unsigned int numberOfPages;
@ -65,9 +67,9 @@ offset is the position to start reading from
size is the amount of data to read
Precondition: offset + size <= BYTES_PER_READ
*/
bool _FAT_cache_readPartialSector (CACHE* cache, void* buffer, sec_t sector, unsigned int offset, size_t size);
bool _FAT_cache_readPartialSector ( CACHE* cache, void* buffer, sec_t sector, unsigned int offset, size_t size );
bool _FAT_cache_readLittleEndianValue (CACHE* cache, uint32_t *value, sec_t sector, unsigned int offset, int num_bytes);
bool _FAT_cache_readLittleEndianValue ( CACHE* cache, uint32_t *value, sec_t sector, unsigned int offset, int num_bytes );
/*
Write data to a sector in the cache
@ -77,9 +79,9 @@ offset is the position to start writing to
size is the amount of data to write
Precondition: offset + size <= BYTES_PER_READ
*/
bool _FAT_cache_writePartialSector (CACHE* cache, const void* buffer, sec_t sector, unsigned int offset, size_t size);
bool _FAT_cache_writePartialSector ( CACHE* cache, const void* buffer, sec_t sector, unsigned int offset, size_t size );
bool _FAT_cache_writeLittleEndianValue (CACHE* cache, const uint32_t value, sec_t sector, unsigned int offset, int num_bytes);
bool _FAT_cache_writeLittleEndianValue ( CACHE* cache, const uint32_t value, sec_t sector, unsigned int offset, int num_bytes );
/*
Write data to a sector in the cache, zeroing the sector first
@ -89,42 +91,44 @@ offset is the position to start writing to
size is the amount of data to write
Precondition: offset + size <= BYTES_PER_READ
*/
bool _FAT_cache_eraseWritePartialSector (CACHE* cache, const void* buffer, sec_t sector, unsigned int offset, size_t size);
bool _FAT_cache_eraseWritePartialSector ( CACHE* cache, const void* buffer, sec_t sector, unsigned int offset, size_t size );
/*
Read several sectors from the cache
*/
bool _FAT_cache_readSectors (CACHE* cache, sec_t sector, sec_t numSectors, void* buffer);
bool _FAT_cache_readSectors ( CACHE* cache, sec_t sector, sec_t numSectors, void* buffer );
/*
Read a full sector from the cache
*/
static inline bool _FAT_cache_readSector (CACHE* cache, void* buffer, sec_t sector) {
return _FAT_cache_readPartialSector (cache, buffer, sector, 0, BYTES_PER_READ);
static inline bool _FAT_cache_readSector ( CACHE* cache, void* buffer, sec_t sector )
{
return _FAT_cache_readPartialSector ( cache, buffer, sector, 0, BYTES_PER_READ );
}
/*
Write a full sector to the cache
*/
static inline bool _FAT_cache_writeSector (CACHE* cache, const void* buffer, sec_t sector) {
return _FAT_cache_writePartialSector (cache, buffer, sector, 0, BYTES_PER_READ);
static inline bool _FAT_cache_writeSector ( CACHE* cache, const void* buffer, sec_t sector )
{
return _FAT_cache_writePartialSector ( cache, buffer, sector, 0, BYTES_PER_READ );
}
bool _FAT_cache_writeSectors (CACHE* cache, sec_t sector, sec_t numSectors, const void* buffer);
bool _FAT_cache_writeSectors ( CACHE* cache, sec_t sector, sec_t numSectors, const void* buffer );
/*
Write any dirty sectors back to disc and clear out the contents of the cache
*/
bool _FAT_cache_flush (CACHE* cache);
bool _FAT_cache_flush ( CACHE* cache );
/*
Clear out the contents of the cache without writing any dirty sectors first
*/
void _FAT_cache_invalidate (CACHE* cache);
void _FAT_cache_invalidate ( CACHE* cache );
CACHE* _FAT_cache_constructor (unsigned int numberOfPages, unsigned int sectorsPerPage, const DISC_INTERFACE* discInterface, sec_t endOfPartition);
CACHE* _FAT_cache_constructor ( unsigned int numberOfPages, unsigned int sectorsPerPage, const DISC_INTERFACE* discInterface, sec_t endOfPartition );
void _FAT_cache_destructor (CACHE* cache);
void _FAT_cache_destructor ( CACHE* cache );
#endif // _CACHE_H

File diff suppressed because it is too large Load Diff

View File

@ -59,13 +59,15 @@
typedef enum {FT_DIRECTORY, FT_FILE} FILE_TYPE;
typedef struct {
typedef struct
{
uint32_t cluster;
sec_t sector;
int32_t offset;
} DIR_ENTRY_POSITION;
typedef struct {
typedef struct
{
uint8_t entryData[DIR_ENTRY_DATA_SIZE];
DIR_ENTRY_POSITION dataStart; // Points to the start of the LFN entries of a file, or the alias for no LFN
DIR_ENTRY_POSITION dataEnd; // Always points to the file/directory's alias entry
@ -73,7 +75,8 @@ typedef struct {
} DIR_ENTRY;
// Directory entry offsets
enum DIR_ENTRY_offset {
enum DIR_ENTRY_offset
{
DIR_ENTRY_name = 0x00,
DIR_ENTRY_extension = 0x08,
DIR_ENTRY_attributes = 0x0B,
@ -92,17 +95,20 @@ enum DIR_ENTRY_offset {
/*
Returns true if the file specified by entry is a directory
*/
static inline bool _FAT_directory_isDirectory (DIR_ENTRY* entry) {
return ((entry->entryData[DIR_ENTRY_attributes] & ATTRIB_DIR) != 0);
static inline bool _FAT_directory_isDirectory ( DIR_ENTRY* entry )
{
return ( ( entry->entryData[DIR_ENTRY_attributes] & ATTRIB_DIR ) != 0 );
}
static inline bool _FAT_directory_isWritable (DIR_ENTRY* entry) {
return ((entry->entryData[DIR_ENTRY_attributes] & ATTRIB_RO) == 0);
static inline bool _FAT_directory_isWritable ( DIR_ENTRY* entry )
{
return ( ( entry->entryData[DIR_ENTRY_attributes] & ATTRIB_RO ) == 0 );
}
static inline bool _FAT_directory_isDot (DIR_ENTRY* entry) {
return ((entry->filename[0] == '.') && ((entry->filename[1] == '\0') ||
((entry->filename[1] == '.') && entry->filename[2] == '\0')));
static inline bool _FAT_directory_isDot ( DIR_ENTRY* entry )
{
return ( ( entry->filename[0] == '.' ) && ( ( entry->filename[1] == '\0' ) ||
( ( entry->filename[1] == '.' ) && entry->filename[2] == '\0' ) ) );
}
/*
@ -111,7 +117,7 @@ Places result in entry
entry will be destroyed even if no directory entry is found
Returns true on success, false on failure
*/
bool _FAT_directory_getFirstEntry (PARTITION* partition, DIR_ENTRY* entry, uint32_t dirCluster);
bool _FAT_directory_getFirstEntry ( PARTITION* partition, DIR_ENTRY* entry, uint32_t dirCluster );
/*
Reads the next directory entry after the one already pointed to by entry
@ -119,7 +125,7 @@ Places result in entry
entry will be destroyed even if no directory entry is found
Returns true on success, false on failure
*/
bool _FAT_directory_getNextEntry (PARTITION* partition, DIR_ENTRY* entry);
bool _FAT_directory_getNextEntry ( PARTITION* partition, DIR_ENTRY* entry );
/*
Gets the directory entry corrsponding to the supplied path
@ -130,20 +136,20 @@ pathEnd specifies the end of the path string, for cutting strings short if neede
after pathEND.
Returns true on success, false on failure
*/
bool _FAT_directory_entryFromPath (PARTITION* partition, DIR_ENTRY* entry, const char* path, const char* pathEnd);
bool _FAT_directory_entryFromPath ( PARTITION* partition, DIR_ENTRY* entry, const char* path, const char* pathEnd );
/*
Changes the current directory to the one specified by path
Returns true on success, false on failure
*/
bool _FAT_directory_chdir (PARTITION* partition, const char* path);
bool _FAT_directory_chdir ( PARTITION* partition, const char* path );
/*
Removes the directory entry specified by entry
Assumes that entry is valid
Returns true on success, false on failure
*/
bool _FAT_directory_removeEntry (PARTITION* partition, DIR_ENTRY* entry);
bool _FAT_directory_removeEntry ( PARTITION* partition, DIR_ENTRY* entry );
/*
Add a directory entry to the directory specified by dirCluster
@ -151,23 +157,23 @@ The fileData, dataStart and dataEnd elements of the DIR_ENTRY struct are
updated with the new directory entry position and alias.
Returns true on success, false on failure
*/
bool _FAT_directory_addEntry (PARTITION* partition, DIR_ENTRY* entry, uint32_t dirCluster);
bool _FAT_directory_addEntry ( PARTITION* partition, DIR_ENTRY* entry, uint32_t dirCluster );
/*
Get the start cluster of a file from it's entry data
*/
uint32_t _FAT_directory_entryGetCluster (PARTITION* partition, const uint8_t* entryData);
uint32_t _FAT_directory_entryGetCluster ( PARTITION* partition, const uint8_t* entryData );
/*
Fill in the file name and entry data of DIR_ENTRY* entry.
Assumes that the entry's dataStart and dataEnd are correct
Returns true on success, false on failure
*/
bool _FAT_directory_entryFromPosition (PARTITION* partition, DIR_ENTRY* entry);
bool _FAT_directory_entryFromPosition ( PARTITION* partition, DIR_ENTRY* entry );
/*
Fill in a stat struct based on a file entry
*/
void _FAT_directory_entryStat (PARTITION* partition, DIR_ENTRY* entry, struct stat *st);
void _FAT_directory_entryStat ( PARTITION* partition, DIR_ENTRY* entry, struct stat *st );
#endif // _DIRECTORY_H

View File

@ -35,9 +35,10 @@
A list of all default devices to try at startup,
terminated by a {NULL,NULL} entry.
*/
typedef struct {
typedef struct
{
const char* name;
const DISC_INTERFACE* (*getInterface)(void);
const DISC_INTERFACE* ( *getInterface )( void );
} INTERFACE_ID;
extern const INTERFACE_ID _FAT_disc_interfaces[];
@ -45,7 +46,8 @@ extern const INTERFACE_ID _FAT_disc_interfaces[];
Check if a disc is inserted
Return true if a disc is inserted and ready, false otherwise
*/
static inline bool _FAT_disc_isInserted (const DISC_INTERFACE* disc) {
static inline bool _FAT_disc_isInserted ( const DISC_INTERFACE* disc )
{
return disc->isInserted();
}
@ -56,8 +58,9 @@ else it is at least 1
sector is 0 or greater
buffer is a pointer to the memory to fill
*/
static inline bool _FAT_disc_readSectors (const DISC_INTERFACE* disc, sec_t sector, sec_t numSectors, void* buffer) {
return disc->readSectors (sector, numSectors, buffer);
static inline bool _FAT_disc_readSectors ( const DISC_INTERFACE* disc, sec_t sector, sec_t numSectors, void* buffer )
{
return disc->readSectors ( sector, numSectors, buffer );
}
/*
@ -67,21 +70,24 @@ else it is at least 1
sector is 0 or greater
buffer is a pointer to the memory to read from
*/
static inline bool _FAT_disc_writeSectors (const DISC_INTERFACE* disc, sec_t sector, sec_t numSectors, const void* buffer) {
return disc->writeSectors (sector, numSectors, buffer);
static inline bool _FAT_disc_writeSectors ( const DISC_INTERFACE* disc, sec_t sector, sec_t numSectors, const void* buffer )
{
return disc->writeSectors ( sector, numSectors, buffer );
}
/*
Reset the card back to a ready state
*/
static inline bool _FAT_disc_clearStatus (const DISC_INTERFACE* disc) {
static inline bool _FAT_disc_clearStatus ( const DISC_INTERFACE* disc )
{
return disc->clearStatus();
}
/*
Initialise the disc to a state ready for data reading or writing
*/
static inline bool _FAT_disc_startup (const DISC_INTERFACE* disc) {
static inline bool _FAT_disc_startup ( const DISC_INTERFACE* disc )
{
return disc->startup();
}
@ -89,21 +95,24 @@ static inline bool _FAT_disc_startup (const DISC_INTERFACE* disc) {
Put the disc in a state ready for power down.
Complete any pending writes and disable the disc if necessary
*/
static inline bool _FAT_disc_shutdown (const DISC_INTERFACE* disc) {
static inline bool _FAT_disc_shutdown ( const DISC_INTERFACE* disc )
{
return disc->shutdown();
}
/*
Return a 32 bit value unique to each type of interface
*/
static inline uint32_t _FAT_disc_hostType (const DISC_INTERFACE* disc) {
static inline uint32_t _FAT_disc_hostType ( const DISC_INTERFACE* disc )
{
return disc->ioType;
}
/*
Return a 32 bit value that specifies the capabilities of the disc
*/
static inline uint32_t _FAT_disc_features (const DISC_INTERFACE* disc) {
static inline uint32_t _FAT_disc_features ( const DISC_INTERFACE* disc )
{
return disc->features;
}

View File

@ -43,21 +43,26 @@ The list is terminated by a NULL/NULL entry.
#include "usbloader/usbstorage2.h"
#include <sdcard/gcsd.h>
static const DISC_INTERFACE* get_io_wiisd (void) {
static const DISC_INTERFACE* get_io_wiisd ( void )
{
return &__io_wiisd;
}
static const DISC_INTERFACE* get_io_usbstorage (void) {
static const DISC_INTERFACE* get_io_usbstorage ( void )
{
return &__io_usbstorage2;
}
static const DISC_INTERFACE* get_io_gcsda (void) {
static const DISC_INTERFACE* get_io_gcsda ( void )
{
return &__io_gcsda;
}
static const DISC_INTERFACE* get_io_gcsdb (void) {
static const DISC_INTERFACE* get_io_gcsdb ( void )
{
return &__io_gcsdb;
}
const INTERFACE_ID _FAT_disc_interfaces[] = {
const INTERFACE_ID _FAT_disc_interfaces[] =
{
{"sd", get_io_wiisd},
{"usb", get_io_usbstorage},
{"carda", get_io_gcsda},

View File

@ -35,9 +35,10 @@
A list of all default devices to try at startup,
terminated by a {NULL,NULL} entry.
*/
typedef struct {
typedef struct
{
const char* name;
const DISC_INTERFACE* (*getInterface)(void);
const DISC_INTERFACE* ( *getInterface )( void );
} INTERFACE_ID;
extern const INTERFACE_ID _FAT_disc_interfaces[];
@ -45,7 +46,8 @@ extern const INTERFACE_ID _FAT_disc_interfaces[];
Check if a disc is inserted
Return true if a disc is inserted and ready, false otherwise
*/
static inline bool _FAT_disc_isInserted (const DISC_INTERFACE* disc) {
static inline bool _FAT_disc_isInserted ( const DISC_INTERFACE* disc )
{
return disc->isInserted();
}
@ -56,8 +58,9 @@ else it is at least 1
sector is 0 or greater
buffer is a pointer to the memory to fill
*/
static inline bool _FAT_disc_readSectors (const DISC_INTERFACE* disc, sec_t sector, sec_t numSectors, void* buffer) {
return disc->readSectors (sector, numSectors, buffer);
static inline bool _FAT_disc_readSectors ( const DISC_INTERFACE* disc, sec_t sector, sec_t numSectors, void* buffer )
{
return disc->readSectors ( sector, numSectors, buffer );
}
/*
@ -67,21 +70,24 @@ else it is at least 1
sector is 0 or greater
buffer is a pointer to the memory to read from
*/
static inline bool _FAT_disc_writeSectors (const DISC_INTERFACE* disc, sec_t sector, sec_t numSectors, const void* buffer) {
return disc->writeSectors (sector, numSectors, buffer);
static inline bool _FAT_disc_writeSectors ( const DISC_INTERFACE* disc, sec_t sector, sec_t numSectors, const void* buffer )
{
return disc->writeSectors ( sector, numSectors, buffer );
}
/*
Reset the card back to a ready state
*/
static inline bool _FAT_disc_clearStatus (const DISC_INTERFACE* disc) {
static inline bool _FAT_disc_clearStatus ( const DISC_INTERFACE* disc )
{
return disc->clearStatus();
}
/*
Initialise the disc to a state ready for data reading or writing
*/
static inline bool _FAT_disc_startup (const DISC_INTERFACE* disc) {
static inline bool _FAT_disc_startup ( const DISC_INTERFACE* disc )
{
return disc->startup();
}
@ -89,21 +95,24 @@ static inline bool _FAT_disc_startup (const DISC_INTERFACE* disc) {
Put the disc in a state ready for power down.
Complete any pending writes and disable the disc if necessary
*/
static inline bool _FAT_disc_shutdown (const DISC_INTERFACE* disc) {
static inline bool _FAT_disc_shutdown ( const DISC_INTERFACE* disc )
{
return disc->shutdown();
}
/*
Return a 32 bit value unique to each type of interface
*/
static inline uint32_t _FAT_disc_hostType (const DISC_INTERFACE* disc) {
static inline uint32_t _FAT_disc_hostType ( const DISC_INTERFACE* disc )
{
return disc->ioType;
}
/*
Return a 32 bit value that specifies the capabilities of the disc
*/
static inline uint32_t _FAT_disc_features (const DISC_INTERFACE* disc) {
static inline uint32_t _FAT_disc_features ( const DISC_INTERFACE* disc )
{
return disc->features;
}

View File

@ -31,47 +31,48 @@
#define _LIBFAT_H
#ifdef __cplusplus
extern "C" {
extern "C"
{
#endif
#include <stdint.h>
#include <ogc/disc_io.h>
/*
Initialise any inserted block-devices.
Add the fat device driver to the devoptab, making it available for standard file functions.
cacheSize: The number of pages to allocate for each inserted block-device
setAsDefaultDevice: if true, make this the default device driver for file operations
*/
extern bool fatInit (uint32_t cacheSize, bool setAsDefaultDevice);
/*
Initialise any inserted block-devices.
Add the fat device driver to the devoptab, making it available for standard file functions.
cacheSize: The number of pages to allocate for each inserted block-device
setAsDefaultDevice: if true, make this the default device driver for file operations
*/
extern bool fatInit ( uint32_t cacheSize, bool setAsDefaultDevice );
/*
Calls fatInit with setAsDefaultDevice = true and cacheSize optimised for the host system.
*/
extern bool fatInitDefault (void);
/*
Calls fatInit with setAsDefaultDevice = true and cacheSize optimised for the host system.
*/
extern bool fatInitDefault ( void );
/*
Mount the device pointed to by interface, and set up a devoptab entry for it as "name:".
You can then access the filesystem using "name:/".
This will mount the active partition or the first valid partition on the disc,
and will use a cache size optimized for the host system.
*/
extern bool fatMountSimple (const char* name, const DISC_INTERFACE* interface);
/*
Mount the device pointed to by interface, and set up a devoptab entry for it as "name:".
You can then access the filesystem using "name:/".
This will mount the active partition or the first valid partition on the disc,
and will use a cache size optimized for the host system.
*/
extern bool fatMountSimple ( const char* name, const DISC_INTERFACE* interface );
/*
Mount the device pointed to by interface, and set up a devoptab entry for it as "name:".
You can then access the filesystem using "name:/".
If startSector = 0, it will mount the active partition of the first valid partition on
the disc. Otherwise it will try to mount the partition starting at startSector.
cacheSize specifies the number of pages to allocate for the cache.
This will not startup the disc, so you need to call interface->startup(); first.
*/
extern bool fatMount (const char* name, const DISC_INTERFACE* interface, sec_t startSector, uint32_t cacheSize, uint32_t SectorsPerPage);
/*
Unmount the partition specified by name.
If there are open files, it will attempt to synchronise them to disc.
*/
extern void fatUnmount (const char* name);
/*
Mount the device pointed to by interface, and set up a devoptab entry for it as "name:".
You can then access the filesystem using "name:/".
If startSector = 0, it will mount the active partition of the first valid partition on
the disc. Otherwise it will try to mount the partition starting at startSector.
cacheSize specifies the number of pages to allocate for the cache.
This will not startup the disc, so you need to call interface->startup(); first.
*/
extern bool fatMount ( const char* name, const DISC_INTERFACE* interface, sec_t startSector, uint32_t cacheSize, uint32_t SectorsPerPage );
/*
Unmount the partition specified by name.
If there are open files, it will attempt to synchronise them to disc.
*/
extern void fatUnmount ( const char* name );
#ifdef __cplusplus
}

View File

@ -46,21 +46,25 @@
#define CACHE_FREE UINT_MAX
CACHE* _FAT_cache_constructor (unsigned int numberOfPages, unsigned int sectorsPerPage, const DISC_INTERFACE* discInterface, sec_t endOfPartition) {
CACHE* _FAT_cache_constructor ( unsigned int numberOfPages, unsigned int sectorsPerPage, const DISC_INTERFACE* discInterface, sec_t endOfPartition )
{
CACHE* cache;
unsigned int i;
CACHE_ENTRY* cacheEntries;
if (numberOfPages < 2) {
if ( numberOfPages < 2 )
{
numberOfPages = 2;
}
if (sectorsPerPage < 8) {
if ( sectorsPerPage < 8 )
{
sectorsPerPage = 8;
}
cache = (CACHE*) _FAT_mem_allocate (sizeof(CACHE));
if (cache == NULL) {
cache = ( CACHE* ) _FAT_mem_allocate ( sizeof( CACHE ) );
if ( cache == NULL )
{
return NULL;
}
@ -70,18 +74,20 @@ CACHE* _FAT_cache_constructor (unsigned int numberOfPages, unsigned int sectorsP
cache->sectorsPerPage = sectorsPerPage;
cacheEntries = (CACHE_ENTRY*) _FAT_mem_allocate ( sizeof(CACHE_ENTRY) * numberOfPages);
if (cacheEntries == NULL) {
_FAT_mem_free (cache);
cacheEntries = ( CACHE_ENTRY* ) _FAT_mem_allocate ( sizeof( CACHE_ENTRY ) * numberOfPages );
if ( cacheEntries == NULL )
{
_FAT_mem_free ( cache );
return NULL;
}
for (i = 0; i < numberOfPages; i++) {
for ( i = 0; i < numberOfPages; i++ )
{
cacheEntries[i].sector = CACHE_FREE;
cacheEntries[i].count = 0;
cacheEntries[i].last_access = 0;
cacheEntries[i].dirty = false;
cacheEntries[i].cache = (uint8_t*) _FAT_mem_align ( sectorsPerPage * BYTES_PER_READ );
cacheEntries[i].cache = ( uint8_t* ) _FAT_mem_align ( sectorsPerPage * BYTES_PER_READ );
}
cache->cacheEntries = cacheEntries;
@ -89,29 +95,32 @@ CACHE* _FAT_cache_constructor (unsigned int numberOfPages, unsigned int sectorsP
return cache;
}
void _FAT_cache_destructor (CACHE* cache) {
void _FAT_cache_destructor ( CACHE* cache )
{
unsigned int i;
// Clear out cache before destroying it
_FAT_cache_flush(cache);
_FAT_cache_flush( cache );
// Free memory in reverse allocation order
for (i = 0; i < cache->numberOfPages; i++) {
_FAT_mem_free (cache->cacheEntries[i].cache);
for ( i = 0; i < cache->numberOfPages; i++ )
{
_FAT_mem_free ( cache->cacheEntries[i].cache );
}
_FAT_mem_free (cache->cacheEntries);
_FAT_mem_free (cache);
_FAT_mem_free ( cache->cacheEntries );
_FAT_mem_free ( cache );
}
static u32 accessCounter = 0;
static u32 accessTime(){
static u32 accessTime()
{
accessCounter++;
return accessCounter;
}
static CACHE_ENTRY* _FAT_cache_getPage(CACHE *cache,sec_t sector)
static CACHE_ENTRY* _FAT_cache_getPage( CACHE *cache, sec_t sector )
{
unsigned int i;
CACHE_ENTRY* cacheEntries = cache->cacheEntries;
@ -122,55 +131,60 @@ static CACHE_ENTRY* _FAT_cache_getPage(CACHE *cache,sec_t sector)
unsigned int oldUsed = 0;
unsigned int oldAccess = UINT_MAX;
for(i=0;i<numberOfPages;i++) {
if(sector>=cacheEntries[i].sector && sector<(cacheEntries[i].sector + cacheEntries[i].count)) {
for ( i = 0; i < numberOfPages; i++ )
{
if ( sector >= cacheEntries[i].sector && sector < ( cacheEntries[i].sector + cacheEntries[i].count ) )
{
cacheEntries[i].last_access = accessTime();
return &(cacheEntries[i]);
return &( cacheEntries[i] );
}
if(foundFree==false && (cacheEntries[i].sector==CACHE_FREE || cacheEntries[i].last_access<oldAccess)) {
if(cacheEntries[i].sector==CACHE_FREE) foundFree = true;
if ( foundFree == false && ( cacheEntries[i].sector == CACHE_FREE || cacheEntries[i].last_access < oldAccess ) )
{
if ( cacheEntries[i].sector == CACHE_FREE ) foundFree = true;
oldUsed = i;
oldAccess = cacheEntries[i].last_access;
}
}
if(foundFree==false && cacheEntries[oldUsed].dirty==true) {
if(!_FAT_disc_writeSectors(cache->disc,cacheEntries[oldUsed].sector,cacheEntries[oldUsed].count,cacheEntries[oldUsed].cache)) return NULL;
if ( foundFree == false && cacheEntries[oldUsed].dirty == true )
{
if ( !_FAT_disc_writeSectors( cache->disc, cacheEntries[oldUsed].sector, cacheEntries[oldUsed].count, cacheEntries[oldUsed].cache ) ) return NULL;
cacheEntries[oldUsed].dirty = false;
}
sector = (sector/sectorsPerPage)*sectorsPerPage; // align base sector to page size
sector = ( sector / sectorsPerPage ) * sectorsPerPage; // align base sector to page size
sec_t next_page = sector + sectorsPerPage;
if(next_page > cache->endOfPartition) next_page = cache->endOfPartition;
if ( next_page > cache->endOfPartition ) next_page = cache->endOfPartition;
if(!_FAT_disc_readSectors(cache->disc,sector,next_page-sector,cacheEntries[oldUsed].cache)) return NULL;
if ( !_FAT_disc_readSectors( cache->disc, sector, next_page - sector, cacheEntries[oldUsed].cache ) ) return NULL;
cacheEntries[oldUsed].sector = sector;
cacheEntries[oldUsed].count = next_page-sector;
cacheEntries[oldUsed].count = next_page - sector;
cacheEntries[oldUsed].last_access = accessTime();
return &(cacheEntries[oldUsed]);
return &( cacheEntries[oldUsed] );
}
bool _FAT_cache_readSectors(CACHE *cache,sec_t sector,sec_t numSectors,void *buffer)
bool _FAT_cache_readSectors( CACHE *cache, sec_t sector, sec_t numSectors, void *buffer )
{
sec_t sec;
sec_t secs_to_read;
CACHE_ENTRY *entry;
uint8_t *dest = buffer;
while(numSectors>0) {
entry = _FAT_cache_getPage(cache,sector);
if(entry==NULL) return false;
while ( numSectors > 0 )
{
entry = _FAT_cache_getPage( cache, sector );
if ( entry == NULL ) return false;
sec = sector - entry->sector;
secs_to_read = entry->count - sec;
if(secs_to_read>numSectors) secs_to_read = numSectors;
if ( secs_to_read > numSectors ) secs_to_read = numSectors;
memcpy(dest,entry->cache + (sec*BYTES_PER_READ),(secs_to_read*BYTES_PER_READ));
memcpy( dest, entry->cache + ( sec*BYTES_PER_READ ), ( secs_to_read*BYTES_PER_READ ) );
dest += (secs_to_read*BYTES_PER_READ);
dest += ( secs_to_read * BYTES_PER_READ );
sector += secs_to_read;
numSectors -= secs_to_read;
}
@ -181,30 +195,32 @@ bool _FAT_cache_readSectors(CACHE *cache,sec_t sector,sec_t numSectors,void *buf
/*
Reads some data from a cache page, determined by the sector number
*/
bool _FAT_cache_readPartialSector (CACHE* cache, void* buffer, sec_t sector, unsigned int offset, size_t size)
bool _FAT_cache_readPartialSector ( CACHE* cache, void* buffer, sec_t sector, unsigned int offset, size_t size )
{
sec_t sec;
CACHE_ENTRY *entry;
if (offset + size > BYTES_PER_READ) return false;
if ( offset + size > BYTES_PER_READ ) return false;
entry = _FAT_cache_getPage(cache,sector);
if(entry==NULL) return false;
entry = _FAT_cache_getPage( cache, sector );
if ( entry == NULL ) return false;
sec = sector - entry->sector;
memcpy(buffer,entry->cache + ((sec*BYTES_PER_READ) + offset),size);
memcpy( buffer, entry->cache + ( ( sec*BYTES_PER_READ ) + offset ), size );
return true;
}
bool _FAT_cache_readLittleEndianValue (CACHE* cache, uint32_t *value, sec_t sector, unsigned int offset, int num_bytes) {
bool _FAT_cache_readLittleEndianValue ( CACHE* cache, uint32_t *value, sec_t sector, unsigned int offset, int num_bytes )
{
uint8_t buf[4];
if (!_FAT_cache_readPartialSector(cache, buf, sector, offset, num_bytes)) return false;
if ( !_FAT_cache_readPartialSector( cache, buf, sector, offset, num_bytes ) ) return false;
switch(num_bytes) {
switch ( num_bytes )
{
case 1: *value = buf[0]; break;
case 2: *value = u8array_to_u16(buf,0); break;
case 4: *value = u8array_to_u32(buf,0); break;
case 2: *value = u8array_to_u16( buf, 0 ); break;
case 4: *value = u8array_to_u32( buf, 0 ); break;
default: return false;
}
return true;
@ -213,59 +229,62 @@ bool _FAT_cache_readLittleEndianValue (CACHE* cache, uint32_t *value, sec_t sect
/*
Writes some data to a cache page, making sure it is loaded into memory first.
*/
bool _FAT_cache_writePartialSector (CACHE* cache, const void* buffer, sec_t sector, unsigned int offset, size_t size)
bool _FAT_cache_writePartialSector ( CACHE* cache, const void* buffer, sec_t sector, unsigned int offset, size_t size )
{
sec_t sec;
CACHE_ENTRY *entry;
if (offset + size > BYTES_PER_READ) return false;
if ( offset + size > BYTES_PER_READ ) return false;
entry = _FAT_cache_getPage(cache,sector);
if(entry==NULL) return false;
entry = _FAT_cache_getPage( cache, sector );
if ( entry == NULL ) return false;
sec = sector - entry->sector;
memcpy(entry->cache + ((sec*BYTES_PER_READ) + offset),buffer,size);
memcpy( entry->cache + ( ( sec*BYTES_PER_READ ) + offset ), buffer, size );
entry->dirty = true;
return true;
}
bool _FAT_cache_writeLittleEndianValue (CACHE* cache, const uint32_t value, sec_t sector, unsigned int offset, int size) {
bool _FAT_cache_writeLittleEndianValue ( CACHE* cache, const uint32_t value, sec_t sector, unsigned int offset, int size )
{
uint8_t buf[4] = {0, 0, 0, 0};
switch(size) {
switch ( size )
{
case 1: buf[0] = value; break;
case 2: u16_to_u8array(buf, 0, value); break;
case 4: u32_to_u8array(buf, 0, value); break;
case 2: u16_to_u8array( buf, 0, value ); break;
case 4: u32_to_u8array( buf, 0, value ); break;
default: return false;
}
return _FAT_cache_writePartialSector(cache, buf, sector, offset, size);
return _FAT_cache_writePartialSector( cache, buf, sector, offset, size );
}
/*
Writes some data to a cache page, zeroing out the page first
*/
bool _FAT_cache_eraseWritePartialSector (CACHE* cache, const void* buffer, sec_t sector, unsigned int offset, size_t size)
bool _FAT_cache_eraseWritePartialSector ( CACHE* cache, const void* buffer, sec_t sector, unsigned int offset, size_t size )
{
sec_t sec;
CACHE_ENTRY *entry;
if (offset + size > BYTES_PER_READ) return false;
if ( offset + size > BYTES_PER_READ ) return false;
entry = _FAT_cache_getPage(cache,sector);
if(entry==NULL) return false;
entry = _FAT_cache_getPage( cache, sector );
if ( entry == NULL ) return false;
sec = sector - entry->sector;
memset(entry->cache + (sec*BYTES_PER_READ),0,BYTES_PER_READ);
memcpy(entry->cache + ((sec*BYTES_PER_READ) + offset),buffer,size);
memset( entry->cache + ( sec*BYTES_PER_READ ), 0, BYTES_PER_READ );
memcpy( entry->cache + ( ( sec*BYTES_PER_READ ) + offset ), buffer, size );
entry->dirty = true;
return true;
}
static CACHE_ENTRY* _FAT_cache_findPage(CACHE *cache, sec_t sector, sec_t count) {
static CACHE_ENTRY* _FAT_cache_findPage( CACHE *cache, sec_t sector, sec_t count )
{
unsigned int i;
CACHE_ENTRY* cacheEntries = cache->cacheEntries;
@ -273,16 +292,22 @@ static CACHE_ENTRY* _FAT_cache_findPage(CACHE *cache, sec_t sector, sec_t count)
CACHE_ENTRY *entry = NULL;
sec_t lowest = UINT_MAX;
for(i=0;i<numberOfPages;i++) {
if (cacheEntries[i].sector != CACHE_FREE) {
for ( i = 0; i < numberOfPages; i++ )
{
if ( cacheEntries[i].sector != CACHE_FREE )
{
bool intersect;
if (sector > cacheEntries[i].sector) {
if ( sector > cacheEntries[i].sector )
{
intersect = sector - cacheEntries[i].sector < cacheEntries[i].count;
} else {
}
else
{
intersect = cacheEntries[i].sector - sector < count;
}
if ( intersect && (cacheEntries[i].sector < lowest)) {
if ( intersect && ( cacheEntries[i].sector < lowest ) )
{
lowest = cacheEntries[i].sector;
entry = &cacheEntries[i];
}
@ -292,25 +317,27 @@ static CACHE_ENTRY* _FAT_cache_findPage(CACHE *cache, sec_t sector, sec_t count)
return entry;
}
bool _FAT_cache_writeSectors (CACHE* cache, sec_t sector, sec_t numSectors, const void* buffer)
bool _FAT_cache_writeSectors ( CACHE* cache, sec_t sector, sec_t numSectors, const void* buffer )
{
sec_t sec;
sec_t secs_to_write;
CACHE_ENTRY* entry;
const uint8_t *src = buffer;
while(numSectors>0)
while ( numSectors > 0 )
{
entry = _FAT_cache_findPage(cache,sector,numSectors);
entry = _FAT_cache_findPage( cache, sector, numSectors );
if(entry!=NULL) {
if ( entry != NULL )
{
if ( entry->sector > sector) {
if ( entry->sector > sector )
{
secs_to_write = entry->sector - sector;
_FAT_disc_writeSectors(cache->disc,sector,secs_to_write,src);
src += (secs_to_write*BYTES_PER_READ);
_FAT_disc_writeSectors( cache->disc, sector, secs_to_write, src );
src += ( secs_to_write * BYTES_PER_READ );
sector += secs_to_write;
numSectors -= secs_to_write;
}
@ -318,19 +345,21 @@ bool _FAT_cache_writeSectors (CACHE* cache, sec_t sector, sec_t numSectors, cons
sec = sector - entry->sector;
secs_to_write = entry->count - sec;
if(secs_to_write>numSectors) secs_to_write = numSectors;
if ( secs_to_write > numSectors ) secs_to_write = numSectors;
memcpy(entry->cache + (sec*BYTES_PER_READ),src,(secs_to_write*BYTES_PER_READ));
memcpy( entry->cache + ( sec*BYTES_PER_READ ), src, ( secs_to_write*BYTES_PER_READ ) );
src += (secs_to_write*BYTES_PER_READ);
src += ( secs_to_write * BYTES_PER_READ );
sector += secs_to_write;
numSectors -= secs_to_write;
entry->dirty = true;
} else {
_FAT_disc_writeSectors(cache->disc,sector,numSectors,src);
numSectors=0;
}
else
{
_FAT_disc_writeSectors( cache->disc, sector, numSectors, src );
numSectors = 0;
}
}
return true;
@ -339,12 +368,16 @@ bool _FAT_cache_writeSectors (CACHE* cache, sec_t sector, sec_t numSectors, cons
/*
Flushes all dirty pages to disc, clearing the dirty flag.
*/
bool _FAT_cache_flush (CACHE* cache) {
bool _FAT_cache_flush ( CACHE* cache )
{
unsigned int i;
for (i = 0; i < cache->numberOfPages; i++) {
if (cache->cacheEntries[i].dirty) {
if (!_FAT_disc_writeSectors (cache->disc, cache->cacheEntries[i].sector, cache->cacheEntries[i].count, cache->cacheEntries[i].cache)) {
for ( i = 0; i < cache->numberOfPages; i++ )
{
if ( cache->cacheEntries[i].dirty )
{
if ( !_FAT_disc_writeSectors ( cache->disc, cache->cacheEntries[i].sector, cache->cacheEntries[i].count, cache->cacheEntries[i].cache ) )
{
return false;
}
}
@ -354,10 +387,12 @@ bool _FAT_cache_flush (CACHE* cache) {
return true;
}
void _FAT_cache_invalidate (CACHE* cache) {
void _FAT_cache_invalidate ( CACHE* cache )
{
unsigned int i;
_FAT_cache_flush(cache);
for (i = 0; i < cache->numberOfPages; i++) {
_FAT_cache_flush( cache );
for ( i = 0; i < cache->numberOfPages; i++ )
{
cache->cacheEntries[i].sector = CACHE_FREE;
cache->cacheEntries[i].last_access = 0;
cache->cacheEntries[i].count = 0;

View File

@ -42,7 +42,8 @@
#define PAGE_SECTORS 64
#define CACHE_PAGE_SIZE (BYTES_PER_READ * PAGE_SECTORS)
typedef struct {
typedef struct
{
sec_t sector;
unsigned int count;
unsigned int last_access;
@ -50,7 +51,8 @@ typedef struct {
uint8_t* cache;
} CACHE_ENTRY;
typedef struct {
typedef struct
{
const DISC_INTERFACE* disc;
sec_t endOfPartition;
unsigned int numberOfPages;
@ -65,9 +67,9 @@ offset is the position to start reading from
size is the amount of data to read
Precondition: offset + size <= BYTES_PER_READ
*/
bool _FAT_cache_readPartialSector (CACHE* cache, void* buffer, sec_t sector, unsigned int offset, size_t size);
bool _FAT_cache_readPartialSector ( CACHE* cache, void* buffer, sec_t sector, unsigned int offset, size_t size );
bool _FAT_cache_readLittleEndianValue (CACHE* cache, uint32_t *value, sec_t sector, unsigned int offset, int num_bytes);
bool _FAT_cache_readLittleEndianValue ( CACHE* cache, uint32_t *value, sec_t sector, unsigned int offset, int num_bytes );
/*
Write data to a sector in the cache
@ -77,9 +79,9 @@ offset is the position to start writing to
size is the amount of data to write
Precondition: offset + size <= BYTES_PER_READ
*/
bool _FAT_cache_writePartialSector (CACHE* cache, const void* buffer, sec_t sector, unsigned int offset, size_t size);
bool _FAT_cache_writePartialSector ( CACHE* cache, const void* buffer, sec_t sector, unsigned int offset, size_t size );
bool _FAT_cache_writeLittleEndianValue (CACHE* cache, const uint32_t value, sec_t sector, unsigned int offset, int num_bytes);
bool _FAT_cache_writeLittleEndianValue ( CACHE* cache, const uint32_t value, sec_t sector, unsigned int offset, int num_bytes );
/*
Write data to a sector in the cache, zeroing the sector first
@ -89,42 +91,44 @@ offset is the position to start writing to
size is the amount of data to write
Precondition: offset + size <= BYTES_PER_READ
*/
bool _FAT_cache_eraseWritePartialSector (CACHE* cache, const void* buffer, sec_t sector, unsigned int offset, size_t size);
bool _FAT_cache_eraseWritePartialSector ( CACHE* cache, const void* buffer, sec_t sector, unsigned int offset, size_t size );
/*
Read several sectors from the cache
*/
bool _FAT_cache_readSectors (CACHE* cache, sec_t sector, sec_t numSectors, void* buffer);
bool _FAT_cache_readSectors ( CACHE* cache, sec_t sector, sec_t numSectors, void* buffer );
/*
Read a full sector from the cache
*/
static inline bool _FAT_cache_readSector (CACHE* cache, void* buffer, sec_t sector) {
return _FAT_cache_readPartialSector (cache, buffer, sector, 0, BYTES_PER_READ);
static inline bool _FAT_cache_readSector ( CACHE* cache, void* buffer, sec_t sector )
{
return _FAT_cache_readPartialSector ( cache, buffer, sector, 0, BYTES_PER_READ );
}
/*
Write a full sector to the cache
*/
static inline bool _FAT_cache_writeSector (CACHE* cache, const void* buffer, sec_t sector) {
return _FAT_cache_writePartialSector (cache, buffer, sector, 0, BYTES_PER_READ);
static inline bool _FAT_cache_writeSector ( CACHE* cache, const void* buffer, sec_t sector )
{
return _FAT_cache_writePartialSector ( cache, buffer, sector, 0, BYTES_PER_READ );
}
bool _FAT_cache_writeSectors (CACHE* cache, sec_t sector, sec_t numSectors, const void* buffer);
bool _FAT_cache_writeSectors ( CACHE* cache, sec_t sector, sec_t numSectors, const void* buffer );
/*
Write any dirty sectors back to disc and clear out the contents of the cache
*/
bool _FAT_cache_flush (CACHE* cache);
bool _FAT_cache_flush ( CACHE* cache );
/*
Clear out the contents of the cache without writing any dirty sectors first
*/
void _FAT_cache_invalidate (CACHE* cache);
void _FAT_cache_invalidate ( CACHE* cache );
CACHE* _FAT_cache_constructor (unsigned int numberOfPages, unsigned int sectorsPerPage, const DISC_INTERFACE* discInterface, sec_t endOfPartition);
CACHE* _FAT_cache_constructor ( unsigned int numberOfPages, unsigned int sectorsPerPage, const DISC_INTERFACE* discInterface, sec_t endOfPartition );
void _FAT_cache_destructor (CACHE* cache);
void _FAT_cache_destructor ( CACHE* cache );
#endif // _CACHE_H

View File

@ -45,48 +45,55 @@
#include "lock.h"
int _FAT_stat_r (struct _reent *r, const char *path, struct stat *st) {
int _FAT_stat_r ( struct _reent *r, const char *path, struct stat *st )
{
PARTITION* partition = NULL;
DIR_ENTRY dirEntry;
// Get the partition this file is on
partition = _FAT_partition_getPartitionFromPath (path);
if (partition == NULL) {
partition = _FAT_partition_getPartitionFromPath ( path );
if ( partition == NULL )
{
r->_errno = ENODEV;
return -1;
}
// Move the path pointer to the start of the actual path
if (strchr (path, ':') != NULL) {
path = strchr (path, ':') + 1;
if ( strchr ( path, ':' ) != NULL )
{
path = strchr ( path, ':' ) + 1;
}
if (strchr (path, ':') != NULL) {
if ( strchr ( path, ':' ) != NULL )
{
r->_errno = EINVAL;
return -1;
}
_FAT_lock(&partition->lock);
_FAT_lock( &partition->lock );
// Search for the file on the disc
if (!_FAT_directory_entryFromPath (partition, &dirEntry, path, NULL)) {
_FAT_unlock(&partition->lock);
if ( !_FAT_directory_entryFromPath ( partition, &dirEntry, path, NULL ) )
{
_FAT_unlock( &partition->lock );
r->_errno = ENOENT;
return -1;
}
// Fill in the stat struct
_FAT_directory_entryStat (partition, &dirEntry, st);
_FAT_directory_entryStat ( partition, &dirEntry, st );
_FAT_unlock(&partition->lock);
_FAT_unlock( &partition->lock );
return 0;
}
int _FAT_link_r (struct _reent *r, const char *existing, const char *newLink) {
int _FAT_link_r ( struct _reent *r, const char *existing, const char *newLink )
{
r->_errno = ENOTSUP;
return -1;
}
int _FAT_unlink_r (struct _reent *r, const char *path) {
int _FAT_unlink_r ( struct _reent *r, const char *path )
{
PARTITION* partition = NULL;
DIR_ENTRY dirEntry;
DIR_ENTRY dirContents;
@ -95,117 +102,140 @@ int _FAT_unlink_r (struct _reent *r, const char *path) {
bool errorOccured = false;
// Get the partition this directory is on
partition = _FAT_partition_getPartitionFromPath (path);
if (partition == NULL) {
partition = _FAT_partition_getPartitionFromPath ( path );
if ( partition == NULL )
{
r->_errno = ENODEV;
return -1;
}
// Make sure we aren't trying to write to a read-only disc
if (partition->readOnly) {
if ( partition->readOnly )
{
r->_errno = EROFS;
return -1;
}
// Move the path pointer to the start of the actual path
if (strchr (path, ':') != NULL) {
path = strchr (path, ':') + 1;
if ( strchr ( path, ':' ) != NULL )
{
path = strchr ( path, ':' ) + 1;
}
if (strchr (path, ':') != NULL) {
if ( strchr ( path, ':' ) != NULL )
{
r->_errno = EINVAL;
return -1;
}
_FAT_lock(&partition->lock);
_FAT_lock( &partition->lock );
// Search for the file on the disc
if (!_FAT_directory_entryFromPath (partition, &dirEntry, path, NULL)) {
_FAT_unlock(&partition->lock);
if ( !_FAT_directory_entryFromPath ( partition, &dirEntry, path, NULL ) )
{
_FAT_unlock( &partition->lock );
r->_errno = ENOENT;
return -1;
}
cluster = _FAT_directory_entryGetCluster (partition, dirEntry.entryData);
cluster = _FAT_directory_entryGetCluster ( partition, dirEntry.entryData );
// If this is a directory, make sure it is empty
if (_FAT_directory_isDirectory (&dirEntry)) {
nextEntry = _FAT_directory_getFirstEntry (partition, &dirContents, cluster);
if ( _FAT_directory_isDirectory ( &dirEntry ) )
{
nextEntry = _FAT_directory_getFirstEntry ( partition, &dirContents, cluster );
while (nextEntry) {
if (!_FAT_directory_isDot (&dirContents)) {
while ( nextEntry )
{
if ( !_FAT_directory_isDot ( &dirContents ) )
{
// The directory had something in it that isn't a reference to itself or it's parent
_FAT_unlock(&partition->lock);
_FAT_unlock( &partition->lock );
r->_errno = EPERM;
return -1;
}
nextEntry = _FAT_directory_getNextEntry (partition, &dirContents);
nextEntry = _FAT_directory_getNextEntry ( partition, &dirContents );
}
}
if (_FAT_fat_isValidCluster(partition, cluster)) {
if ( _FAT_fat_isValidCluster( partition, cluster ) )
{
// Remove the cluster chain for this file
if (!_FAT_fat_clearLinks (partition, cluster)) {
if ( !_FAT_fat_clearLinks ( partition, cluster ) )
{
r->_errno = EIO;
errorOccured = true;
}
}
// Remove the directory entry for this file
if (!_FAT_directory_removeEntry (partition, &dirEntry)) {
if ( !_FAT_directory_removeEntry ( partition, &dirEntry ) )
{
r->_errno = EIO;
errorOccured = true;
}
// Flush any sectors in the disc cache
if (!_FAT_cache_flush(partition->cache)) {
if ( !_FAT_cache_flush( partition->cache ) )
{
r->_errno = EIO;
errorOccured = true;
}
_FAT_unlock(&partition->lock);
if (errorOccured) {
_FAT_unlock( &partition->lock );
if ( errorOccured )
{
return -1;
} else {
}
else
{
return 0;
}
}
int _FAT_chdir_r (struct _reent *r, const char *path) {
int _FAT_chdir_r ( struct _reent *r, const char *path )
{
PARTITION* partition = NULL;
// Get the partition this directory is on
partition = _FAT_partition_getPartitionFromPath (path);
if (partition == NULL) {
partition = _FAT_partition_getPartitionFromPath ( path );
if ( partition == NULL )
{
r->_errno = ENODEV;
return -1;
}
// Move the path pointer to the start of the actual path
if (strchr (path, ':') != NULL) {
path = strchr (path, ':') + 1;
if ( strchr ( path, ':' ) != NULL )
{
path = strchr ( path, ':' ) + 1;
}
if (strchr (path, ':') != NULL) {
if ( strchr ( path, ':' ) != NULL )
{
r->_errno = EINVAL;
return -1;
}
_FAT_lock(&partition->lock);
_FAT_lock( &partition->lock );
// Try changing directory
if (_FAT_directory_chdir (partition, path)) {
if ( _FAT_directory_chdir ( partition, path ) )
{
// Successful
_FAT_unlock(&partition->lock);
_FAT_unlock( &partition->lock );
return 0;
} else {
}
else
{
// Failed
_FAT_unlock(&partition->lock);
_FAT_unlock( &partition->lock );
r->_errno = ENOTDIR;
return -1;
}
}
int _FAT_rename_r (struct _reent *r, const char *oldName, const char *newName) {
int _FAT_rename_r ( struct _reent *r, const char *oldName, const char *newName )
{
PARTITION* partition = NULL;
DIR_ENTRY oldDirEntry;
DIR_ENTRY newDirEntry;
@ -213,113 +243,130 @@ int _FAT_rename_r (struct _reent *r, const char *oldName, const char *newName) {
uint32_t dirCluster;
// Get the partition this directory is on
partition = _FAT_partition_getPartitionFromPath (oldName);
if (partition == NULL) {
partition = _FAT_partition_getPartitionFromPath ( oldName );
if ( partition == NULL )
{
r->_errno = ENODEV;
return -1;
}
_FAT_lock(&partition->lock);
_FAT_lock( &partition->lock );
// Make sure the same partition is used for the old and new names
if (partition != _FAT_partition_getPartitionFromPath (newName)) {
_FAT_unlock(&partition->lock);
if ( partition != _FAT_partition_getPartitionFromPath ( newName ) )
{
_FAT_unlock( &partition->lock );
r->_errno = EXDEV;
return -1;
}
// Make sure we aren't trying to write to a read-only disc
if (partition->readOnly) {
_FAT_unlock(&partition->lock);
if ( partition->readOnly )
{
_FAT_unlock( &partition->lock );
r->_errno = EROFS;
return -1;
}
// Move the path pointer to the start of the actual path
if (strchr (oldName, ':') != NULL) {
oldName = strchr (oldName, ':') + 1;
if ( strchr ( oldName, ':' ) != NULL )
{
oldName = strchr ( oldName, ':' ) + 1;
}
if (strchr (oldName, ':') != NULL) {
_FAT_unlock(&partition->lock);
if ( strchr ( oldName, ':' ) != NULL )
{
_FAT_unlock( &partition->lock );
r->_errno = EINVAL;
return -1;
}
if (strchr (newName, ':') != NULL) {
newName = strchr (newName, ':') + 1;
if ( strchr ( newName, ':' ) != NULL )
{
newName = strchr ( newName, ':' ) + 1;
}
if (strchr (newName, ':') != NULL) {
_FAT_unlock(&partition->lock);
if ( strchr ( newName, ':' ) != NULL )
{
_FAT_unlock( &partition->lock );
r->_errno = EINVAL;
return -1;
}
// Search for the file on the disc
if (!_FAT_directory_entryFromPath (partition, &oldDirEntry, oldName, NULL)) {
_FAT_unlock(&partition->lock);
if ( !_FAT_directory_entryFromPath ( partition, &oldDirEntry, oldName, NULL ) )
{
_FAT_unlock( &partition->lock );
r->_errno = ENOENT;
return -1;
}
// Make sure there is no existing file / directory with the new name
if (_FAT_directory_entryFromPath (partition, &newDirEntry, newName, NULL)) {
_FAT_unlock(&partition->lock);
if ( _FAT_directory_entryFromPath ( partition, &newDirEntry, newName, NULL ) )
{
_FAT_unlock( &partition->lock );
r->_errno = EEXIST;
return -1;
}
// Create the new file entry
// Get the directory it has to go in
pathEnd = strrchr (newName, DIR_SEPARATOR);
if (pathEnd == NULL) {
pathEnd = strrchr ( newName, DIR_SEPARATOR );
if ( pathEnd == NULL )
{
// No path was specified
dirCluster = partition->cwdCluster;
pathEnd = newName;
} else {
}
else
{
// Path was specified -- get the right dirCluster
// Recycling newDirEntry, since it needs to be recreated anyway
if (!_FAT_directory_entryFromPath (partition, &newDirEntry, newName, pathEnd) ||
!_FAT_directory_isDirectory(&newDirEntry)) {
_FAT_unlock(&partition->lock);
if ( !_FAT_directory_entryFromPath ( partition, &newDirEntry, newName, pathEnd ) ||
!_FAT_directory_isDirectory( &newDirEntry ) )
{
_FAT_unlock( &partition->lock );
r->_errno = ENOTDIR;
return -1;
}
dirCluster = _FAT_directory_entryGetCluster (partition, newDirEntry.entryData);
dirCluster = _FAT_directory_entryGetCluster ( partition, newDirEntry.entryData );
// Move the pathEnd past the last DIR_SEPARATOR
pathEnd += 1;
}
// Copy the entry data
memcpy (&newDirEntry, &oldDirEntry, sizeof(DIR_ENTRY));
memcpy ( &newDirEntry, &oldDirEntry, sizeof( DIR_ENTRY ) );
// Set the new name
strncpy (newDirEntry.filename, pathEnd, MAX_FILENAME_LENGTH - 1);
strncpy ( newDirEntry.filename, pathEnd, MAX_FILENAME_LENGTH - 1 );
// Write the new entry
if (!_FAT_directory_addEntry (partition, &newDirEntry, dirCluster)) {
_FAT_unlock(&partition->lock);
if ( !_FAT_directory_addEntry ( partition, &newDirEntry, dirCluster ) )
{
_FAT_unlock( &partition->lock );
r->_errno = ENOSPC;
return -1;
}
// Remove the old entry
if (!_FAT_directory_removeEntry (partition, &oldDirEntry)) {
_FAT_unlock(&partition->lock);
if ( !_FAT_directory_removeEntry ( partition, &oldDirEntry ) )
{
_FAT_unlock( &partition->lock );
r->_errno = EIO;
return -1;
}
// Flush any sectors in the disc cache
if (!_FAT_cache_flush (partition->cache)) {
_FAT_unlock(&partition->lock);
if ( !_FAT_cache_flush ( partition->cache ) )
{
_FAT_unlock( &partition->lock );
r->_errno = EIO;
return -1;
}
_FAT_unlock(&partition->lock);
_FAT_unlock( &partition->lock );
return 0;
}
int _FAT_mkdir_r (struct _reent *r, const char *path, int mode) {
int _FAT_mkdir_r ( struct _reent *r, const char *path, int mode )
{
PARTITION* partition = NULL;
bool fileExists;
DIR_ENTRY dirEntry;
@ -327,145 +374,158 @@ int _FAT_mkdir_r (struct _reent *r, const char *path, int mode) {
uint32_t parentCluster, dirCluster;
uint8_t newEntryData[DIR_ENTRY_DATA_SIZE];
partition = _FAT_partition_getPartitionFromPath (path);
if (partition == NULL) {
partition = _FAT_partition_getPartitionFromPath ( path );
if ( partition == NULL )
{
r->_errno = ENODEV;
return -1;
}
// Move the path pointer to the start of the actual path
if (strchr (path, ':') != NULL) {
path = strchr (path, ':') + 1;
if ( strchr ( path, ':' ) != NULL )
{
path = strchr ( path, ':' ) + 1;
}
if (strchr (path, ':') != NULL) {
if ( strchr ( path, ':' ) != NULL )
{
r->_errno = EINVAL;
return -1;
}
_FAT_lock(&partition->lock);
_FAT_lock( &partition->lock );
// Search for the file/directory on the disc
fileExists = _FAT_directory_entryFromPath (partition, &dirEntry, path, NULL);
fileExists = _FAT_directory_entryFromPath ( partition, &dirEntry, path, NULL );
// Make sure it doesn't exist
if (fileExists) {
_FAT_unlock(&partition->lock);
if ( fileExists )
{
_FAT_unlock( &partition->lock );
r->_errno = EEXIST;
return -1;
}
if (partition->readOnly) {
if ( partition->readOnly )
{
// We can't write to a read-only partition
_FAT_unlock(&partition->lock);
_FAT_unlock( &partition->lock );
r->_errno = EROFS;
return -1;
}
// Get the directory it has to go in
pathEnd = strrchr (path, DIR_SEPARATOR);
if (pathEnd == NULL) {
pathEnd = strrchr ( path, DIR_SEPARATOR );
if ( pathEnd == NULL )
{
// No path was specified
parentCluster = partition->cwdCluster;
pathEnd = path;
} else {
}
else
{
// Path was specified -- get the right parentCluster
// Recycling dirEntry, since it needs to be recreated anyway
if (!_FAT_directory_entryFromPath (partition, &dirEntry, path, pathEnd) ||
!_FAT_directory_isDirectory(&dirEntry)) {
_FAT_unlock(&partition->lock);
if ( !_FAT_directory_entryFromPath ( partition, &dirEntry, path, pathEnd ) ||
!_FAT_directory_isDirectory( &dirEntry ) )
{
_FAT_unlock( &partition->lock );
r->_errno = ENOTDIR;
return -1;
}
parentCluster = _FAT_directory_entryGetCluster (partition, dirEntry.entryData);
parentCluster = _FAT_directory_entryGetCluster ( partition, dirEntry.entryData );
// Move the pathEnd past the last DIR_SEPARATOR
pathEnd += 1;
}
// Create the entry data
strncpy (dirEntry.filename, pathEnd, MAX_FILENAME_LENGTH - 1);
memset (dirEntry.entryData, 0, DIR_ENTRY_DATA_SIZE);
strncpy ( dirEntry.filename, pathEnd, MAX_FILENAME_LENGTH - 1 );
memset ( dirEntry.entryData, 0, DIR_ENTRY_DATA_SIZE );
// Set the creation time and date
dirEntry.entryData[DIR_ENTRY_cTime_ms] = 0;
u16_to_u8array (dirEntry.entryData, DIR_ENTRY_cTime, _FAT_filetime_getTimeFromRTC());
u16_to_u8array (dirEntry.entryData, DIR_ENTRY_cDate, _FAT_filetime_getDateFromRTC());
u16_to_u8array (dirEntry.entryData, DIR_ENTRY_mTime, _FAT_filetime_getTimeFromRTC());
u16_to_u8array (dirEntry.entryData, DIR_ENTRY_mDate, _FAT_filetime_getDateFromRTC());
u16_to_u8array (dirEntry.entryData, DIR_ENTRY_aDate, _FAT_filetime_getDateFromRTC());
u16_to_u8array ( dirEntry.entryData, DIR_ENTRY_cTime, _FAT_filetime_getTimeFromRTC() );
u16_to_u8array ( dirEntry.entryData, DIR_ENTRY_cDate, _FAT_filetime_getDateFromRTC() );
u16_to_u8array ( dirEntry.entryData, DIR_ENTRY_mTime, _FAT_filetime_getTimeFromRTC() );
u16_to_u8array ( dirEntry.entryData, DIR_ENTRY_mDate, _FAT_filetime_getDateFromRTC() );
u16_to_u8array ( dirEntry.entryData, DIR_ENTRY_aDate, _FAT_filetime_getDateFromRTC() );
// Set the directory attribute
dirEntry.entryData[DIR_ENTRY_attributes] = ATTRIB_DIR;
// Get a cluster for the new directory
dirCluster = _FAT_fat_linkFreeClusterCleared (partition, CLUSTER_FREE);
if (!_FAT_fat_isValidCluster(partition, dirCluster)) {
dirCluster = _FAT_fat_linkFreeClusterCleared ( partition, CLUSTER_FREE );
if ( !_FAT_fat_isValidCluster( partition, dirCluster ) )
{
// No space left on disc for the cluster
_FAT_unlock(&partition->lock);
_FAT_unlock( &partition->lock );
r->_errno = ENOSPC;
return -1;
}
u16_to_u8array (dirEntry.entryData, DIR_ENTRY_cluster, dirCluster);
u16_to_u8array (dirEntry.entryData, DIR_ENTRY_clusterHigh, dirCluster >> 16);
u16_to_u8array ( dirEntry.entryData, DIR_ENTRY_cluster, dirCluster );
u16_to_u8array ( dirEntry.entryData, DIR_ENTRY_clusterHigh, dirCluster >> 16 );
// Write the new directory's entry to it's parent
if (!_FAT_directory_addEntry (partition, &dirEntry, parentCluster)) {
_FAT_unlock(&partition->lock);
if ( !_FAT_directory_addEntry ( partition, &dirEntry, parentCluster ) )
{
_FAT_unlock( &partition->lock );
r->_errno = ENOSPC;
return -1;
}
// Create the dot entry within the directory
memset (newEntryData, 0, DIR_ENTRY_DATA_SIZE);
memset (newEntryData, ' ', 11);
memset ( newEntryData, 0, DIR_ENTRY_DATA_SIZE );
memset ( newEntryData, ' ', 11 );
newEntryData[DIR_ENTRY_name] = '.';
newEntryData[DIR_ENTRY_attributes] = ATTRIB_DIR;
u16_to_u8array (newEntryData, DIR_ENTRY_cluster, dirCluster);
u16_to_u8array (newEntryData, DIR_ENTRY_clusterHigh, dirCluster >> 16);
u16_to_u8array ( newEntryData, DIR_ENTRY_cluster, dirCluster );
u16_to_u8array ( newEntryData, DIR_ENTRY_clusterHigh, dirCluster >> 16 );
// Write it to the directory, erasing that sector in the process
_FAT_cache_eraseWritePartialSector ( partition->cache, newEntryData,
_FAT_fat_clusterToSector (partition, dirCluster), 0, DIR_ENTRY_DATA_SIZE);
_FAT_fat_clusterToSector ( partition, dirCluster ), 0, DIR_ENTRY_DATA_SIZE );
// Create the double dot entry within the directory
// if ParentDir == Rootdir then ".."" always link to Cluster 0
if(parentCluster == partition->rootDirCluster)
if ( parentCluster == partition->rootDirCluster )
parentCluster = FAT16_ROOT_DIR_CLUSTER;
newEntryData[DIR_ENTRY_name + 1] = '.';
u16_to_u8array (newEntryData, DIR_ENTRY_cluster, parentCluster);
u16_to_u8array (newEntryData, DIR_ENTRY_clusterHigh, parentCluster >> 16);
u16_to_u8array ( newEntryData, DIR_ENTRY_cluster, parentCluster );
u16_to_u8array ( newEntryData, DIR_ENTRY_clusterHigh, parentCluster >> 16 );
// Write it to the directory
_FAT_cache_writePartialSector ( partition->cache, newEntryData,
_FAT_fat_clusterToSector (partition, dirCluster), DIR_ENTRY_DATA_SIZE, DIR_ENTRY_DATA_SIZE);
_FAT_fat_clusterToSector ( partition, dirCluster ), DIR_ENTRY_DATA_SIZE, DIR_ENTRY_DATA_SIZE );
// Flush any sectors in the disc cache
if (!_FAT_cache_flush(partition->cache)) {
_FAT_unlock(&partition->lock);
if ( !_FAT_cache_flush( partition->cache ) )
{
_FAT_unlock( &partition->lock );
r->_errno = EIO;
return -1;
}
_FAT_unlock(&partition->lock);
_FAT_unlock( &partition->lock );
return 0;
}
int _FAT_statvfs_r (struct _reent *r, const char *path, struct statvfs *buf)
int _FAT_statvfs_r ( struct _reent *r, const char *path, struct statvfs *buf )
{
PARTITION* partition = NULL;
unsigned int freeClusterCount;
// Get the partition of the requested path
partition = _FAT_partition_getPartitionFromPath (path);
if (partition == NULL) {
partition = _FAT_partition_getPartitionFromPath ( path );
if ( partition == NULL )
{
r->_errno = ENODEV;
return -1;
}
_FAT_lock(&partition->lock);
_FAT_lock( &partition->lock );
freeClusterCount = _FAT_fat_freeClusterCount (partition);
freeClusterCount = _FAT_fat_freeClusterCount ( partition );
// FAT clusters = POSIX blocks
buf->f_bsize = partition->bytesPerCluster; // File system block size.
@ -481,130 +541,143 @@ int _FAT_statvfs_r (struct _reent *r, const char *path, struct statvfs *buf)
buf->f_favail = freeClusterCount; // Number of file serial numbers available to non-privileged process.
// File system ID. 32bit ioType value
buf->f_fsid = _FAT_disc_hostType(partition->disc);
buf->f_fsid = _FAT_disc_hostType( partition->disc );
// Bit mask of f_flag values.
buf->f_flag = ST_NOSUID /* No support for ST_ISUID and ST_ISGID file mode bits */
| (partition->readOnly ? ST_RDONLY /* Read only file system */ : 0 ) ;
| ( partition->readOnly ? ST_RDONLY /* Read only file system */ : 0 ) ;
// Maximum filename length.
buf->f_namemax = MAX_FILENAME_LENGTH;
_FAT_unlock(&partition->lock);
_FAT_unlock( &partition->lock );
return 0;
}
DIR_ITER* _FAT_diropen_r(struct _reent *r, DIR_ITER *dirState, const char *path) {
DIR_ITER* _FAT_diropen_r( struct _reent *r, DIR_ITER *dirState, const char *path )
{
DIR_ENTRY dirEntry;
DIR_STATE_STRUCT* state = (DIR_STATE_STRUCT*) (dirState->dirStruct);
DIR_STATE_STRUCT* state = ( DIR_STATE_STRUCT* ) ( dirState->dirStruct );
bool fileExists;
state->partition = _FAT_partition_getPartitionFromPath (path);
if (state->partition == NULL) {
state->partition = _FAT_partition_getPartitionFromPath ( path );
if ( state->partition == NULL )
{
r->_errno = ENODEV;
return NULL;
}
// Move the path pointer to the start of the actual path
if (strchr (path, ':') != NULL) {
path = strchr (path, ':') + 1;
if ( strchr ( path, ':' ) != NULL )
{
path = strchr ( path, ':' ) + 1;
}
if (strchr (path, ':') != NULL) {
if ( strchr ( path, ':' ) != NULL )
{
r->_errno = EINVAL;
return NULL;
}
_FAT_lock(&state->partition->lock);
_FAT_lock( &state->partition->lock );
// Get the start cluster of the directory
fileExists = _FAT_directory_entryFromPath (state->partition, &dirEntry, path, NULL);
fileExists = _FAT_directory_entryFromPath ( state->partition, &dirEntry, path, NULL );
if (!fileExists) {
_FAT_unlock(&state->partition->lock);
if ( !fileExists )
{
_FAT_unlock( &state->partition->lock );
r->_errno = ENOENT;
return NULL;
}
// Make sure it is a directory
if (! _FAT_directory_isDirectory (&dirEntry)) {
_FAT_unlock(&state->partition->lock);
if ( ! _FAT_directory_isDirectory ( &dirEntry ) )
{
_FAT_unlock( &state->partition->lock );
r->_errno = ENOTDIR;
return NULL;
}
// Save the start cluster for use when resetting the directory data
state->startCluster = _FAT_directory_entryGetCluster (state->partition, dirEntry.entryData);
state->startCluster = _FAT_directory_entryGetCluster ( state->partition, dirEntry.entryData );
// Get the first entry for use with a call to dirnext
state->validEntry =
_FAT_directory_getFirstEntry (state->partition, &(state->currentEntry), state->startCluster);
_FAT_directory_getFirstEntry ( state->partition, &( state->currentEntry ), state->startCluster );
// We are now using this entry
state->inUse = true;
_FAT_unlock(&state->partition->lock);
return (DIR_ITER*) state;
_FAT_unlock( &state->partition->lock );
return ( DIR_ITER* ) state;
}
int _FAT_dirreset_r (struct _reent *r, DIR_ITER *dirState) {
DIR_STATE_STRUCT* state = (DIR_STATE_STRUCT*) (dirState->dirStruct);
int _FAT_dirreset_r ( struct _reent *r, DIR_ITER *dirState )
{
DIR_STATE_STRUCT* state = ( DIR_STATE_STRUCT* ) ( dirState->dirStruct );
_FAT_lock(&state->partition->lock);
_FAT_lock( &state->partition->lock );
// Make sure we are still using this entry
if (!state->inUse) {
_FAT_unlock(&state->partition->lock);
if ( !state->inUse )
{
_FAT_unlock( &state->partition->lock );
r->_errno = EBADF;
return -1;
}
// Get the first entry for use with a call to dirnext
state->validEntry =
_FAT_directory_getFirstEntry (state->partition, &(state->currentEntry), state->startCluster);
_FAT_directory_getFirstEntry ( state->partition, &( state->currentEntry ), state->startCluster );
_FAT_unlock(&state->partition->lock);
_FAT_unlock( &state->partition->lock );
return 0;
}
int _FAT_dirnext_r (struct _reent *r, DIR_ITER *dirState, char *filename, struct stat *filestat) {
DIR_STATE_STRUCT* state = (DIR_STATE_STRUCT*) (dirState->dirStruct);
int _FAT_dirnext_r ( struct _reent *r, DIR_ITER *dirState, char *filename, struct stat *filestat )
{
DIR_STATE_STRUCT* state = ( DIR_STATE_STRUCT* ) ( dirState->dirStruct );
_FAT_lock(&state->partition->lock);
_FAT_lock( &state->partition->lock );
// Make sure we are still using this entry
if (!state->inUse) {
_FAT_unlock(&state->partition->lock);
if ( !state->inUse )
{
_FAT_unlock( &state->partition->lock );
r->_errno = EBADF;
return -1;
}
// Make sure there is another file to report on
if (! state->validEntry) {
_FAT_unlock(&state->partition->lock);
if ( ! state->validEntry )
{
_FAT_unlock( &state->partition->lock );
r->_errno = ENOENT;
return -1;
}
// Get the filename
strncpy (filename, state->currentEntry.filename, MAX_FILENAME_LENGTH);
strncpy ( filename, state->currentEntry.filename, MAX_FILENAME_LENGTH );
// Get the stats, if requested
if (filestat != NULL) {
_FAT_directory_entryStat (state->partition, &(state->currentEntry), filestat);
if ( filestat != NULL )
{
_FAT_directory_entryStat ( state->partition, &( state->currentEntry ), filestat );
}
// Look for the next entry for use next time
state->validEntry =
_FAT_directory_getNextEntry (state->partition, &(state->currentEntry));
_FAT_directory_getNextEntry ( state->partition, &( state->currentEntry ) );
_FAT_unlock(&state->partition->lock);
_FAT_unlock( &state->partition->lock );
return 0;
}
int _FAT_dirclose_r (struct _reent *r, DIR_ITER *dirState) {
DIR_STATE_STRUCT* state = (DIR_STATE_STRUCT*) (dirState->dirStruct);
int _FAT_dirclose_r ( struct _reent *r, DIR_ITER *dirState )
{
DIR_STATE_STRUCT* state = ( DIR_STATE_STRUCT* ) ( dirState->dirStruct );
// We are no longer using this entry
_FAT_lock(&state->partition->lock);
_FAT_lock( &state->partition->lock );
state->inUse = false;
_FAT_unlock(&state->partition->lock);
_FAT_unlock( &state->partition->lock );
return 0;
}

View File

@ -39,7 +39,8 @@
#include "common.h"
#include "directory.h"
typedef struct {
typedef struct
{
PARTITION* partition;
DIR_ENTRY currentEntry;
uint32_t startCluster;
@ -47,27 +48,27 @@ typedef struct {
bool validEntry;
} DIR_STATE_STRUCT;
extern int _FAT_stat_r (struct _reent *r, const char *path, struct stat *st);
extern int _FAT_stat_r ( struct _reent *r, const char *path, struct stat *st );
extern int _FAT_link_r (struct _reent *r, const char *existing, const char *newLink);
extern int _FAT_link_r ( struct _reent *r, const char *existing, const char *newLink );
extern int _FAT_unlink_r (struct _reent *r, const char *name);
extern int _FAT_unlink_r ( struct _reent *r, const char *name );
extern int _FAT_chdir_r (struct _reent *r, const char *name);
extern int _FAT_chdir_r ( struct _reent *r, const char *name );
extern int _FAT_rename_r (struct _reent *r, const char *oldName, const char *newName);
extern int _FAT_rename_r ( struct _reent *r, const char *oldName, const char *newName );
extern int _FAT_mkdir_r (struct _reent *r, const char *path, int mode);
extern int _FAT_mkdir_r ( struct _reent *r, const char *path, int mode );
extern int _FAT_statvfs_r (struct _reent *r, const char *path, struct statvfs *buf);
extern int _FAT_statvfs_r ( struct _reent *r, const char *path, struct statvfs *buf );
/*
Directory iterator functions
*/
extern DIR_ITER* _FAT_diropen_r(struct _reent *r, DIR_ITER *dirState, const char *path);
extern int _FAT_dirreset_r (struct _reent *r, DIR_ITER *dirState);
extern int _FAT_dirnext_r (struct _reent *r, DIR_ITER *dirState, char *filename, struct stat *filestat);
extern int _FAT_dirclose_r (struct _reent *r, DIR_ITER *dirState);
extern DIR_ITER* _FAT_diropen_r( struct _reent *r, DIR_ITER *dirState, const char *path );
extern int _FAT_dirreset_r ( struct _reent *r, DIR_ITER *dirState );
extern int _FAT_dirnext_r ( struct _reent *r, DIR_ITER *dirState, char *filename, struct stat *filestat );
extern int _FAT_dirclose_r ( struct _reent *r, DIR_ITER *dirState );
#endif // _FATDIR_H

File diff suppressed because it is too large Load Diff

View File

@ -41,7 +41,8 @@
#define FILE_MAX_SIZE ((uint32_t)0xFFFFFFFF) // 4GiB - 1B
typedef struct {
typedef struct
{
u32 cluster;
sec_t sector;
s32 byte;
@ -49,7 +50,8 @@ typedef struct {
struct _FILE_STRUCT;
struct _FILE_STRUCT {
struct _FILE_STRUCT
{
uint32_t filesize;
uint32_t startCluster;
uint32_t currentPosition;
@ -69,37 +71,37 @@ struct _FILE_STRUCT {
typedef struct _FILE_STRUCT FILE_STRUCT;
extern int _FAT_open_r (struct _reent *r, void *fileStruct, const char *path, int flags, int mode);
extern int _FAT_open_r ( struct _reent *r, void *fileStruct, const char *path, int flags, int mode );
extern int _FAT_close_r (struct _reent *r, int fd);
extern int _FAT_close_r ( struct _reent *r, int fd );
extern ssize_t _FAT_write_r (struct _reent *r,int fd, const char *ptr, size_t len);
extern ssize_t _FAT_write_r ( struct _reent *r, int fd, const char *ptr, size_t len );
extern ssize_t _FAT_read_r (struct _reent *r, int fd, char *ptr, size_t len);
extern ssize_t _FAT_read_r ( struct _reent *r, int fd, char *ptr, size_t len );
extern off_t _FAT_seek_r (struct _reent *r, int fd, off_t pos, int dir);
extern off_t _FAT_seek_r ( struct _reent *r, int fd, off_t pos, int dir );
extern int _FAT_fstat_r (struct _reent *r, int fd, struct stat *st);
extern int _FAT_fstat_r ( struct _reent *r, int fd, struct stat *st );
extern int _FAT_stat_r (struct _reent *r, const char *path, struct stat *st);
extern int _FAT_stat_r ( struct _reent *r, const char *path, struct stat *st );
extern int _FAT_link_r (struct _reent *r, const char *existing, const char *newLink);
extern int _FAT_link_r ( struct _reent *r, const char *existing, const char *newLink );
extern int _FAT_unlink_r (struct _reent *r, const char *name);
extern int _FAT_unlink_r ( struct _reent *r, const char *name );
extern int _FAT_chdir_r (struct _reent *r, const char *name);
extern int _FAT_chdir_r ( struct _reent *r, const char *name );
extern int _FAT_rename_r (struct _reent *r, const char *oldName, const char *newName);
extern int _FAT_rename_r ( struct _reent *r, const char *oldName, const char *newName );
extern int _FAT_ftruncate_r (struct _reent *r, int fd, off_t len);
extern int _FAT_ftruncate_r ( struct _reent *r, int fd, off_t len );
extern int _FAT_fsync_r (struct _reent *r, int fd);
extern int _FAT_fsync_r ( struct _reent *r, int fd );
/*
Synchronizes the file data to disc.
Does no locking of its own -- lock the partition before calling.
Returns 0 on success, an error code on failure.
*/
extern int _FAT_syncToDisc (FILE_STRUCT* file);
extern int _FAT_syncToDisc ( FILE_STRUCT* file );
#endif // _FATFILE_H

View File

@ -35,17 +35,18 @@
/*
Gets the cluster linked from input cluster
*/
uint32_t _FAT_fat_nextCluster(PARTITION* partition, uint32_t cluster)
uint32_t _FAT_fat_nextCluster( PARTITION* partition, uint32_t cluster )
{
uint32_t nextCluster = CLUSTER_FREE;
sec_t sector;
int offset;
if (cluster == CLUSTER_FREE) {
if ( cluster == CLUSTER_FREE )
{
return CLUSTER_FREE;
}
switch (partition->filesysType)
switch ( partition->filesysType )
{
case FS_UNKNOWN:
return CLUSTER_ERROR;
@ -54,30 +55,34 @@ uint32_t _FAT_fat_nextCluster(PARTITION* partition, uint32_t cluster)
case FS_FAT12:
{
u32 nextCluster_h;
sector = partition->fat.fatStart + (((cluster * 3) / 2) / BYTES_PER_READ);
offset = ((cluster * 3) / 2) % BYTES_PER_READ;
sector = partition->fat.fatStart + ( ( ( cluster * 3 ) / 2 ) / BYTES_PER_READ );
offset = ( ( cluster * 3 ) / 2 ) % BYTES_PER_READ;
_FAT_cache_readLittleEndianValue (partition->cache, &nextCluster, sector, offset, sizeof(u8));
_FAT_cache_readLittleEndianValue ( partition->cache, &nextCluster, sector, offset, sizeof( u8 ) );
offset++;
if (offset >= BYTES_PER_READ) {
if ( offset >= BYTES_PER_READ )
{
offset = 0;
sector++;
}
nextCluster_h = 0;
_FAT_cache_readLittleEndianValue (partition->cache, &nextCluster_h, sector, offset, sizeof(u8));
nextCluster |= (nextCluster_h << 8);
_FAT_cache_readLittleEndianValue ( partition->cache, &nextCluster_h, sector, offset, sizeof( u8 ) );
nextCluster |= ( nextCluster_h << 8 );
if (cluster & 0x01) {
if ( cluster & 0x01 )
{
nextCluster = nextCluster >> 4;
} else {
}
else
{
nextCluster &= 0x0FFF;
}
if (nextCluster >= 0x0FF7)
if ( nextCluster >= 0x0FF7 )
{
nextCluster = CLUSTER_EOF;
}
@ -85,23 +90,25 @@ uint32_t _FAT_fat_nextCluster(PARTITION* partition, uint32_t cluster)
break;
}
case FS_FAT16:
sector = partition->fat.fatStart + ((cluster << 1) / BYTES_PER_READ);
offset = (cluster % (BYTES_PER_READ >> 1)) << 1;
sector = partition->fat.fatStart + ( ( cluster << 1 ) / BYTES_PER_READ );
offset = ( cluster % ( BYTES_PER_READ >> 1 ) ) << 1;
_FAT_cache_readLittleEndianValue (partition->cache, &nextCluster, sector, offset, sizeof(u16));
_FAT_cache_readLittleEndianValue ( partition->cache, &nextCluster, sector, offset, sizeof( u16 ) );
if (nextCluster >= 0xFFF7) {
if ( nextCluster >= 0xFFF7 )
{
nextCluster = CLUSTER_EOF;
}
break;
case FS_FAT32:
sector = partition->fat.fatStart + ((cluster << 2) / BYTES_PER_READ);
offset = (cluster % (BYTES_PER_READ >> 2)) << 2;
sector = partition->fat.fatStart + ( ( cluster << 2 ) / BYTES_PER_READ );
offset = ( cluster % ( BYTES_PER_READ >> 2 ) ) << 2;
_FAT_cache_readLittleEndianValue (partition->cache, &nextCluster, sector, offset, sizeof(u32));
_FAT_cache_readLittleEndianValue ( partition->cache, &nextCluster, sector, offset, sizeof( u32 ) );
if (nextCluster >= 0x0FFFFFF7) {
if ( nextCluster >= 0x0FFFFFF7 )
{
nextCluster = CLUSTER_EOF;
}
break;
@ -118,74 +125,80 @@ uint32_t _FAT_fat_nextCluster(PARTITION* partition, uint32_t cluster)
writes value into the correct offset within a partition's FAT, based
on the cluster number.
*/
static bool _FAT_fat_writeFatEntry (PARTITION* partition, uint32_t cluster, uint32_t value) {
static bool _FAT_fat_writeFatEntry ( PARTITION* partition, uint32_t cluster, uint32_t value )
{
sec_t sector;
int offset;
uint32_t oldValue;
if ((cluster < CLUSTER_FIRST) || (cluster > partition->fat.lastCluster /* This will catch CLUSTER_ERROR */))
if ( ( cluster < CLUSTER_FIRST ) || ( cluster > partition->fat.lastCluster /* This will catch CLUSTER_ERROR */ ) )
{
return false;
}
switch (partition->filesysType)
switch ( partition->filesysType )
{
case FS_UNKNOWN:
return false;
break;
case FS_FAT12:
sector = partition->fat.fatStart + (((cluster * 3) / 2) / BYTES_PER_READ);
offset = ((cluster * 3) / 2) % BYTES_PER_READ;
sector = partition->fat.fatStart + ( ( ( cluster * 3 ) / 2 ) / BYTES_PER_READ );
offset = ( ( cluster * 3 ) / 2 ) % BYTES_PER_READ;
if (cluster & 0x01) {
if ( cluster & 0x01 )
{
_FAT_cache_readLittleEndianValue (partition->cache, &oldValue, sector, offset, sizeof(u8));
_FAT_cache_readLittleEndianValue ( partition->cache, &oldValue, sector, offset, sizeof( u8 ) );
value = (value << 4) | (oldValue & 0x0F);
value = ( value << 4 ) | ( oldValue & 0x0F );
_FAT_cache_writeLittleEndianValue (partition->cache, value & 0xFF, sector, offset, sizeof(u8));
_FAT_cache_writeLittleEndianValue ( partition->cache, value & 0xFF, sector, offset, sizeof( u8 ) );
offset++;
if (offset >= BYTES_PER_READ) {
if ( offset >= BYTES_PER_READ )
{
offset = 0;
sector++;
}
_FAT_cache_writeLittleEndianValue (partition->cache, (value >> 8) & 0xFF, sector, offset, sizeof(u8));
_FAT_cache_writeLittleEndianValue ( partition->cache, ( value >> 8 ) & 0xFF, sector, offset, sizeof( u8 ) );
} else {
}
else
{
_FAT_cache_writeLittleEndianValue (partition->cache, value, sector, offset, sizeof(u8));
_FAT_cache_writeLittleEndianValue ( partition->cache, value, sector, offset, sizeof( u8 ) );
offset++;
if (offset >= BYTES_PER_READ) {
if ( offset >= BYTES_PER_READ )
{
offset = 0;
sector++;
}
_FAT_cache_readLittleEndianValue (partition->cache, &oldValue, sector, offset, sizeof(u8));
_FAT_cache_readLittleEndianValue ( partition->cache, &oldValue, sector, offset, sizeof( u8 ) );
value = ((value >> 8) & 0x0F) | (oldValue & 0xF0);
value = ( ( value >> 8 ) & 0x0F ) | ( oldValue & 0xF0 );
_FAT_cache_writeLittleEndianValue (partition->cache, value, sector, offset, sizeof(u8));
_FAT_cache_writeLittleEndianValue ( partition->cache, value, sector, offset, sizeof( u8 ) );
}
break;
case FS_FAT16:
sector = partition->fat.fatStart + ((cluster << 1) / BYTES_PER_READ);
offset = (cluster % (BYTES_PER_READ >> 1)) << 1;
sector = partition->fat.fatStart + ( ( cluster << 1 ) / BYTES_PER_READ );
offset = ( cluster % ( BYTES_PER_READ >> 1 ) ) << 1;
_FAT_cache_writeLittleEndianValue (partition->cache, value, sector, offset, sizeof(u16));
_FAT_cache_writeLittleEndianValue ( partition->cache, value, sector, offset, sizeof( u16 ) );
break;
case FS_FAT32:
sector = partition->fat.fatStart + ((cluster << 2) / BYTES_PER_READ);
offset = (cluster % (BYTES_PER_READ >> 2)) << 2;
sector = partition->fat.fatStart + ( ( cluster << 2 ) / BYTES_PER_READ );
offset = ( cluster % ( BYTES_PER_READ >> 2 ) ) << 2;
_FAT_cache_writeLittleEndianValue (partition->cache, value, sector, offset, sizeof(u32));
_FAT_cache_writeLittleEndianValue ( partition->cache, value, sector, offset, sizeof( u32 ) );
break;
@ -203,7 +216,8 @@ to end of file, links the input cluster to it then returns the
cluster number
If an error occurs, return CLUSTER_ERROR
-----------------------------------------------------------------*/
uint32_t _FAT_fat_linkFreeCluster(PARTITION* partition, uint32_t cluster) {
uint32_t _FAT_fat_linkFreeCluster( PARTITION* partition, uint32_t cluster )
{
uint32_t firstFree;
uint32_t curLink;
uint32_t lastCluster;
@ -211,32 +225,40 @@ uint32_t _FAT_fat_linkFreeCluster(PARTITION* partition, uint32_t cluster) {
lastCluster = partition->fat.lastCluster;
if (cluster > lastCluster) {
if ( cluster > lastCluster )
{
return CLUSTER_ERROR;
}
// Check if the cluster already has a link, and return it if so
curLink = _FAT_fat_nextCluster(partition, cluster);
if ((curLink >= CLUSTER_FIRST) && (curLink <= lastCluster)) {
curLink = _FAT_fat_nextCluster( partition, cluster );
if ( ( curLink >= CLUSTER_FIRST ) && ( curLink <= lastCluster ) )
{
return curLink; // Return the current link - don't allocate a new one
}
// Get a free cluster
firstFree = partition->fat.firstFree;
// Start at first valid cluster
if (firstFree < CLUSTER_FIRST) {
if ( firstFree < CLUSTER_FIRST )
{
firstFree = CLUSTER_FIRST;
}
// Search until a free cluster is found
while (_FAT_fat_nextCluster(partition, firstFree) != CLUSTER_FREE) {
while ( _FAT_fat_nextCluster( partition, firstFree ) != CLUSTER_FREE )
{
firstFree++;
if (firstFree > lastCluster) {
if (loopedAroundFAT) {
if ( firstFree > lastCluster )
{
if ( loopedAroundFAT )
{
// If couldn't get a free cluster then return an error
partition->fat.firstFree = firstFree;
return CLUSTER_ERROR;
} else {
}
else
{
// Try looping back to the beginning of the FAT
// This was suggested by loopy
firstFree = CLUSTER_FIRST;
@ -246,13 +268,13 @@ uint32_t _FAT_fat_linkFreeCluster(PARTITION* partition, uint32_t cluster) {
}
partition->fat.firstFree = firstFree;
if ((cluster >= CLUSTER_FIRST) && (cluster < lastCluster))
if ( ( cluster >= CLUSTER_FIRST ) && ( cluster < lastCluster ) )
{
// Update the linked from FAT entry
_FAT_fat_writeFatEntry (partition, cluster, firstFree);
_FAT_fat_writeFatEntry ( partition, cluster, firstFree );
}
// Create the linked to FAT entry
_FAT_fat_writeFatEntry (partition, firstFree, CLUSTER_EOF);
_FAT_fat_writeFatEntry ( partition, firstFree, CLUSTER_EOF );
return firstFree;
}
@ -263,24 +285,27 @@ to end of file, links the input cluster to it, clears the new
cluster to 0 valued bytes, then returns the cluster number
If an error occurs, return CLUSTER_ERROR
-----------------------------------------------------------------*/
uint32_t _FAT_fat_linkFreeClusterCleared (PARTITION* partition, uint32_t cluster) {
uint32_t _FAT_fat_linkFreeClusterCleared ( PARTITION* partition, uint32_t cluster )
{
uint32_t newCluster;
uint32_t i;
uint8_t emptySector[BYTES_PER_READ];
// Link the cluster
newCluster = _FAT_fat_linkFreeCluster(partition, cluster);
newCluster = _FAT_fat_linkFreeCluster( partition, cluster );
if (newCluster == CLUSTER_FREE || newCluster == CLUSTER_ERROR) {
if ( newCluster == CLUSTER_FREE || newCluster == CLUSTER_ERROR )
{
return CLUSTER_ERROR;
}
// Clear all the sectors within the cluster
memset (emptySector, 0, BYTES_PER_READ);
for (i = 0; i < partition->sectorsPerCluster; i++) {
_FAT_cache_writeSectors (partition->cache,
_FAT_fat_clusterToSector (partition, newCluster) + i,
1, emptySector);
memset ( emptySector, 0, BYTES_PER_READ );
for ( i = 0; i < partition->sectorsPerCluster; i++ )
{
_FAT_cache_writeSectors ( partition->cache,
_FAT_fat_clusterToSector ( partition, newCluster ) + i,
1, emptySector );
}
return newCluster;
@ -291,23 +316,26 @@ uint32_t _FAT_fat_linkFreeClusterCleared (PARTITION* partition, uint32_t cluster
_FAT_fat_clearLinks
frees any cluster used by a file
-----------------------------------------------------------------*/
bool _FAT_fat_clearLinks (PARTITION* partition, uint32_t cluster) {
bool _FAT_fat_clearLinks ( PARTITION* partition, uint32_t cluster )
{
uint32_t nextCluster;
if ((cluster < CLUSTER_FIRST) || (cluster > partition->fat.lastCluster /* This will catch CLUSTER_ERROR */))
if ( ( cluster < CLUSTER_FIRST ) || ( cluster > partition->fat.lastCluster /* This will catch CLUSTER_ERROR */ ) )
return false;
// If this clears up more space in the FAT before the current free pointer, move it backwards
if (cluster < partition->fat.firstFree) {
if ( cluster < partition->fat.firstFree )
{
partition->fat.firstFree = cluster;
}
while ((cluster != CLUSTER_EOF) && (cluster != CLUSTER_FREE) && (cluster != CLUSTER_ERROR)) {
while ( ( cluster != CLUSTER_EOF ) && ( cluster != CLUSTER_FREE ) && ( cluster != CLUSTER_ERROR ) )
{
// Store next cluster before erasing the link
nextCluster = _FAT_fat_nextCluster (partition, cluster);
nextCluster = _FAT_fat_nextCluster ( partition, cluster );
// Erase the link
_FAT_fat_writeFatEntry (partition, cluster, CLUSTER_FREE);
_FAT_fat_writeFatEntry ( partition, cluster, CLUSTER_FREE );
// Move onto next cluster
cluster = nextCluster;
@ -324,30 +352,36 @@ If chainLength is 1, the first cluster is kept and the rest are
dropped, and so on.
Return the last cluster left in the chain.
-----------------------------------------------------------------*/
uint32_t _FAT_fat_trimChain (PARTITION* partition, uint32_t startCluster, unsigned int chainLength) {
uint32_t _FAT_fat_trimChain ( PARTITION* partition, uint32_t startCluster, unsigned int chainLength )
{
uint32_t nextCluster;
if (chainLength == 0) {
if ( chainLength == 0 )
{
// Drop the entire chain
_FAT_fat_clearLinks (partition, startCluster);
_FAT_fat_clearLinks ( partition, startCluster );
return CLUSTER_FREE;
} else {
}
else
{
// Find the last cluster in the chain, and the one after it
chainLength--;
nextCluster = _FAT_fat_nextCluster (partition, startCluster);
while ((chainLength > 0) && (nextCluster != CLUSTER_FREE) && (nextCluster != CLUSTER_EOF)) {
nextCluster = _FAT_fat_nextCluster ( partition, startCluster );
while ( ( chainLength > 0 ) && ( nextCluster != CLUSTER_FREE ) && ( nextCluster != CLUSTER_EOF ) )
{
chainLength--;
startCluster = nextCluster;
nextCluster = _FAT_fat_nextCluster (partition, startCluster);
nextCluster = _FAT_fat_nextCluster ( partition, startCluster );
}
// Drop all clusters after the last in the chain
if (nextCluster != CLUSTER_FREE && nextCluster != CLUSTER_EOF) {
_FAT_fat_clearLinks (partition, nextCluster);
if ( nextCluster != CLUSTER_FREE && nextCluster != CLUSTER_EOF )
{
_FAT_fat_clearLinks ( partition, nextCluster );
}
// Mark the last cluster in the chain as the end of the file
_FAT_fat_writeFatEntry (partition, startCluster, CLUSTER_EOF);
_FAT_fat_writeFatEntry ( partition, startCluster, CLUSTER_EOF );
return startCluster;
}
@ -357,9 +391,11 @@ uint32_t _FAT_fat_trimChain (PARTITION* partition, uint32_t startCluster, unsign
_FAT_fat_lastCluster
Trace the cluster links until the last one is found
-----------------------------------------------------------------*/
uint32_t _FAT_fat_lastCluster (PARTITION* partition, uint32_t cluster) {
while ((_FAT_fat_nextCluster(partition, cluster) != CLUSTER_FREE) && (_FAT_fat_nextCluster(partition, cluster) != CLUSTER_EOF)) {
cluster = _FAT_fat_nextCluster(partition, cluster);
uint32_t _FAT_fat_lastCluster ( PARTITION* partition, uint32_t cluster )
{
while ( ( _FAT_fat_nextCluster( partition, cluster ) != CLUSTER_FREE ) && ( _FAT_fat_nextCluster( partition, cluster ) != CLUSTER_EOF ) )
{
cluster = _FAT_fat_nextCluster( partition, cluster );
}
return cluster;
}
@ -368,12 +404,15 @@ uint32_t _FAT_fat_lastCluster (PARTITION* partition, uint32_t cluster) {
_FAT_fat_freeClusterCount
Return the number of free clusters available
-----------------------------------------------------------------*/
unsigned int _FAT_fat_freeClusterCount (PARTITION* partition) {
unsigned int _FAT_fat_freeClusterCount ( PARTITION* partition )
{
unsigned int count = 0;
uint32_t curCluster;
for (curCluster = CLUSTER_FIRST; curCluster <= partition->fat.lastCluster; curCluster++) {
if (_FAT_fat_nextCluster(partition, curCluster) == CLUSTER_FREE) {
for ( curCluster = CLUSTER_FIRST; curCluster <= partition->fat.lastCluster; curCluster++ )
{
if ( _FAT_fat_nextCluster( partition, curCluster ) == CLUSTER_FREE )
{
count++;
}
}

View File

@ -44,27 +44,29 @@
#define CLUSTERS_PER_FAT16 65525
uint32_t _FAT_fat_nextCluster(PARTITION* partition, uint32_t cluster);
uint32_t _FAT_fat_nextCluster( PARTITION* partition, uint32_t cluster );
uint32_t _FAT_fat_linkFreeCluster(PARTITION* partition, uint32_t cluster);
uint32_t _FAT_fat_linkFreeClusterCleared (PARTITION* partition, uint32_t cluster);
uint32_t _FAT_fat_linkFreeCluster( PARTITION* partition, uint32_t cluster );
uint32_t _FAT_fat_linkFreeClusterCleared ( PARTITION* partition, uint32_t cluster );
bool _FAT_fat_clearLinks (PARTITION* partition, uint32_t cluster);
bool _FAT_fat_clearLinks ( PARTITION* partition, uint32_t cluster );
uint32_t _FAT_fat_trimChain (PARTITION* partition, uint32_t startCluster, unsigned int chainLength);
uint32_t _FAT_fat_trimChain ( PARTITION* partition, uint32_t startCluster, unsigned int chainLength );
uint32_t _FAT_fat_lastCluster (PARTITION* partition, uint32_t cluster);
uint32_t _FAT_fat_lastCluster ( PARTITION* partition, uint32_t cluster );
unsigned int _FAT_fat_freeClusterCount (PARTITION* partition);
unsigned int _FAT_fat_freeClusterCount ( PARTITION* partition );
static inline sec_t _FAT_fat_clusterToSector (PARTITION* partition, uint32_t cluster) {
return (cluster >= CLUSTER_FIRST) ?
((cluster - CLUSTER_FIRST) * (sec_t)partition->sectorsPerCluster) + partition->dataStart :
static inline sec_t _FAT_fat_clusterToSector ( PARTITION* partition, uint32_t cluster )
{
return ( cluster >= CLUSTER_FIRST ) ?
( ( cluster - CLUSTER_FIRST ) * ( sec_t )partition->sectorsPerCluster ) + partition->dataStart :
partition->rootDirStart;
}
static inline bool _FAT_fat_isValidCluster (PARTITION* partition, uint32_t cluster) {
return (cluster >= CLUSTER_FIRST) && (cluster <= partition->fat.lastCluster /* This will catch CLUSTER_ERROR */);
static inline bool _FAT_fat_isValidCluster ( PARTITION* partition, uint32_t cluster )
{
return ( cluster >= CLUSTER_FIRST ) && ( cluster <= partition->fat.lastCluster /* This will catch CLUSTER_ERROR */ );
}
#endif // _FAT_H

View File

@ -40,26 +40,28 @@
#define MAX_DAY 31
#define MIN_DAY 1
uint16_t _FAT_filetime_getTimeFromRTC (void) {
uint16_t _FAT_filetime_getTimeFromRTC ( void )
{
#ifdef USE_RTC_TIME
struct tm timeParts;
time_t epochTime;
if (time(&epochTime) == (time_t)-1) {
if ( time( &epochTime ) == ( time_t ) - 1 )
{
return 0;
}
localtime_r(&epochTime, &timeParts);
localtime_r( &epochTime, &timeParts );
// Check that the values are all in range.
// If they are not, return 0 (no timestamp)
if ((timeParts.tm_hour < 0) || (timeParts.tm_hour > MAX_HOUR)) return 0;
if ((timeParts.tm_min < 0) || (timeParts.tm_min > MAX_MINUTE)) return 0;
if ((timeParts.tm_sec < 0) || (timeParts.tm_sec > MAX_SECOND)) return 0;
if ( ( timeParts.tm_hour < 0 ) || ( timeParts.tm_hour > MAX_HOUR ) ) return 0;
if ( ( timeParts.tm_min < 0 ) || ( timeParts.tm_min > MAX_MINUTE ) ) return 0;
if ( ( timeParts.tm_sec < 0 ) || ( timeParts.tm_sec > MAX_SECOND ) ) return 0;
return (
((timeParts.tm_hour & 0x1F) << 11) |
((timeParts.tm_min & 0x3F) << 5) |
((timeParts.tm_sec >> 1) & 0x1F)
( ( timeParts.tm_hour & 0x1F ) << 11 ) |
( ( timeParts.tm_min & 0x3F ) << 5 ) |
( ( timeParts.tm_sec >> 1 ) & 0x1F )
);
#else
return 0;
@ -67,41 +69,44 @@ uint16_t _FAT_filetime_getTimeFromRTC (void) {
}
uint16_t _FAT_filetime_getDateFromRTC (void) {
uint16_t _FAT_filetime_getDateFromRTC ( void )
{
#ifdef USE_RTC_TIME
struct tm timeParts;
time_t epochTime;
if (time(&epochTime) == (time_t)-1) {
if ( time( &epochTime ) == ( time_t ) - 1 )
{
return 0;
}
localtime_r(&epochTime, &timeParts);
localtime_r( &epochTime, &timeParts );
if ((timeParts.tm_mon < MIN_MONTH) || (timeParts.tm_mon > MAX_MONTH)) return 0;
if ((timeParts.tm_mday < MIN_DAY) || (timeParts.tm_mday > MAX_DAY)) return 0;
if ( ( timeParts.tm_mon < MIN_MONTH ) || ( timeParts.tm_mon > MAX_MONTH ) ) return 0;
if ( ( timeParts.tm_mday < MIN_DAY ) || ( timeParts.tm_mday > MAX_DAY ) ) return 0;
return (
(((timeParts.tm_year - 80) & 0x7F) <<9) | // Adjust for MS-FAT base year (1980 vs 1900 for tm_year)
(((timeParts.tm_mon + 1) & 0xF) << 5) |
(timeParts.tm_mday & 0x1F)
( ( ( timeParts.tm_year - 80 ) & 0x7F ) << 9 ) | // Adjust for MS-FAT base year (1980 vs 1900 for tm_year)
( ( ( timeParts.tm_mon + 1 ) & 0xF ) << 5 ) |
( timeParts.tm_mday & 0x1F )
);
#else
return 0;
#endif
}
time_t _FAT_filetime_to_time_t (uint16_t t, uint16_t d) {
time_t _FAT_filetime_to_time_t ( uint16_t t, uint16_t d )
{
struct tm timeParts;
timeParts.tm_hour = t >> 11;
timeParts.tm_min = (t >> 5) & 0x3F;
timeParts.tm_sec = (t & 0x1F) << 1;
timeParts.tm_min = ( t >> 5 ) & 0x3F;
timeParts.tm_sec = ( t & 0x1F ) << 1;
timeParts.tm_mday = d & 0x1F;
timeParts.tm_mon = ((d >> 5) & 0x0F) - 1;
timeParts.tm_year = (d >> 9) + 80;
timeParts.tm_mon = ( ( d >> 5 ) & 0x0F ) - 1;
timeParts.tm_year = ( d >> 9 ) + 80;
timeParts.tm_isdst = 0;
return mktime(&timeParts);
return mktime( &timeParts );
}

View File

@ -32,10 +32,10 @@
#include "common.h"
#include <sys/types.h>
uint16_t _FAT_filetime_getTimeFromRTC (void);
uint16_t _FAT_filetime_getDateFromRTC (void);
uint16_t _FAT_filetime_getTimeFromRTC ( void );
uint16_t _FAT_filetime_getDateFromRTC ( void );
time_t _FAT_filetime_to_time_t (uint16_t t, uint16_t d);
time_t _FAT_filetime_to_time_t ( uint16_t t, uint16_t d );
#endif // _FILETIME_H

View File

@ -38,9 +38,10 @@
#include "mem_allocate.h"
#include "disc_fat.h"
static const devoptab_t dotab_fat = {
static const devoptab_t dotab_fat =
{
"fat",
sizeof (FILE_STRUCT),
sizeof ( FILE_STRUCT ),
_FAT_open_r,
_FAT_close_r,
_FAT_write_r,
@ -53,7 +54,7 @@ static const devoptab_t dotab_fat = {
_FAT_chdir_r,
_FAT_rename_r,
_FAT_mkdir_r,
sizeof (DIR_STATE_STRUCT),
sizeof ( DIR_STATE_STRUCT ),
_FAT_diropen_r,
_FAT_dirreset_r,
_FAT_dirnext_r,
@ -64,134 +65,151 @@ static const devoptab_t dotab_fat = {
NULL /* Device data */
};
bool fatMount (const char* name, const DISC_INTERFACE* interface, sec_t startSector, uint32_t cacheSize, uint32_t SectorsPerPage) {
bool fatMount ( const char* name, const DISC_INTERFACE* interface, sec_t startSector, uint32_t cacheSize, uint32_t SectorsPerPage )
{
PARTITION* partition;
devoptab_t* devops;
char* nameCopy;
if(!interface->startup())
if ( !interface->startup() )
return false;
if(!interface->isInserted()) {
if ( !interface->isInserted() )
{
interface->shutdown();
return false;
}
devops = _FAT_mem_allocate (sizeof(devoptab_t) + strlen(name) + 1);
if (!devops) {
devops = _FAT_mem_allocate ( sizeof( devoptab_t ) + strlen( name ) + 1 );
if ( !devops )
{
interface->shutdown();
return false;
}
// Use the space allocated at the end of the devoptab struct for storing the name
nameCopy = (char*)(devops+1);
nameCopy = ( char* )( devops + 1 );
// Initialize the file system
partition = _FAT_partition_constructor (interface, cacheSize, SectorsPerPage, startSector);
if (!partition) {
_FAT_mem_free (devops);
partition = _FAT_partition_constructor ( interface, cacheSize, SectorsPerPage, startSector );
if ( !partition )
{
_FAT_mem_free ( devops );
interface->shutdown();
return false;
}
// Add an entry for this device to the devoptab table
memcpy (devops, &dotab_fat, sizeof(dotab_fat));
strcpy (nameCopy, name);
memcpy ( devops, &dotab_fat, sizeof( dotab_fat ) );
strcpy ( nameCopy, name );
devops->name = nameCopy;
devops->deviceData = partition;
AddDevice (devops);
AddDevice ( devops );
return true;
}
bool fatMountSimple (const char* name, const DISC_INTERFACE* interface) {
return fatMount (name, interface, 0, DEFAULT_CACHE_PAGES, DEFAULT_SECTORS_PAGE);
bool fatMountSimple ( const char* name, const DISC_INTERFACE* interface )
{
return fatMount ( name, interface, 0, DEFAULT_CACHE_PAGES, DEFAULT_SECTORS_PAGE );
}
void fatUnmount (const char* name) {
void fatUnmount ( const char* name )
{
devoptab_t *devops;
PARTITION* partition;
const DISC_INTERFACE *disc;
devops = (devoptab_t*)GetDeviceOpTab (name);
if (!devops) {
devops = ( devoptab_t* )GetDeviceOpTab ( name );
if ( !devops )
{
return;
}
// Perform a quick check to make sure we're dealing with a libfat controlled device
if (devops->open_r != dotab_fat.open_r) {
if ( devops->open_r != dotab_fat.open_r )
{
return;
}
if (RemoveDevice (name) == -1) {
if ( RemoveDevice ( name ) == -1 )
{
return;
}
partition = (PARTITION*)devops->deviceData;
partition = ( PARTITION* )devops->deviceData;
disc = partition->disc;
_FAT_partition_destructor (partition);
_FAT_mem_free (devops);
_FAT_partition_destructor ( partition );
_FAT_mem_free ( devops );
disc->shutdown();
}
bool fatInit (uint32_t cacheSize, bool setAsDefaultDevice) {
bool fatInit ( uint32_t cacheSize, bool setAsDefaultDevice )
{
int i;
int defaultDevice = -1;
const DISC_INTERFACE *disc;
for (i = 0;
for ( i = 0;
_FAT_disc_interfaces[i].name != NULL && _FAT_disc_interfaces[i].getInterface != NULL;
i++)
i++ )
{
disc = _FAT_disc_interfaces[i].getInterface();
if (fatMount (_FAT_disc_interfaces[i].name, disc, 0, cacheSize, DEFAULT_SECTORS_PAGE)) {
if ( fatMount ( _FAT_disc_interfaces[i].name, disc, 0, cacheSize, DEFAULT_SECTORS_PAGE ) )
{
// The first device to successfully mount is set as the default
if (defaultDevice < 0) {
if ( defaultDevice < 0 )
{
defaultDevice = i;
}
}
}
if (defaultDevice < 0) {
if ( defaultDevice < 0 )
{
// None of our devices mounted
return false;
}
if (setAsDefaultDevice) {
if ( setAsDefaultDevice )
{
char filePath[MAXPATHLEN * 2];
strcpy (filePath, _FAT_disc_interfaces[defaultDevice].name);
strcat (filePath, ":/");
strcpy ( filePath, _FAT_disc_interfaces[defaultDevice].name );
strcat ( filePath, ":/" );
#ifdef ARGV_MAGIC
if ( __system_argv->argvMagic == ARGV_MAGIC && __system_argv->argc >= 1 && strrchr( __system_argv->argv[0], '/' )!=NULL ) {
if ( __system_argv->argvMagic == ARGV_MAGIC && __system_argv->argc >= 1 && strrchr( __system_argv->argv[0], '/' ) != NULL )
{
// Check the app's path against each of our mounted devices, to see
// if we can support it. If so, change to that path.
for (i = 0;
for ( i = 0;
_FAT_disc_interfaces[i].name != NULL && _FAT_disc_interfaces[i].getInterface != NULL;
i++)
i++ )
{
if ( !strncasecmp( __system_argv->argv[0], _FAT_disc_interfaces[i].name,
strlen(_FAT_disc_interfaces[i].name)))
strlen( _FAT_disc_interfaces[i].name ) ) )
{
char *lastSlash;
strcpy(filePath, __system_argv->argv[0]);
strcpy( filePath, __system_argv->argv[0] );
lastSlash = strrchr( filePath, '/' );
if ( NULL != lastSlash) {
if ( *(lastSlash - 1) == ':') lastSlash++;
if ( NULL != lastSlash )
{
if ( *( lastSlash - 1 ) == ':' ) lastSlash++;
*lastSlash = 0;
}
}
}
}
#endif
chdir (filePath);
chdir ( filePath );
}
return true;
}
bool fatInitDefault (void) {
return fatInit (DEFAULT_CACHE_PAGES, true);
bool fatInitDefault ( void )
{
return fatInit ( DEFAULT_CACHE_PAGES, true );
}

View File

@ -33,24 +33,24 @@
#ifdef USE_LWP_LOCK
static inline void _FAT_lock_init(mutex_t *mutex)
static inline void _FAT_lock_init( mutex_t *mutex )
{
LWP_MutexInit(mutex, false);
LWP_MutexInit( mutex, false );
}
static inline void _FAT_lock_deinit(mutex_t *mutex)
static inline void _FAT_lock_deinit( mutex_t *mutex )
{
LWP_MutexDestroy(*mutex);
LWP_MutexDestroy( *mutex );
}
static inline void _FAT_lock(mutex_t *mutex)
static inline void _FAT_lock( mutex_t *mutex )
{
LWP_MutexLock(*mutex);
LWP_MutexLock( *mutex );
}
static inline void _FAT_unlock(mutex_t *mutex)
static inline void _FAT_unlock( mutex_t *mutex )
{
LWP_MutexUnlock(*mutex);
LWP_MutexUnlock( *mutex );
}
#else
@ -60,22 +60,22 @@ static inline void _FAT_unlock(mutex_t *mutex)
typedef int mutex_t;
#endif
static inline void _FAT_lock_init(mutex_t *mutex)
static inline void _FAT_lock_init( mutex_t *mutex )
{
return;
}
static inline void _FAT_lock_deinit(mutex_t *mutex)
static inline void _FAT_lock_deinit( mutex_t *mutex )
{
return;
}
static inline void _FAT_lock(mutex_t *mutex)
static inline void _FAT_lock( mutex_t *mutex )
{
return;
}
static inline void _FAT_unlock(mutex_t *mutex)
static inline void _FAT_unlock( mutex_t *mutex )
{
return;
}

View File

@ -33,17 +33,20 @@
#include <malloc.h>
static inline void* _FAT_mem_allocate (size_t size) {
return malloc (size);
static inline void* _FAT_mem_allocate ( size_t size )
{
return malloc ( size );
}
static inline void* _FAT_mem_align (size_t size) {
static inline void* _FAT_mem_align ( size_t size )
{
return memalign (32, size);
return memalign ( 32, size );
}
static inline void _FAT_mem_free (void* mem) {
free (mem);
static inline void _FAT_mem_free ( void* mem )
{
free ( mem );
}
#endif // _MEM_ALLOCATE_H

View File

@ -50,7 +50,8 @@ Data offsets
*/
// BIOS Parameter Block offsets
enum BPB {
enum BPB
{
BPB_jmpBoot = 0x00,
BPB_OEMName = 0x03,
// BIOS Parameter Block
@ -98,7 +99,7 @@ enum BPB {
static const char FAT_SIG[3] = {'F', 'A', 'T'};
sec_t FindFirstValidPartition(const DISC_INTERFACE* disc)
sec_t FindFirstValidPartition( const DISC_INTERFACE* disc )
{
uint8_t part_table[16*4];
uint8_t *ptr;
@ -107,49 +108,56 @@ sec_t FindFirstValidPartition(const DISC_INTERFACE* disc)
uint8_t sectorBuffer[BYTES_PER_READ] = {0};
// Read first sector of disc
if (!_FAT_disc_readSectors (disc, 0, 1, sectorBuffer)) {
if ( !_FAT_disc_readSectors ( disc, 0, 1, sectorBuffer ) )
{
return 0;
}
memcpy(part_table,sectorBuffer+0x1BE,16*4);
memcpy( part_table, sectorBuffer + 0x1BE, 16*4 );
ptr = part_table;
for(i=0;i<4;i++,ptr+=16) {
sec_t part_lba = u8array_to_u32(ptr, 0x8);
for ( i = 0; i < 4; i++, ptr += 16 )
{
sec_t part_lba = u8array_to_u32( ptr, 0x8 );
if (!memcmp(sectorBuffer + BPB_FAT16_fileSysType, FAT_SIG, sizeof(FAT_SIG)) ||
!memcmp(sectorBuffer + BPB_FAT32_fileSysType, FAT_SIG, sizeof(FAT_SIG))) {
if ( !memcmp( sectorBuffer + BPB_FAT16_fileSysType, FAT_SIG, sizeof( FAT_SIG ) ) ||
!memcmp( sectorBuffer + BPB_FAT32_fileSysType, FAT_SIG, sizeof( FAT_SIG ) ) )
{
return part_lba;
}
if(ptr[4]==0) continue;
if ( ptr[4] == 0 ) continue;
if(ptr[4]==0x0F) {
sec_t part_lba2=part_lba;
sec_t next_lba2=0;
if ( ptr[4] == 0x0F )
{
sec_t part_lba2 = part_lba;
sec_t next_lba2 = 0;
int n;
for(n=0;n<8;n++) // max 8 logic partitions
for ( n = 0; n < 8; n++ ) // max 8 logic partitions
{
if(!_FAT_disc_readSectors (disc, part_lba+next_lba2, 1, sectorBuffer)) return 0;
if ( !_FAT_disc_readSectors ( disc, part_lba + next_lba2, 1, sectorBuffer ) ) return 0;
part_lba2 = part_lba + next_lba2 + u8array_to_u32(sectorBuffer, 0x1C6) ;
next_lba2 = u8array_to_u32(sectorBuffer, 0x1D6);
part_lba2 = part_lba + next_lba2 + u8array_to_u32( sectorBuffer, 0x1C6 ) ;
next_lba2 = u8array_to_u32( sectorBuffer, 0x1D6 );
if(!_FAT_disc_readSectors (disc, part_lba2, 1, sectorBuffer)) return 0;
if ( !_FAT_disc_readSectors ( disc, part_lba2, 1, sectorBuffer ) ) return 0;
if (!memcmp(sectorBuffer + BPB_FAT16_fileSysType, FAT_SIG, sizeof(FAT_SIG)) ||
!memcmp(sectorBuffer + BPB_FAT32_fileSysType, FAT_SIG, sizeof(FAT_SIG)))
if ( !memcmp( sectorBuffer + BPB_FAT16_fileSysType, FAT_SIG, sizeof( FAT_SIG ) ) ||
!memcmp( sectorBuffer + BPB_FAT32_fileSysType, FAT_SIG, sizeof( FAT_SIG ) ) )
{
return part_lba2;
}
if(next_lba2==0) break;
if ( next_lba2 == 0 ) break;
}
} else {
if(!_FAT_disc_readSectors (disc, part_lba, 1, sectorBuffer)) return 0;
if (!memcmp(sectorBuffer + BPB_FAT16_fileSysType, FAT_SIG, sizeof(FAT_SIG)) ||
!memcmp(sectorBuffer + BPB_FAT32_fileSysType, FAT_SIG, sizeof(FAT_SIG))) {
}
else
{
if ( !_FAT_disc_readSectors ( disc, part_lba, 1, sectorBuffer ) ) return 0;
if ( !memcmp( sectorBuffer + BPB_FAT16_fileSysType, FAT_SIG, sizeof( FAT_SIG ) ) ||
!memcmp( sectorBuffer + BPB_FAT32_fileSysType, FAT_SIG, sizeof( FAT_SIG ) ) )
{
return part_lba;
}
}
@ -157,117 +165,140 @@ sec_t FindFirstValidPartition(const DISC_INTERFACE* disc)
return 0;
}
PARTITION* _FAT_partition_constructor (const DISC_INTERFACE* disc, uint32_t cacheSize, uint32_t sectorsPerPage, sec_t startSector) {
PARTITION* _FAT_partition_constructor ( const DISC_INTERFACE* disc, uint32_t cacheSize, uint32_t sectorsPerPage, sec_t startSector )
{
PARTITION* partition;
uint8_t sectorBuffer[BYTES_PER_READ] = {0};
// Read first sector of disc
if (!_FAT_disc_readSectors (disc, startSector, 1, sectorBuffer)) {
if ( !_FAT_disc_readSectors ( disc, startSector, 1, sectorBuffer ) )
{
return NULL;
}
// Make sure it is a valid MBR or boot sector
if ( (sectorBuffer[BPB_bootSig_55] != 0x55) || (sectorBuffer[BPB_bootSig_AA] != 0xAA)) {
if ( ( sectorBuffer[BPB_bootSig_55] != 0x55 ) || ( sectorBuffer[BPB_bootSig_AA] != 0xAA ) )
{
return NULL;
}
if (startSector != 0) {
if ( startSector != 0 )
{
// We're told where to start the partition, so just accept it
} else if (!memcmp(sectorBuffer + BPB_FAT16_fileSysType, FAT_SIG, sizeof(FAT_SIG))) {
}
else if ( !memcmp( sectorBuffer + BPB_FAT16_fileSysType, FAT_SIG, sizeof( FAT_SIG ) ) )
{
// Check if there is a FAT string, which indicates this is a boot sector
startSector = 0;
} else if (!memcmp(sectorBuffer + BPB_FAT32_fileSysType, FAT_SIG, sizeof(FAT_SIG))) {
}
else if ( !memcmp( sectorBuffer + BPB_FAT32_fileSysType, FAT_SIG, sizeof( FAT_SIG ) ) )
{
// Check for FAT32
startSector = 0;
} else {
startSector = FindFirstValidPartition(disc);
if (!_FAT_disc_readSectors (disc, startSector, 1, sectorBuffer)) {
}
else
{
startSector = FindFirstValidPartition( disc );
if ( !_FAT_disc_readSectors ( disc, startSector, 1, sectorBuffer ) )
{
return NULL;
}
}
// Now verify that this is indeed a FAT partition
if (memcmp(sectorBuffer + BPB_FAT16_fileSysType, FAT_SIG, sizeof(FAT_SIG)) &&
memcmp(sectorBuffer + BPB_FAT32_fileSysType, FAT_SIG, sizeof(FAT_SIG)))
if ( memcmp( sectorBuffer + BPB_FAT16_fileSysType, FAT_SIG, sizeof( FAT_SIG ) ) &&
memcmp( sectorBuffer + BPB_FAT32_fileSysType, FAT_SIG, sizeof( FAT_SIG ) ) )
{
return NULL;
}
// check again for the last two cases to make sure that we really have a FAT filesystem here
// and won't corrupt any data
if(memcmp(sectorBuffer + BPB_FAT16_fileSysType, "FAT", 3) != 0 && memcmp(sectorBuffer + BPB_FAT32_fileSysType, "FAT32", 5) != 0)
if ( memcmp( sectorBuffer + BPB_FAT16_fileSysType, "FAT", 3 ) != 0 && memcmp( sectorBuffer + BPB_FAT32_fileSysType, "FAT32", 5 ) != 0 )
{
return NULL;
}
partition = (PARTITION*) _FAT_mem_allocate (sizeof(PARTITION));
if (partition == NULL) {
partition = ( PARTITION* ) _FAT_mem_allocate ( sizeof( PARTITION ) );
if ( partition == NULL )
{
return NULL;
}
_FAT_startSector = startSector;
// Init the partition lock
_FAT_lock_init(&partition->lock);
_FAT_lock_init( &partition->lock );
// Set partition's disc interface
partition->disc = disc;
// Store required information about the file system
partition->fat.sectorsPerFat = u8array_to_u16(sectorBuffer, BPB_sectorsPerFAT);
if (partition->fat.sectorsPerFat == 0) {
partition->fat.sectorsPerFat = u8array_to_u32( sectorBuffer, BPB_FAT32_sectorsPerFAT32);
partition->fat.sectorsPerFat = u8array_to_u16( sectorBuffer, BPB_sectorsPerFAT );
if ( partition->fat.sectorsPerFat == 0 )
{
partition->fat.sectorsPerFat = u8array_to_u32( sectorBuffer, BPB_FAT32_sectorsPerFAT32 );
}
partition->numberOfSectors = u8array_to_u16( sectorBuffer, BPB_numSectorsSmall);
if (partition->numberOfSectors == 0) {
partition->numberOfSectors = u8array_to_u32( sectorBuffer, BPB_numSectors);
partition->numberOfSectors = u8array_to_u16( sectorBuffer, BPB_numSectorsSmall );
if ( partition->numberOfSectors == 0 )
{
partition->numberOfSectors = u8array_to_u32( sectorBuffer, BPB_numSectors );
}
partition->bytesPerSector = BYTES_PER_READ; // Sector size is redefined to be 512 bytes
partition->sectorsPerCluster = sectorBuffer[BPB_sectorsPerCluster] * u8array_to_u16(sectorBuffer, BPB_bytesPerSector) / BYTES_PER_READ;
partition->sectorsPerCluster = sectorBuffer[BPB_sectorsPerCluster] * u8array_to_u16( sectorBuffer, BPB_bytesPerSector ) / BYTES_PER_READ;
partition->bytesPerCluster = partition->bytesPerSector * partition->sectorsPerCluster;
partition->fat.fatStart = startSector + u8array_to_u16(sectorBuffer, BPB_reservedSectors);
partition->fat.fatStart = startSector + u8array_to_u16( sectorBuffer, BPB_reservedSectors );
partition->rootDirStart = partition->fat.fatStart + (sectorBuffer[BPB_numFATs] * partition->fat.sectorsPerFat);
partition->rootDirStart = partition->fat.fatStart + ( sectorBuffer[BPB_numFATs] * partition->fat.sectorsPerFat );
partition->dataStart = partition->rootDirStart +
(( u8array_to_u16(sectorBuffer, BPB_rootEntries) * DIR_ENTRY_DATA_SIZE) / partition->bytesPerSector);
( ( u8array_to_u16( sectorBuffer, BPB_rootEntries ) * DIR_ENTRY_DATA_SIZE ) / partition->bytesPerSector );
partition->totalSize = ((uint64_t)partition->numberOfSectors - (partition->dataStart - startSector)) * (uint64_t)partition->bytesPerSector;
partition->totalSize = ( ( uint64_t )partition->numberOfSectors - ( partition->dataStart - startSector ) ) * ( uint64_t )partition->bytesPerSector;
// Store info about FAT
uint32_t clusterCount = (partition->numberOfSectors - (uint32_t)(partition->dataStart - startSector)) / partition->sectorsPerCluster;
uint32_t clusterCount = ( partition->numberOfSectors - ( uint32_t )( partition->dataStart - startSector ) ) / partition->sectorsPerCluster;
partition->fat.lastCluster = clusterCount + CLUSTER_FIRST - 1;
partition->fat.firstFree = CLUSTER_FIRST;
if (clusterCount < CLUSTERS_PER_FAT12) {
if ( clusterCount < CLUSTERS_PER_FAT12 )
{
partition->filesysType = FS_FAT12; // FAT12 volume
} else if (clusterCount < CLUSTERS_PER_FAT16) {
}
else if ( clusterCount < CLUSTERS_PER_FAT16 )
{
partition->filesysType = FS_FAT16; // FAT16 volume
} else {
}
else
{
partition->filesysType = FS_FAT32; // FAT32 volume
}
if (partition->filesysType != FS_FAT32) {
if ( partition->filesysType != FS_FAT32 )
{
partition->rootDirCluster = FAT16_ROOT_DIR_CLUSTER;
} else {
}
else
{
// Set up for the FAT32 way
partition->rootDirCluster = u8array_to_u32(sectorBuffer, BPB_FAT32_rootClus);
partition->rootDirCluster = u8array_to_u32( sectorBuffer, BPB_FAT32_rootClus );
// Check if FAT mirroring is enabled
if (!(sectorBuffer[BPB_FAT32_extFlags] & 0x80)) {
if ( !( sectorBuffer[BPB_FAT32_extFlags] & 0x80 ) )
{
// Use the active FAT
partition->fat.fatStart = partition->fat.fatStart + ( partition->fat.sectorsPerFat * (sectorBuffer[BPB_FAT32_extFlags] & 0x0F));
partition->fat.fatStart = partition->fat.fatStart + ( partition->fat.sectorsPerFat * ( sectorBuffer[BPB_FAT32_extFlags] & 0x0F ) );
}
}
// Create a cache to use
partition->cache = _FAT_cache_constructor (cacheSize, sectorsPerPage, partition->disc, startSector+partition->numberOfSectors);
partition->cache = _FAT_cache_constructor ( cacheSize, sectorsPerPage, partition->disc, startSector + partition->numberOfSectors );
// Set current directory to the root
partition->cwdCluster = partition->rootDirCluster;
// Check if this disc is writable, and set the readOnly property appropriately
partition->readOnly = !(_FAT_disc_features(disc) & FEATURE_MEDIUM_CANWRITE);
partition->readOnly = !( _FAT_disc_features( disc ) & FEATURE_MEDIUM_CANWRITE );
// There are currently no open files on this partition
partition->openFileCount = 0;
@ -276,37 +307,41 @@ PARTITION* _FAT_partition_constructor (const DISC_INTERFACE* disc, uint32_t cach
return partition;
}
void _FAT_partition_destructor (PARTITION* partition) {
void _FAT_partition_destructor ( PARTITION* partition )
{
FILE_STRUCT* nextFile;
_FAT_lock(&partition->lock);
_FAT_lock( &partition->lock );
// Synchronize open files
nextFile = partition->firstOpenFile;
while (nextFile) {
_FAT_syncToDisc (nextFile);
while ( nextFile )
{
_FAT_syncToDisc ( nextFile );
nextFile = nextFile->nextOpenFile;
}
// Free memory used by the cache, writing it to disc at the same time
_FAT_cache_destructor (partition->cache);
_FAT_cache_destructor ( partition->cache );
// Unlock the partition and destroy the lock
_FAT_unlock(&partition->lock);
_FAT_lock_deinit(&partition->lock);
_FAT_unlock( &partition->lock );
_FAT_lock_deinit( &partition->lock );
// Free memory used by the partition
_FAT_mem_free (partition);
_FAT_mem_free ( partition );
}
PARTITION* _FAT_partition_getPartitionFromPath (const char* path) {
PARTITION* _FAT_partition_getPartitionFromPath ( const char* path )
{
const devoptab_t *devops;
devops = GetDeviceOpTab (path);
devops = GetDeviceOpTab ( path );
if (!devops) {
if ( !devops )
{
return NULL;
}
return (PARTITION*)devops->deviceData;
return ( PARTITION* )devops->deviceData;
}

View File

@ -40,14 +40,16 @@ extern const char* DEVICE_NAME;
// Filesystem type
typedef enum {FS_UNKNOWN, FS_FAT12, FS_FAT16, FS_FAT32} FS_TYPE;
typedef struct {
typedef struct
{
sec_t fatStart;
uint32_t sectorsPerFat;
uint32_t lastCluster;
uint32_t firstFree;
} FAT;
typedef struct {
typedef struct
{
const DISC_INTERFACE* disc;
CACHE* cache;
// Info about the partition
@ -72,17 +74,17 @@ typedef struct {
/*
Mount the supplied device and return a pointer to the struct necessary to use it
*/
PARTITION* _FAT_partition_constructor (const DISC_INTERFACE* disc, uint32_t cacheSize, uint32_t SectorsPerPage, sec_t startSector);
PARTITION* _FAT_partition_constructor ( const DISC_INTERFACE* disc, uint32_t cacheSize, uint32_t SectorsPerPage, sec_t startSector );
/*
Dismount the device and free all structures used.
Will also attempt to synchronise all open files to disc.
*/
void _FAT_partition_destructor (PARTITION* partition);
void _FAT_partition_destructor ( PARTITION* partition );
/*
Return the partition specified in a path, as taken from the devoptab.
*/
PARTITION* _FAT_partition_getPartitionFromPath (const char* path);
PARTITION* _FAT_partition_getPartitionFromPath ( const char* path );
#endif // _PARTITION_H

File diff suppressed because it is too large Load Diff

View File

@ -64,7 +64,7 @@
* when checking, check one is present
*/
/* flags which are set to mean exec, write or read */
/* flags which are set to mean exec, write or read */
#define FILE_READ (FILE_READ_DATA)
#define FILE_WRITE (FILE_WRITE_DATA | FILE_APPEND_DATA \
@ -75,8 +75,8 @@
| READ_CONTROL | FILE_WRITE_ATTRIBUTES | FILE_WRITE_EA)
#define DIR_EXEC (FILE_TRAVERSE)
/* flags tested for meaning exec, write or read */
/* tests for write allow for interpretation of a sticky bit */
/* flags tested for meaning exec, write or read */
/* tests for write allow for interpretation of a sticky bit */
#define FILE_GREAD (FILE_READ_DATA | GENERIC_READ)
#define FILE_GWRITE (FILE_WRITE_DATA | FILE_APPEND_DATA | GENERIC_WRITE)
@ -85,19 +85,19 @@
#define DIR_GWRITE (FILE_ADD_FILE | FILE_ADD_SUBDIRECTORY | GENERIC_WRITE)
#define DIR_GEXEC (FILE_TRAVERSE | GENERIC_EXECUTE)
/* standard owner (and administrator) rights */
/* standard owner (and administrator) rights */
#define OWNER_RIGHTS (DELETE | READ_CONTROL | WRITE_DAC | WRITE_OWNER \
| SYNCHRONIZE \
| FILE_READ_ATTRIBUTES | FILE_WRITE_ATTRIBUTES \
| FILE_READ_EA | FILE_WRITE_EA)
/* standard world rights */
/* standard world rights */
#define WORLD_RIGHTS (READ_CONTROL | FILE_READ_ATTRIBUTES | FILE_READ_EA \
| SYNCHRONIZE)
/* inheritance flags for files and directories */
/* inheritance flags for files and directories */
#define FILE_INHERITANCE NO_PROPAGATE_INHERIT_ACE
#define DIR_INHERITANCE (OBJECT_INHERIT_ACE | CONTAINER_INHERIT_ACE)
@ -122,7 +122,8 @@ typedef char BIGSID[40];
* (private to this module)
*/
struct MAPLIST {
struct MAPLIST
{
struct MAPLIST *next;
char *uidstr; /* uid text from the same record */
char *gidstr; /* gid text from the same record */
@ -130,7 +131,7 @@ struct MAPLIST {
char maptext[LINESZ + 1];
};
typedef int (*FILEREADER)(void *fileid, char *buf, size_t size, off_t pos);
typedef int ( *FILEREADER )( void *fileid, char *buf, size_t size, off_t pos );
/*
* Constants defined in acls.c
@ -143,57 +144,57 @@ extern const SID *worldsid;
* Functions defined in acls.c
*/
BOOL ntfs_valid_descr(const char *securattr, unsigned int attrsz);
BOOL ntfs_valid_pattern(const SID *sid);
BOOL ntfs_valid_sid(const SID *sid);
BOOL ntfs_same_sid(const SID *first, const SID *second);
BOOL ntfs_valid_descr( const char *securattr, unsigned int attrsz );
BOOL ntfs_valid_pattern( const SID *sid );
BOOL ntfs_valid_sid( const SID *sid );
BOOL ntfs_same_sid( const SID *first, const SID *second );
BOOL ntfs_is_user_sid(const SID *usid);
BOOL ntfs_is_user_sid( const SID *usid );
int ntfs_sid_size(const SID * sid);
unsigned int ntfs_attr_size(const char *attr);
int ntfs_sid_size( const SID * sid );
unsigned int ntfs_attr_size( const char *attr );
const SID *ntfs_find_usid(const struct MAPPING *usermapping,
uid_t uid, SID *pdefsid);
const SID *ntfs_find_gsid(const struct MAPPING *groupmapping,
gid_t gid, SID *pdefsid);
uid_t ntfs_find_user(const struct MAPPING *usermapping, const SID *usid);
gid_t ntfs_find_group(const struct MAPPING *groupmapping, const SID * gsid);
const SID *ntfs_acl_owner(const char *secattr);
const SID *ntfs_find_usid( const struct MAPPING *usermapping,
uid_t uid, SID *pdefsid );
const SID *ntfs_find_gsid( const struct MAPPING *groupmapping,
gid_t gid, SID *pdefsid );
uid_t ntfs_find_user( const struct MAPPING *usermapping, const SID *usid );
gid_t ntfs_find_group( const struct MAPPING *groupmapping, const SID * gsid );
const SID *ntfs_acl_owner( const char *secattr );
#if POSIXACLS
BOOL ntfs_valid_posix(const struct POSIX_SECURITY *pxdesc);
void ntfs_sort_posix(struct POSIX_SECURITY *pxdesc);
int ntfs_merge_mode_posix(struct POSIX_SECURITY *pxdesc, mode_t mode);
BOOL ntfs_valid_posix( const struct POSIX_SECURITY *pxdesc );
void ntfs_sort_posix( struct POSIX_SECURITY *pxdesc );
int ntfs_merge_mode_posix( struct POSIX_SECURITY *pxdesc, mode_t mode );
struct POSIX_SECURITY *ntfs_build_inherited_posix(
const struct POSIX_SECURITY *pxdesc, mode_t mode,
mode_t umask, BOOL isdir);
struct POSIX_SECURITY *ntfs_replace_acl(const struct POSIX_SECURITY *oldpxdesc,
const struct POSIX_ACL *newacl, int count, BOOL deflt);
mode_t umask, BOOL isdir );
struct POSIX_SECURITY *ntfs_replace_acl( const struct POSIX_SECURITY *oldpxdesc,
const struct POSIX_ACL *newacl, int count, BOOL deflt );
struct POSIX_SECURITY *ntfs_build_permissions_posix(
struct MAPPING* const mapping[],
const char *securattr,
const SID *usid, const SID *gsid, BOOL isdir);
struct POSIX_SECURITY *ntfs_merge_descr_posix(const struct POSIX_SECURITY *first,
const struct POSIX_SECURITY *second);
char *ntfs_build_descr_posix(struct MAPPING* const mapping[],
const SID *usid, const SID *gsid, BOOL isdir );
struct POSIX_SECURITY *ntfs_merge_descr_posix( const struct POSIX_SECURITY *first,
const struct POSIX_SECURITY *second );
char *ntfs_build_descr_posix( struct MAPPING* const mapping[],
struct POSIX_SECURITY *pxdesc,
int isdir, const SID *usid, const SID *gsid);
int isdir, const SID *usid, const SID *gsid );
#endif /* POSIXACLS */
int ntfs_inherit_acl(const ACL *oldacl, ACL *newacl,
const SID *usid, const SID *gsid, BOOL fordir);
int ntfs_build_permissions(const char *securattr,
const SID *usid, const SID *gsid, BOOL isdir);
char *ntfs_build_descr(mode_t mode,
int isdir, const SID * usid, const SID * gsid);
struct MAPLIST *ntfs_read_mapping(FILEREADER reader, void *fileid);
struct MAPPING *ntfs_do_user_mapping(struct MAPLIST *firstitem);
struct MAPPING *ntfs_do_group_mapping(struct MAPLIST *firstitem);
void ntfs_free_mapping(struct MAPPING *mapping[]);
int ntfs_inherit_acl( const ACL *oldacl, ACL *newacl,
const SID *usid, const SID *gsid, BOOL fordir );
int ntfs_build_permissions( const char *securattr,
const SID *usid, const SID *gsid, BOOL isdir );
char *ntfs_build_descr( mode_t mode,
int isdir, const SID * usid, const SID * gsid );
struct MAPLIST *ntfs_read_mapping( FILEREADER reader, void *fileid );
struct MAPPING *ntfs_do_user_mapping( struct MAPLIST *firstitem );
struct MAPPING *ntfs_do_group_mapping( struct MAPLIST *firstitem );
void ntfs_free_mapping( struct MAPPING *mapping[] );
#endif /* ACLS_H */

File diff suppressed because it is too large Load Diff

View File

@ -49,7 +49,8 @@ extern ntfschar TXF_DATA[10];
*
* TODO: Describe them.
*/
typedef enum {
typedef enum
{
LCN_HOLE = -1, /* Keep this as highest value or die! */
LCN_RL_NOT_MAPPED = -2,
LCN_ENOENT = -3,
@ -75,7 +76,8 @@ typedef enum {
* any modification of the search context, to automagically get the next
* matching attribute.
*/
struct _ntfs_attr_search_ctx {
struct _ntfs_attr_search_ctx
{
MFT_RECORD *mrec;
ATTR_RECORD *attr;
BOOL is_first;
@ -86,20 +88,20 @@ struct _ntfs_attr_search_ctx {
ATTR_RECORD *base_attr;
};
extern void ntfs_attr_reinit_search_ctx(ntfs_attr_search_ctx *ctx);
extern ntfs_attr_search_ctx *ntfs_attr_get_search_ctx(ntfs_inode *ni,
MFT_RECORD *mrec);
extern void ntfs_attr_put_search_ctx(ntfs_attr_search_ctx *ctx);
extern void ntfs_attr_reinit_search_ctx( ntfs_attr_search_ctx *ctx );
extern ntfs_attr_search_ctx *ntfs_attr_get_search_ctx( ntfs_inode *ni,
MFT_RECORD *mrec );
extern void ntfs_attr_put_search_ctx( ntfs_attr_search_ctx *ctx );
extern int ntfs_attr_lookup(const ATTR_TYPES type, const ntfschar *name,
extern int ntfs_attr_lookup( const ATTR_TYPES type, const ntfschar *name,
const u32 name_len, const IGNORE_CASE_BOOL ic,
const VCN lowest_vcn, const u8 *val, const u32 val_len,
ntfs_attr_search_ctx *ctx);
ntfs_attr_search_ctx *ctx );
extern int ntfs_attr_position(const ATTR_TYPES type, ntfs_attr_search_ctx *ctx);
extern int ntfs_attr_position( const ATTR_TYPES type, ntfs_attr_search_ctx *ctx );
extern ATTR_DEF *ntfs_attr_find_in_attrdef(const ntfs_volume *vol,
const ATTR_TYPES type);
extern ATTR_DEF *ntfs_attr_find_in_attrdef( const ntfs_volume *vol,
const ATTR_TYPES type );
/**
* ntfs_attrs_walk - syntactic sugar for walking all attributes in an inode
@ -126,10 +128,10 @@ extern ATTR_DEF *ntfs_attr_find_in_attrdef(const ntfs_volume *vol,
* // Ooops. An error occurred! You should handle this case.
* // Now finished with all attributes in the inode.
*/
static __inline__ int ntfs_attrs_walk(ntfs_attr_search_ctx *ctx)
static __inline__ int ntfs_attrs_walk( ntfs_attr_search_ctx *ctx )
{
return ntfs_attr_lookup(AT_UNUSED, NULL, 0, CASE_SENSITIVE, 0,
NULL, 0, ctx);
return ntfs_attr_lookup( AT_UNUSED, NULL, 0, CASE_SENSITIVE, 0,
NULL, 0, ctx );
}
/**
@ -174,7 +176,8 @@ static __inline__ int ntfs_attrs_walk(ntfs_attr_search_ctx *ctx)
* @state contains NTFS attribute specific flags describing this attribute
* structure. See ntfs_attr_state_bits above.
*/
struct _ntfs_attr {
struct _ntfs_attr
{
runlist_element *rl;
ntfs_inode *ni;
ATTR_TYPES type;
@ -196,7 +199,8 @@ struct _ntfs_attr {
* enum ntfs_attr_state_bits - bits for the state field in the ntfs_attr
* structure
*/
typedef enum {
typedef enum
{
NA_Initialized, /* 1: structure is initialized. */
NA_NonResident, /* 1: Attribute is not resident. */
NA_BeingNonResident, /* 1: Attribute is being made not resident. */
@ -233,9 +237,9 @@ extern int NAttr##func_name(ntfs_attr *na); \
extern void NAttrSet##func_name(ntfs_attr *na); \
extern void NAttrClear##func_name(ntfs_attr *na);
GenNAttrIno(Compressed, FILE_ATTR_COMPRESSED)
GenNAttrIno(Encrypted, FILE_ATTR_ENCRYPTED)
GenNAttrIno(Sparse, FILE_ATTR_SPARSE_FILE)
GenNAttrIno( Compressed, FILE_ATTR_COMPRESSED )
GenNAttrIno( Encrypted, FILE_ATTR_ENCRYPTED )
GenNAttrIno( Sparse, FILE_ATTR_SPARSE_FILE )
#undef GenNAttrIno
/**
@ -243,7 +247,8 @@ GenNAttrIno(Sparse, FILE_ATTR_SPARSE_FILE)
*
* For convenience. Used in the attr structure.
*/
typedef union {
typedef union
{
u8 _default; /* Unnamed u8 to serve as default when just using
a_val without specifying any of the below. */
STANDARD_INFORMATION std_inf;
@ -265,73 +270,73 @@ typedef union {
EFS_ATTR_HEADER efs;
} attr_val;
extern void ntfs_attr_init(ntfs_attr *na, const BOOL non_resident,
extern void ntfs_attr_init( ntfs_attr *na, const BOOL non_resident,
const ATTR_FLAGS data_flags, const BOOL encrypted,
const BOOL sparse,
const s64 allocated_size, const s64 data_size,
const s64 initialized_size, const s64 compressed_size,
const u8 compression_unit);
const u8 compression_unit );
/* warning : in the following "name" has to be freeable */
/* or one of constants AT_UNNAMED, NTFS_INDEX_I30 or STREAM_SDS */
extern ntfs_attr *ntfs_attr_open(ntfs_inode *ni, const ATTR_TYPES type,
ntfschar *name, u32 name_len);
extern void ntfs_attr_close(ntfs_attr *na);
/* warning : in the following "name" has to be freeable */
/* or one of constants AT_UNNAMED, NTFS_INDEX_I30 or STREAM_SDS */
extern ntfs_attr *ntfs_attr_open( ntfs_inode *ni, const ATTR_TYPES type,
ntfschar *name, u32 name_len );
extern void ntfs_attr_close( ntfs_attr *na );
extern s64 ntfs_attr_pread(ntfs_attr *na, const s64 pos, s64 count,
void *b);
extern s64 ntfs_attr_pwrite(ntfs_attr *na, const s64 pos, s64 count,
const void *b);
extern int ntfs_attr_pclose(ntfs_attr *na);
extern s64 ntfs_attr_pread( ntfs_attr *na, const s64 pos, s64 count,
void *b );
extern s64 ntfs_attr_pwrite( ntfs_attr *na, const s64 pos, s64 count,
const void *b );
extern int ntfs_attr_pclose( ntfs_attr *na );
extern void *ntfs_attr_readall(ntfs_inode *ni, const ATTR_TYPES type,
ntfschar *name, u32 name_len, s64 *data_size);
extern void *ntfs_attr_readall( ntfs_inode *ni, const ATTR_TYPES type,
ntfschar *name, u32 name_len, s64 *data_size );
extern s64 ntfs_attr_mst_pread(ntfs_attr *na, const s64 pos,
const s64 bk_cnt, const u32 bk_size, void *dst);
extern s64 ntfs_attr_mst_pwrite(ntfs_attr *na, const s64 pos,
s64 bk_cnt, const u32 bk_size, void *src);
extern s64 ntfs_attr_mst_pread( ntfs_attr *na, const s64 pos,
const s64 bk_cnt, const u32 bk_size, void *dst );
extern s64 ntfs_attr_mst_pwrite( ntfs_attr *na, const s64 pos,
s64 bk_cnt, const u32 bk_size, void *src );
extern int ntfs_attr_map_runlist(ntfs_attr *na, VCN vcn);
extern int ntfs_attr_map_whole_runlist(ntfs_attr *na);
extern int ntfs_attr_map_runlist( ntfs_attr *na, VCN vcn );
extern int ntfs_attr_map_whole_runlist( ntfs_attr *na );
extern LCN ntfs_attr_vcn_to_lcn(ntfs_attr *na, const VCN vcn);
extern runlist_element *ntfs_attr_find_vcn(ntfs_attr *na, const VCN vcn);
extern LCN ntfs_attr_vcn_to_lcn( ntfs_attr *na, const VCN vcn );
extern runlist_element *ntfs_attr_find_vcn( ntfs_attr *na, const VCN vcn );
extern int ntfs_attr_size_bounds_check(const ntfs_volume *vol,
const ATTR_TYPES type, const s64 size);
extern int ntfs_attr_can_be_resident(const ntfs_volume *vol,
const ATTR_TYPES type);
int ntfs_attr_make_non_resident(ntfs_attr *na,
ntfs_attr_search_ctx *ctx);
int ntfs_attr_force_non_resident(ntfs_attr *na);
extern int ntfs_make_room_for_attr(MFT_RECORD *m, u8 *pos, u32 size);
extern int ntfs_attr_size_bounds_check( const ntfs_volume *vol,
const ATTR_TYPES type, const s64 size );
extern int ntfs_attr_can_be_resident( const ntfs_volume *vol,
const ATTR_TYPES type );
int ntfs_attr_make_non_resident( ntfs_attr *na,
ntfs_attr_search_ctx *ctx );
int ntfs_attr_force_non_resident( ntfs_attr *na );
extern int ntfs_make_room_for_attr( MFT_RECORD *m, u8 *pos, u32 size );
extern int ntfs_resident_attr_record_add(ntfs_inode *ni, ATTR_TYPES type,
extern int ntfs_resident_attr_record_add( ntfs_inode *ni, ATTR_TYPES type,
ntfschar *name, u8 name_len, u8 *val, u32 size,
ATTR_FLAGS flags);
extern int ntfs_non_resident_attr_record_add(ntfs_inode *ni, ATTR_TYPES type,
ATTR_FLAGS flags );
extern int ntfs_non_resident_attr_record_add( ntfs_inode *ni, ATTR_TYPES type,
ntfschar *name, u8 name_len, VCN lowest_vcn, int dataruns_size,
ATTR_FLAGS flags);
extern int ntfs_attr_record_rm(ntfs_attr_search_ctx *ctx);
ATTR_FLAGS flags );
extern int ntfs_attr_record_rm( ntfs_attr_search_ctx *ctx );
extern int ntfs_attr_add(ntfs_inode *ni, ATTR_TYPES type,
ntfschar *name, u8 name_len, u8 *val, s64 size);
extern int ntfs_attr_set_flags(ntfs_inode *ni, ATTR_TYPES type,
ntfschar *name, u8 name_len, ATTR_FLAGS flags, ATTR_FLAGS mask);
extern int ntfs_attr_rm(ntfs_attr *na);
extern int ntfs_attr_add( ntfs_inode *ni, ATTR_TYPES type,
ntfschar *name, u8 name_len, u8 *val, s64 size );
extern int ntfs_attr_set_flags( ntfs_inode *ni, ATTR_TYPES type,
ntfschar *name, u8 name_len, ATTR_FLAGS flags, ATTR_FLAGS mask );
extern int ntfs_attr_rm( ntfs_attr *na );
extern int ntfs_attr_record_resize(MFT_RECORD *m, ATTR_RECORD *a, u32 new_size);
extern int ntfs_attr_record_resize( MFT_RECORD *m, ATTR_RECORD *a, u32 new_size );
extern int ntfs_resident_attr_value_resize(MFT_RECORD *m, ATTR_RECORD *a,
const u32 new_size);
extern int ntfs_resident_attr_value_resize( MFT_RECORD *m, ATTR_RECORD *a,
const u32 new_size );
extern int ntfs_attr_record_move_to(ntfs_attr_search_ctx *ctx, ntfs_inode *ni);
extern int ntfs_attr_record_move_away(ntfs_attr_search_ctx *ctx, int extra);
extern int ntfs_attr_record_move_to( ntfs_attr_search_ctx *ctx, ntfs_inode *ni );
extern int ntfs_attr_record_move_away( ntfs_attr_search_ctx *ctx, int extra );
extern int ntfs_attr_update_mapping_pairs(ntfs_attr *na, VCN from_vcn);
extern int ntfs_attr_update_mapping_pairs( ntfs_attr *na, VCN from_vcn );
extern int ntfs_attr_truncate(ntfs_attr *na, const s64 newsize);
extern int ntfs_attr_truncate( ntfs_attr *na, const s64 newsize );
/**
* get_attribute_value_length - return the length of the value of an attribute
@ -344,7 +349,7 @@ extern int ntfs_attr_truncate(ntfs_attr *na, const s64 newsize);
*
* FIXME: Describe possible errnos.
*/
extern s64 ntfs_get_attribute_value_length(const ATTR_RECORD *a);
extern s64 ntfs_get_attribute_value_length( const ATTR_RECORD *a );
/**
* get_attribute_value - return the attribute value of an attribute
@ -360,16 +365,16 @@ extern s64 ntfs_get_attribute_value_length(const ATTR_RECORD *a);
* then nothing was read due to a zero-length attribute value, otherwise
* errno describes the error.
*/
extern s64 ntfs_get_attribute_value(const ntfs_volume *vol,
const ATTR_RECORD *a, u8 *b);
extern s64 ntfs_get_attribute_value( const ntfs_volume *vol,
const ATTR_RECORD *a, u8 *b );
extern void ntfs_attr_name_free(char **name);
extern char *ntfs_attr_name_get(const ntfschar *uname, const int uname_len);
extern int ntfs_attr_exist(ntfs_inode *ni, const ATTR_TYPES type,
ntfschar *name, u32 name_len);
extern int ntfs_attr_remove(ntfs_inode *ni, const ATTR_TYPES type,
ntfschar *name, u32 name_len);
extern s64 ntfs_attr_get_free_bits(ntfs_attr *na);
extern void ntfs_attr_name_free( char **name );
extern char *ntfs_attr_name_get( const ntfschar *uname, const int uname_len );
extern int ntfs_attr_exist( ntfs_inode *ni, const ATTR_TYPES type,
ntfschar *name, u32 name_len );
extern int ntfs_attr_remove( ntfs_inode *ni, const ATTR_TYPES type,
ntfschar *name, u32 name_len );
extern s64 ntfs_attr_get_free_bits( ntfs_attr *na );
#endif /* defined _NTFS_ATTRIB_H */

File diff suppressed because it is too large Load Diff

View File

@ -58,36 +58,40 @@
* EINVAL - Invalid arguments passed to function or attribute haven't got
* attribute list.
*/
int ntfs_attrlist_need(ntfs_inode *ni)
int ntfs_attrlist_need( ntfs_inode *ni )
{
ATTR_LIST_ENTRY *ale;
if (!ni) {
ntfs_log_trace("Invalid arguments.\n");
if ( !ni )
{
ntfs_log_trace( "Invalid arguments.\n" );
errno = EINVAL;
return -1;
}
ntfs_log_trace("Entering for inode 0x%llx.\n", (long long) ni->mft_no);
ntfs_log_trace( "Entering for inode 0x%llx.\n", ( long long ) ni->mft_no );
if (!NInoAttrList(ni)) {
ntfs_log_trace("Inode haven't got attribute list.\n");
if ( !NInoAttrList( ni ) )
{
ntfs_log_trace( "Inode haven't got attribute list.\n" );
errno = EINVAL;
return -1;
}
if (!ni->attr_list) {
ntfs_log_trace("Corrupt in-memory struct.\n");
if ( !ni->attr_list )
{
ntfs_log_trace( "Corrupt in-memory struct.\n" );
errno = EINVAL;
return -1;
}
errno = 0;
ale = (ATTR_LIST_ENTRY *)ni->attr_list;
while ((u8*)ale < ni->attr_list + ni->attr_list_size) {
if (MREF_LE(ale->mft_reference) != ni->mft_no)
ale = ( ATTR_LIST_ENTRY * )ni->attr_list;
while ( ( u8* )ale < ni->attr_list + ni->attr_list_size )
{
if ( MREF_LE( ale->mft_reference ) != ni->mft_no )
return 1;
ale = (ATTR_LIST_ENTRY *)((u8*)ale + le16_to_cpu(ale->length));
ale = ( ATTR_LIST_ENTRY * )( ( u8* )ale + le16_to_cpu( ale->length ) );
}
return 0;
}
@ -104,7 +108,7 @@ int ntfs_attrlist_need(ntfs_inode *ni)
* EIO - I/O error occurred or damaged filesystem.
* EEXIST - Such attribute already present in attribute list.
*/
int ntfs_attrlist_entry_add(ntfs_inode *ni, ATTR_RECORD *attr)
int ntfs_attrlist_entry_add( ntfs_inode *ni, ATTR_RECORD *attr )
{
ATTR_LIST_ENTRY *ale;
MFT_REF mref;
@ -113,122 +117,132 @@ int ntfs_attrlist_entry_add(ntfs_inode *ni, ATTR_RECORD *attr)
u8 *new_al;
int entry_len, entry_offset, err;
ntfs_log_trace("Entering for inode 0x%llx, attr 0x%x.\n",
(long long) ni->mft_no,
(unsigned) le32_to_cpu(attr->type));
ntfs_log_trace( "Entering for inode 0x%llx, attr 0x%x.\n",
( long long ) ni->mft_no,
( unsigned ) le32_to_cpu( attr->type ) );
if (!ni || !attr) {
ntfs_log_trace("Invalid arguments.\n");
if ( !ni || !attr )
{
ntfs_log_trace( "Invalid arguments.\n" );
errno = EINVAL;
return -1;
}
mref = MK_LE_MREF(ni->mft_no, le16_to_cpu(ni->mrec->sequence_number));
mref = MK_LE_MREF( ni->mft_no, le16_to_cpu( ni->mrec->sequence_number ) );
if (ni->nr_extents == -1)
if ( ni->nr_extents == -1 )
ni = ni->base_ni;
if (!NInoAttrList(ni)) {
ntfs_log_trace("Attribute list isn't present.\n");
if ( !NInoAttrList( ni ) )
{
ntfs_log_trace( "Attribute list isn't present.\n" );
errno = ENOENT;
return -1;
}
/* Determine size and allocate memory for new attribute list. */
entry_len = (sizeof(ATTR_LIST_ENTRY) + sizeof(ntfschar) *
attr->name_length + 7) & ~7;
new_al = ntfs_calloc(ni->attr_list_size + entry_len);
if (!new_al)
entry_len = ( sizeof( ATTR_LIST_ENTRY ) + sizeof( ntfschar ) *
attr->name_length + 7 ) & ~7;
new_al = ntfs_calloc( ni->attr_list_size + entry_len );
if ( !new_al )
return -1;
/* Find place for the new entry. */
ctx = ntfs_attr_get_search_ctx(ni, NULL);
if (!ctx) {
ctx = ntfs_attr_get_search_ctx( ni, NULL );
if ( !ctx )
{
err = errno;
goto err_out;
}
if (!ntfs_attr_lookup(attr->type, (attr->name_length) ? (ntfschar*)
((u8*)attr + le16_to_cpu(attr->name_offset)) :
if ( !ntfs_attr_lookup( attr->type, ( attr->name_length ) ? ( ntfschar* )
( ( u8* )attr + le16_to_cpu( attr->name_offset ) ) :
AT_UNNAMED, attr->name_length, CASE_SENSITIVE,
(attr->non_resident) ? le64_to_cpu(attr->lowest_vcn) :
0, (attr->non_resident) ? NULL : ((u8*)attr +
le16_to_cpu(attr->value_offset)), (attr->non_resident) ?
0 : le32_to_cpu(attr->value_length), ctx)) {
( attr->non_resident ) ? le64_to_cpu( attr->lowest_vcn ) :
0, ( attr->non_resident ) ? NULL : ( ( u8* )attr +
le16_to_cpu( attr->value_offset ) ), ( attr->non_resident ) ?
0 : le32_to_cpu( attr->value_length ), ctx ) )
{
/* Found some extent, check it to be before new extent. */
if (ctx->al_entry->lowest_vcn == attr->lowest_vcn) {
if ( ctx->al_entry->lowest_vcn == attr->lowest_vcn )
{
err = EEXIST;
ntfs_log_trace("Such attribute already present in the "
"attribute list.\n");
ntfs_attr_put_search_ctx(ctx);
ntfs_log_trace( "Such attribute already present in the "
"attribute list.\n" );
ntfs_attr_put_search_ctx( ctx );
goto err_out;
}
/* Add new entry after this extent. */
ale = (ATTR_LIST_ENTRY*)((u8*)ctx->al_entry +
le16_to_cpu(ctx->al_entry->length));
} else {
ale = ( ATTR_LIST_ENTRY* )( ( u8* )ctx->al_entry +
le16_to_cpu( ctx->al_entry->length ) );
}
else
{
/* Check for real errors. */
if (errno != ENOENT) {
if ( errno != ENOENT )
{
err = errno;
ntfs_log_trace("Attribute lookup failed.\n");
ntfs_attr_put_search_ctx(ctx);
ntfs_log_trace( "Attribute lookup failed.\n" );
ntfs_attr_put_search_ctx( ctx );
goto err_out;
}
/* No previous extents found. */
ale = ctx->al_entry;
}
/* Don't need it anymore, @ctx->al_entry points to @ni->attr_list. */
ntfs_attr_put_search_ctx(ctx);
ntfs_attr_put_search_ctx( ctx );
/* Determine new entry offset. */
entry_offset = ((u8 *)ale - ni->attr_list);
entry_offset = ( ( u8 * )ale - ni->attr_list );
/* Set pointer to new entry. */
ale = (ATTR_LIST_ENTRY *)(new_al + entry_offset);
ale = ( ATTR_LIST_ENTRY * )( new_al + entry_offset );
/* Zero it to fix valgrind warning. */
memset(ale, 0, entry_len);
memset( ale, 0, entry_len );
/* Form new entry. */
ale->type = attr->type;
ale->length = cpu_to_le16(entry_len);
ale->length = cpu_to_le16( entry_len );
ale->name_length = attr->name_length;
ale->name_offset = offsetof(ATTR_LIST_ENTRY, name);
if (attr->non_resident)
ale->name_offset = offsetof( ATTR_LIST_ENTRY, name );
if ( attr->non_resident )
ale->lowest_vcn = attr->lowest_vcn;
else
ale->lowest_vcn = 0;
ale->mft_reference = mref;
ale->instance = attr->instance;
memcpy(ale->name, (u8 *)attr + le16_to_cpu(attr->name_offset),
attr->name_length * sizeof(ntfschar));
memcpy( ale->name, ( u8 * )attr + le16_to_cpu( attr->name_offset ),
attr->name_length * sizeof( ntfschar ) );
/* Resize $ATTRIBUTE_LIST to new length. */
na = ntfs_attr_open(ni, AT_ATTRIBUTE_LIST, AT_UNNAMED, 0);
if (!na) {
na = ntfs_attr_open( ni, AT_ATTRIBUTE_LIST, AT_UNNAMED, 0 );
if ( !na )
{
err = errno;
ntfs_log_trace("Failed to open $ATTRIBUTE_LIST attribute.\n");
ntfs_log_trace( "Failed to open $ATTRIBUTE_LIST attribute.\n" );
goto err_out;
}
if (ntfs_attr_truncate(na, ni->attr_list_size + entry_len)) {
if ( ntfs_attr_truncate( na, ni->attr_list_size + entry_len ) )
{
err = errno;
ntfs_log_trace("$ATTRIBUTE_LIST resize failed.\n");
ntfs_log_trace( "$ATTRIBUTE_LIST resize failed.\n" );
goto err_out;
}
/* Copy entries from old attribute list to new. */
memcpy(new_al, ni->attr_list, entry_offset);
memcpy(new_al + entry_offset + entry_len, ni->attr_list +
entry_offset, ni->attr_list_size - entry_offset);
memcpy( new_al, ni->attr_list, entry_offset );
memcpy( new_al + entry_offset + entry_len, ni->attr_list +
entry_offset, ni->attr_list_size - entry_offset );
/* Set new runlist. */
free(ni->attr_list);
free( ni->attr_list );
ni->attr_list = new_al;
ni->attr_list_size = ni->attr_list_size + entry_len;
NInoAttrListSetDirty(ni);
NInoAttrListSetDirty( ni );
/* Done! */
ntfs_attr_close(na);
ntfs_attr_close( na );
return 0;
err_out:
if (na)
ntfs_attr_close(na);
free(new_al);
if ( na )
ntfs_attr_close( na );
free( new_al );
errno = err;
return -1;
}
@ -241,7 +255,7 @@ err_out:
*
* Return 0 on success and -1 on error with errno set to the error code.
*/
int ntfs_attrlist_entry_rm(ntfs_attr_search_ctx *ctx)
int ntfs_attrlist_entry_rm( ntfs_attr_search_ctx *ctx )
{
u8 *new_al;
int new_al_len;
@ -250,65 +264,69 @@ int ntfs_attrlist_entry_rm(ntfs_attr_search_ctx *ctx)
ATTR_LIST_ENTRY *ale;
int err;
if (!ctx || !ctx->ntfs_ino || !ctx->al_entry) {
ntfs_log_trace("Invalid arguments.\n");
if ( !ctx || !ctx->ntfs_ino || !ctx->al_entry )
{
ntfs_log_trace( "Invalid arguments.\n" );
errno = EINVAL;
return -1;
}
if (ctx->base_ntfs_ino)
if ( ctx->base_ntfs_ino )
base_ni = ctx->base_ntfs_ino;
else
base_ni = ctx->ntfs_ino;
ale = ctx->al_entry;
ntfs_log_trace("Entering for inode 0x%llx, attr 0x%x, lowest_vcn %lld.\n",
(long long) ctx->ntfs_ino->mft_no,
(unsigned) le32_to_cpu(ctx->al_entry->type),
(long long) le64_to_cpu(ctx->al_entry->lowest_vcn));
ntfs_log_trace( "Entering for inode 0x%llx, attr 0x%x, lowest_vcn %lld.\n",
( long long ) ctx->ntfs_ino->mft_no,
( unsigned ) le32_to_cpu( ctx->al_entry->type ),
( long long ) le64_to_cpu( ctx->al_entry->lowest_vcn ) );
if (!NInoAttrList(base_ni)) {
ntfs_log_trace("Attribute list isn't present.\n");
if ( !NInoAttrList( base_ni ) )
{
ntfs_log_trace( "Attribute list isn't present.\n" );
errno = ENOENT;
return -1;
}
/* Allocate memory for new attribute list. */
new_al_len = base_ni->attr_list_size - le16_to_cpu(ale->length);
new_al = ntfs_calloc(new_al_len);
if (!new_al)
new_al_len = base_ni->attr_list_size - le16_to_cpu( ale->length );
new_al = ntfs_calloc( new_al_len );
if ( !new_al )
return -1;
/* Reisze $ATTRIBUTE_LIST to new length. */
na = ntfs_attr_open(base_ni, AT_ATTRIBUTE_LIST, AT_UNNAMED, 0);
if (!na) {
na = ntfs_attr_open( base_ni, AT_ATTRIBUTE_LIST, AT_UNNAMED, 0 );
if ( !na )
{
err = errno;
ntfs_log_trace("Failed to open $ATTRIBUTE_LIST attribute.\n");
ntfs_log_trace( "Failed to open $ATTRIBUTE_LIST attribute.\n" );
goto err_out;
}
if (ntfs_attr_truncate(na, new_al_len)) {
if ( ntfs_attr_truncate( na, new_al_len ) )
{
err = errno;
ntfs_log_trace("$ATTRIBUTE_LIST resize failed.\n");
ntfs_log_trace( "$ATTRIBUTE_LIST resize failed.\n" );
goto err_out;
}
/* Copy entries from old attribute list to new. */
memcpy(new_al, base_ni->attr_list, (u8*)ale - base_ni->attr_list);
memcpy(new_al + ((u8*)ale - base_ni->attr_list), (u8*)ale + le16_to_cpu(
ale->length), new_al_len - ((u8*)ale - base_ni->attr_list));
memcpy( new_al, base_ni->attr_list, ( u8* )ale - base_ni->attr_list );
memcpy( new_al + ( ( u8* )ale - base_ni->attr_list ), ( u8* )ale + le16_to_cpu(
ale->length ), new_al_len - ( ( u8* )ale - base_ni->attr_list ) );
/* Set new runlist. */
free(base_ni->attr_list);
free( base_ni->attr_list );
base_ni->attr_list = new_al;
base_ni->attr_list_size = new_al_len;
NInoAttrListSetDirty(base_ni);
NInoAttrListSetDirty( base_ni );
/* Done! */
ntfs_attr_close(na);
ntfs_attr_close( na );
return 0;
err_out:
if (na)
ntfs_attr_close(na);
free(new_al);
if ( na )
ntfs_attr_close( na );
free( new_al );
errno = err;
return -1;
}

View File

@ -26,10 +26,10 @@
#include "attrib.h"
extern int ntfs_attrlist_need(ntfs_inode *ni);
extern int ntfs_attrlist_need( ntfs_inode *ni );
extern int ntfs_attrlist_entry_add(ntfs_inode *ni, ATTR_RECORD *attr);
extern int ntfs_attrlist_entry_rm(ntfs_attr_search_ctx *ctx);
extern int ntfs_attrlist_entry_add( ntfs_inode *ni, ATTR_RECORD *attr );
extern int ntfs_attrlist_entry_rm( ntfs_attr_search_ctx *ctx );
/**
* ntfs_attrlist_mark_dirty - set the attribute list dirty
@ -40,12 +40,12 @@ extern int ntfs_attrlist_entry_rm(ntfs_attr_search_ctx *ctx);
*
* This function cannot fail.
*/
static __inline__ void ntfs_attrlist_mark_dirty(ntfs_inode *ni)
static __inline__ void ntfs_attrlist_mark_dirty( ntfs_inode *ni )
{
if (ni->nr_extents == -1)
NInoAttrListSetDirty(ni->base_ni);
if ( ni->nr_extents == -1 )
NInoAttrListSetDirty( ni->base_ni );
else
NInoAttrListSetDirty(ni);
NInoAttrListSetDirty( ni );
}
#endif /* defined _NTFS_ATTRLIST_H */

View File

@ -34,24 +34,28 @@
/*-----------------------------------------------------------------
Functions to deal with little endian values stored in uint8_t arrays
-----------------------------------------------------------------*/
static inline uint16_t u8array_to_u16 (const uint8_t* item, int offset) {
return ( item[offset] | (item[offset + 1] << 8));
static inline uint16_t u8array_to_u16 ( const uint8_t* item, int offset )
{
return ( item[offset] | ( item[offset + 1] << 8 ) );
}
static inline uint32_t u8array_to_u32 (const uint8_t* item, int offset) {
return ( item[offset] | (item[offset + 1] << 8) | (item[offset + 2] << 16) | (item[offset + 3] << 24));
static inline uint32_t u8array_to_u32 ( const uint8_t* item, int offset )
{
return ( item[offset] | ( item[offset + 1] << 8 ) | ( item[offset + 2] << 16 ) | ( item[offset + 3] << 24 ) );
}
static inline void u16_to_u8array (uint8_t* item, int offset, uint16_t value) {
item[offset] = (uint8_t) value;
item[offset + 1] = (uint8_t)(value >> 8);
static inline void u16_to_u8array ( uint8_t* item, int offset, uint16_t value )
{
item[offset] = ( uint8_t ) value;
item[offset + 1] = ( uint8_t )( value >> 8 );
}
static inline void u32_to_u8array (uint8_t* item, int offset, uint32_t value) {
item[offset] = (uint8_t) value;
item[offset + 1] = (uint8_t)(value >> 8);
item[offset + 2] = (uint8_t)(value >> 16);
item[offset + 3] = (uint8_t)(value >> 24);
static inline void u32_to_u8array ( uint8_t* item, int offset, uint32_t value )
{
item[offset] = ( uint8_t ) value;
item[offset + 1] = ( uint8_t )( value >> 8 );
item[offset + 2] = ( uint8_t )( value >> 16 );
item[offset + 3] = ( uint8_t )( value >> 24 );
}
#endif // _BIT_OPS_H

View File

@ -53,14 +53,14 @@
*
* Set the bit @bit in the @bitmap to @new_value. Ignore all errors.
*/
void ntfs_bit_set(u8 *bitmap, const u64 bit, const u8 new_value)
void ntfs_bit_set( u8 *bitmap, const u64 bit, const u8 new_value )
{
if (!bitmap || new_value > 1)
if ( !bitmap || new_value > 1 )
return;
if (!new_value)
bitmap[bit >> 3] &= ~(1 << (bit & 7));
if ( !new_value )
bitmap[bit >> 3] &= ~( 1 << ( bit & 7 ) );
else
bitmap[bit >> 3] |= (1 << (bit & 7));
bitmap[bit >> 3] |= ( 1 << ( bit & 7 ) );
}
/**
@ -71,11 +71,11 @@ void ntfs_bit_set(u8 *bitmap, const u64 bit, const u8 new_value)
* Get and return the value of the bit @bit in @bitmap (0 or 1).
* Return -1 on error.
*/
char ntfs_bit_get(const u8 *bitmap, const u64 bit)
char ntfs_bit_get( const u8 *bitmap, const u64 bit )
{
if (!bitmap)
if ( !bitmap )
return -1;
return (bitmap[bit >> 3] >> (bit & 7)) & 1;
return ( bitmap[bit >> 3] >> ( bit & 7 ) ) & 1;
}
/**
@ -87,15 +87,15 @@ char ntfs_bit_get(const u8 *bitmap, const u64 bit)
* Return the value of the bit @bit and set it to @new_value (0 or 1).
* Return -1 on error.
*/
char ntfs_bit_get_and_set(u8 *bitmap, const u64 bit, const u8 new_value)
char ntfs_bit_get_and_set( u8 *bitmap, const u64 bit, const u8 new_value )
{
register u8 old_bit, shift;
if (!bitmap || new_value > 1)
if ( !bitmap || new_value > 1 )
return -1;
shift = bit & 7;
old_bit = (bitmap[bit >> 3] >> shift) & 1;
if (new_value != old_bit)
old_bit = ( bitmap[bit >> 3] >> shift ) & 1;
if ( new_value != old_bit )
bitmap[bit >> 3] ^= 1 << shift;
return old_bit;
}
@ -112,95 +112,105 @@ char ntfs_bit_get_and_set(u8 *bitmap, const u64 bit, const u8 new_value)
*
* On success return 0 and on error return -1 with errno set to the error code.
*/
static int ntfs_bitmap_set_bits_in_run(ntfs_attr *na, s64 start_bit,
s64 count, int value)
static int ntfs_bitmap_set_bits_in_run( ntfs_attr *na, s64 start_bit,
s64 count, int value )
{
s64 bufsize, br;
u8 *buf, *lastbyte_buf;
int bit, firstbyte, lastbyte, lastbyte_pos, tmp, ret = -1;
if (!na || start_bit < 0 || count < 0) {
if ( !na || start_bit < 0 || count < 0 )
{
errno = EINVAL;
ntfs_log_perror("%s: Invalid argument (%p, %lld, %lld)",
__FUNCTION__, na, (long long)start_bit, (long long)count);
ntfs_log_perror( "%s: Invalid argument (%p, %lld, %lld)",
__FUNCTION__, na, ( long long )start_bit, ( long long )count );
return -1;
}
bit = start_bit & 7;
if (bit)
if ( bit )
firstbyte = 1;
else
firstbyte = 0;
/* Calculate the required buffer size in bytes, capping it at 8kiB. */
bufsize = ((count - (bit ? 8 - bit : 0) + 7) >> 3) + firstbyte;
if (bufsize > 8192)
bufsize = ( ( count - ( bit ? 8 - bit : 0 ) + 7 ) >> 3 ) + firstbyte;
if ( bufsize > 8192 )
bufsize = 8192;
buf = ntfs_malloc(bufsize);
if (!buf)
buf = ntfs_malloc( bufsize );
if ( !buf )
return -1;
/* Depending on @value, zero or set all bits in the allocated buffer. */
memset(buf, value ? 0xff : 0, bufsize);
memset( buf, value ? 0xff : 0, bufsize );
/* If there is a first partial byte... */
if (bit) {
if ( bit )
{
/* read it in... */
br = ntfs_attr_pread(na, start_bit >> 3, 1, buf);
if (br != 1) {
if (br >= 0)
br = ntfs_attr_pread( na, start_bit >> 3, 1, buf );
if ( br != 1 )
{
if ( br >= 0 )
errno = EIO;
goto free_err_out;
}
/* and set or clear the appropriate bits in it. */
while ((bit & 7) && count--) {
if (value)
while ( ( bit & 7 ) && count-- )
{
if ( value )
*buf |= 1 << bit++;
else
*buf &= ~(1 << bit++);
*buf &= ~( 1 << bit++ );
}
/* Update @start_bit to the new position. */
start_bit = (start_bit + 7) & ~7;
start_bit = ( start_bit + 7 ) & ~7;
}
/* Loop until @count reaches zero. */
lastbyte = 0;
lastbyte_buf = NULL;
bit = count & 7;
do {
do
{
/* If there is a last partial byte... */
if (count > 0 && bit) {
lastbyte_pos = ((count + 7) >> 3) + firstbyte;
if (!lastbyte_pos) {
if ( count > 0 && bit )
{
lastbyte_pos = ( ( count + 7 ) >> 3 ) + firstbyte;
if ( !lastbyte_pos )
{
// FIXME: Eeek! BUG!
ntfs_log_error("Lastbyte is zero. Leaving "
"inconsistent metadata.\n");
ntfs_log_error( "Lastbyte is zero. Leaving "
"inconsistent metadata.\n" );
errno = EIO;
goto free_err_out;
}
/* and it is in the currently loaded bitmap window... */
if (lastbyte_pos <= bufsize) {
if ( lastbyte_pos <= bufsize )
{
lastbyte_buf = buf + lastbyte_pos - 1;
/* read the byte in... */
br = ntfs_attr_pread(na, (start_bit + count) >>
3, 1, lastbyte_buf);
if (br != 1) {
br = ntfs_attr_pread( na, ( start_bit + count ) >>
3, 1, lastbyte_buf );
if ( br != 1 )
{
// FIXME: Eeek! We need rollback! (AIA)
if (br >= 0)
if ( br >= 0 )
errno = EIO;
ntfs_log_perror("Reading of last byte "
ntfs_log_perror( "Reading of last byte "
"failed (%lld). Leaving inconsistent "
"metadata", (long long)br);
"metadata", ( long long )br );
goto free_err_out;
}
/* and set/clear the appropriate bits in it. */
while (bit && count--) {
if (value)
while ( bit && count-- )
{
if ( value )
*lastbyte_buf |= 1 << --bit;
else
*lastbyte_buf &= ~(1 << --bit);
*lastbyte_buf &= ~( 1 << --bit );
}
/* We don't want to come back here... */
bit = 0;
@ -210,21 +220,23 @@ static int ntfs_bitmap_set_bits_in_run(ntfs_attr *na, s64 start_bit,
}
/* Write the prepared buffer to disk. */
tmp = (start_bit >> 3) - firstbyte;
br = ntfs_attr_pwrite(na, tmp, bufsize, buf);
if (br != bufsize) {
tmp = ( start_bit >> 3 ) - firstbyte;
br = ntfs_attr_pwrite( na, tmp, bufsize, buf );
if ( br != bufsize )
{
// FIXME: Eeek! We need rollback! (AIA)
if (br >= 0)
if ( br >= 0 )
errno = EIO;
ntfs_log_perror("Failed to write buffer to bitmap "
ntfs_log_perror( "Failed to write buffer to bitmap "
"(%lld != %lld). Leaving inconsistent metadata",
(long long)br, (long long)bufsize);
( long long )br, ( long long )bufsize );
goto free_err_out;
}
/* Update counters. */
tmp = (bufsize - firstbyte - lastbyte) << 3;
if (firstbyte) {
tmp = ( bufsize - firstbyte - lastbyte ) << 3;
if ( firstbyte )
{
firstbyte = 0;
/*
* Re-set the partial first byte so a subsequent write
@ -234,23 +246,25 @@ static int ntfs_bitmap_set_bits_in_run(ntfs_attr *na, s64 start_bit,
}
start_bit += tmp;
count -= tmp;
if (bufsize > (tmp = (count + 7) >> 3))
if ( bufsize > ( tmp = ( count + 7 ) >> 3 ) )
bufsize = tmp;
if (lastbyte && count != 0) {
if ( lastbyte && count != 0 )
{
// FIXME: Eeek! BUG!
ntfs_log_error("Last buffer but count is not zero "
ntfs_log_error( "Last buffer but count is not zero "
"(%lld). Leaving inconsistent metadata.\n",
(long long)count);
( long long )count );
errno = EIO;
goto free_err_out;
}
} while (count > 0);
}
while ( count > 0 );
ret = 0;
free_err_out:
free(buf);
free( buf );
return ret;
}
@ -265,14 +279,14 @@ free_err_out:
*
* On success return 0 and on error return -1 with errno set to the error code.
*/
int ntfs_bitmap_set_run(ntfs_attr *na, s64 start_bit, s64 count)
int ntfs_bitmap_set_run( ntfs_attr *na, s64 start_bit, s64 count )
{
int ret;
ntfs_log_enter("Set from bit %lld, count %lld\n",
(long long)start_bit, (long long)count);
ret = ntfs_bitmap_set_bits_in_run(na, start_bit, count, 1);
ntfs_log_leave("\n");
ntfs_log_enter( "Set from bit %lld, count %lld\n",
( long long )start_bit, ( long long )count );
ret = ntfs_bitmap_set_bits_in_run( na, start_bit, count, 1 );
ntfs_log_leave( "\n" );
return ret;
}
@ -287,14 +301,14 @@ int ntfs_bitmap_set_run(ntfs_attr *na, s64 start_bit, s64 count)
*
* On success return 0 and on error return -1 with errno set to the error code.
*/
int ntfs_bitmap_clear_run(ntfs_attr *na, s64 start_bit, s64 count)
int ntfs_bitmap_clear_run( ntfs_attr *na, s64 start_bit, s64 count )
{
int ret;
ntfs_log_enter("Clear from bit %lld, count %lld\n",
(long long)start_bit, (long long)count);
ret = ntfs_bitmap_set_bits_in_run(na, start_bit, count, 0);
ntfs_log_leave("\n");
ntfs_log_enter( "Clear from bit %lld, count %lld\n",
( long long )start_bit, ( long long )count );
ret = ntfs_bitmap_set_bits_in_run( na, start_bit, count, 0 );
ntfs_log_leave( "\n" );
return ret;
}

View File

@ -36,11 +36,11 @@
* size of the bitmap.
*/
extern void ntfs_bit_set(u8 *bitmap, const u64 bit, const u8 new_value);
extern char ntfs_bit_get(const u8 *bitmap, const u64 bit);
extern char ntfs_bit_get_and_set(u8 *bitmap, const u64 bit, const u8 new_value);
extern int ntfs_bitmap_set_run(ntfs_attr *na, s64 start_bit, s64 count);
extern int ntfs_bitmap_clear_run(ntfs_attr *na, s64 start_bit, s64 count);
extern void ntfs_bit_set( u8 *bitmap, const u64 bit, const u8 new_value );
extern char ntfs_bit_get( const u8 *bitmap, const u64 bit );
extern char ntfs_bit_get_and_set( u8 *bitmap, const u64 bit, const u8 new_value );
extern int ntfs_bitmap_set_run( ntfs_attr *na, s64 start_bit, s64 count );
extern int ntfs_bitmap_clear_run( ntfs_attr *na, s64 start_bit, s64 count );
/**
* ntfs_bitmap_set_bit - set a bit in a bitmap
@ -51,9 +51,9 @@ extern int ntfs_bitmap_clear_run(ntfs_attr *na, s64 start_bit, s64 count);
*
* On success return 0 and on error return -1 with errno set to the error code.
*/
static __inline__ int ntfs_bitmap_set_bit(ntfs_attr *na, s64 bit)
static __inline__ int ntfs_bitmap_set_bit( ntfs_attr *na, s64 bit )
{
return ntfs_bitmap_set_run(na, bit, 1);
return ntfs_bitmap_set_run( na, bit, 1 );
}
/**
@ -65,9 +65,9 @@ static __inline__ int ntfs_bitmap_set_bit(ntfs_attr *na, s64 bit)
*
* On success return 0 and on error return -1 with errno set to the error code.
*/
static __inline__ int ntfs_bitmap_clear_bit(ntfs_attr *na, s64 bit)
static __inline__ int ntfs_bitmap_clear_bit( ntfs_attr *na, s64 bit )
{
return ntfs_bitmap_clear_run(na, bit, 1);
return ntfs_bitmap_clear_run( na, bit, 1 );
}
/*
@ -76,9 +76,9 @@ static __inline__ int ntfs_bitmap_clear_bit(ntfs_attr *na, s64 bit)
* @word: value to rotate
* @shift: bits to roll
*/
static __inline__ u32 ntfs_rol32(u32 word, unsigned int shift)
static __inline__ u32 ntfs_rol32( u32 word, unsigned int shift )
{
return (word << shift) | (word >> (32 - shift));
return ( word << shift ) | ( word >> ( 32 - shift ) );
}
/*
@ -87,9 +87,9 @@ static __inline__ u32 ntfs_rol32(u32 word, unsigned int shift)
* @word: value to rotate
* @shift: bits to roll
*/
static __inline__ u32 ntfs_ror32(u32 word, unsigned int shift)
static __inline__ u32 ntfs_ror32( u32 word, unsigned int shift )
{
return (word >> shift) | (word << (32 - shift));
return ( word >> shift ) | ( word << ( 32 - shift ) );
}
#endif /* defined _NTFS_BITMAP_H */

View File

@ -57,94 +57,103 @@
*
* Return TRUE if @b contains a valid ntfs boot sector and FALSE if not.
*/
BOOL ntfs_boot_sector_is_ntfs(NTFS_BOOT_SECTOR *b)
BOOL ntfs_boot_sector_is_ntfs( NTFS_BOOT_SECTOR *b )
{
u32 i;
BOOL ret = FALSE;
ntfs_log_debug("Beginning bootsector check.\n");
ntfs_log_debug( "Beginning bootsector check.\n" );
ntfs_log_debug("Checking OEMid, NTFS signature.\n");
if (b->oem_id != cpu_to_le64(0x202020205346544eULL)) { /* "NTFS " */
ntfs_log_error("NTFS signature is missing.\n");
ntfs_log_debug( "Checking OEMid, NTFS signature.\n" );
if ( b->oem_id != cpu_to_le64( 0x202020205346544eULL ) ) /* "NTFS " */
{
ntfs_log_error( "NTFS signature is missing.\n" );
goto not_ntfs;
}
ntfs_log_debug("Checking bytes per sector.\n");
if (le16_to_cpu(b->bpb.bytes_per_sector) < 256 ||
le16_to_cpu(b->bpb.bytes_per_sector) > 4096) {
ntfs_log_error("Unexpected bytes per sector value (%d).\n",
le16_to_cpu(b->bpb.bytes_per_sector));
ntfs_log_debug( "Checking bytes per sector.\n" );
if ( le16_to_cpu( b->bpb.bytes_per_sector ) < 256 ||
le16_to_cpu( b->bpb.bytes_per_sector ) > 4096 )
{
ntfs_log_error( "Unexpected bytes per sector value (%d).\n",
le16_to_cpu( b->bpb.bytes_per_sector ) );
goto not_ntfs;
}
ntfs_log_debug("Checking sectors per cluster.\n");
switch (b->bpb.sectors_per_cluster) {
ntfs_log_debug( "Checking sectors per cluster.\n" );
switch ( b->bpb.sectors_per_cluster )
{
case 1: case 2: case 4: case 8: case 16: case 32: case 64: case 128:
break;
default:
ntfs_log_error("Unexpected sectors per cluster value (%d).\n",
b->bpb.sectors_per_cluster);
ntfs_log_error( "Unexpected sectors per cluster value (%d).\n",
b->bpb.sectors_per_cluster );
goto not_ntfs;
}
ntfs_log_debug("Checking cluster size.\n");
i = (u32)le16_to_cpu(b->bpb.bytes_per_sector) *
ntfs_log_debug( "Checking cluster size.\n" );
i = ( u32 )le16_to_cpu( b->bpb.bytes_per_sector ) *
b->bpb.sectors_per_cluster;
if (i > 65536) {
ntfs_log_error("Unexpected cluster size (%d).\n", i);
if ( i > 65536 )
{
ntfs_log_error( "Unexpected cluster size (%d).\n", i );
goto not_ntfs;
}
ntfs_log_debug("Checking reserved fields are zero.\n");
if (le16_to_cpu(b->bpb.reserved_sectors) ||
le16_to_cpu(b->bpb.root_entries) ||
le16_to_cpu(b->bpb.sectors) ||
le16_to_cpu(b->bpb.sectors_per_fat) ||
le32_to_cpu(b->bpb.large_sectors) ||
b->bpb.fats) {
ntfs_log_error("Reserved fields aren't zero "
ntfs_log_debug( "Checking reserved fields are zero.\n" );
if ( le16_to_cpu( b->bpb.reserved_sectors ) ||
le16_to_cpu( b->bpb.root_entries ) ||
le16_to_cpu( b->bpb.sectors ) ||
le16_to_cpu( b->bpb.sectors_per_fat ) ||
le32_to_cpu( b->bpb.large_sectors ) ||
b->bpb.fats )
{
ntfs_log_error( "Reserved fields aren't zero "
"(%d, %d, %d, %d, %d, %d).\n",
le16_to_cpu(b->bpb.reserved_sectors),
le16_to_cpu(b->bpb.root_entries),
le16_to_cpu(b->bpb.sectors),
le16_to_cpu(b->bpb.sectors_per_fat),
le32_to_cpu(b->bpb.large_sectors),
b->bpb.fats);
le16_to_cpu( b->bpb.reserved_sectors ),
le16_to_cpu( b->bpb.root_entries ),
le16_to_cpu( b->bpb.sectors ),
le16_to_cpu( b->bpb.sectors_per_fat ),
le32_to_cpu( b->bpb.large_sectors ),
b->bpb.fats );
goto not_ntfs;
}
ntfs_log_debug("Checking clusters per mft record.\n");
if ((u8)b->clusters_per_mft_record < 0xe1 ||
(u8)b->clusters_per_mft_record > 0xf7) {
switch (b->clusters_per_mft_record) {
ntfs_log_debug( "Checking clusters per mft record.\n" );
if ( ( u8 )b->clusters_per_mft_record < 0xe1 ||
( u8 )b->clusters_per_mft_record > 0xf7 )
{
switch ( b->clusters_per_mft_record )
{
case 1: case 2: case 4: case 8: case 0x10: case 0x20: case 0x40:
break;
default:
ntfs_log_error("Unexpected clusters per mft record "
"(%d).\n", b->clusters_per_mft_record);
ntfs_log_error( "Unexpected clusters per mft record "
"(%d).\n", b->clusters_per_mft_record );
goto not_ntfs;
}
}
ntfs_log_debug("Checking clusters per index block.\n");
if ((u8)b->clusters_per_index_record < 0xe1 ||
(u8)b->clusters_per_index_record > 0xf7) {
switch (b->clusters_per_index_record) {
ntfs_log_debug( "Checking clusters per index block.\n" );
if ( ( u8 )b->clusters_per_index_record < 0xe1 ||
( u8 )b->clusters_per_index_record > 0xf7 )
{
switch ( b->clusters_per_index_record )
{
case 1: case 2: case 4: case 8: case 0x10: case 0x20: case 0x40:
break;
default:
ntfs_log_error("Unexpected clusters per index record "
"(%d).\n", b->clusters_per_index_record);
ntfs_log_error( "Unexpected clusters per index record "
"(%d).\n", b->clusters_per_index_record );
goto not_ntfs;
}
}
if (b->end_of_sector_marker != cpu_to_le16(0xaa55))
ntfs_log_debug("Warning: Bootsector has invalid end of sector "
"marker.\n");
if ( b->end_of_sector_marker != cpu_to_le16( 0xaa55 ) )
ntfs_log_debug( "Warning: Bootsector has invalid end of sector "
"marker.\n" );
ntfs_log_debug("Bootsector check completed successfully.\n");
ntfs_log_debug( "Bootsector check completed successfully.\n" );
ret = TRUE;
not_ntfs:
@ -152,11 +161,11 @@ not_ntfs:
}
static const char *last_sector_error =
"HINTS: Either the volume is a RAID/LDM but it wasn't setup yet,\n"
" or it was not setup correctly (e.g. by not using mdadm --build ...),\n"
" or a wrong device is tried to be mounted,\n"
" or the partition table is corrupt (partition is smaller than NTFS),\n"
" or the NTFS boot sector is corrupt (NTFS size is not valid).\n";
"HINTS: Either the volume is a RAID/LDM but it wasn't setup yet,\n"
" or it was not setup correctly (e.g. by not using mdadm --build ...),\n"
" or a wrong device is tried to be mounted,\n"
" or the partition table is corrupt (partition is smaller than NTFS),\n"
" or the NTFS boot sector is corrupt (NTFS size is not valid).\n";
/**
* ntfs_boot_sector_parse - setup an ntfs volume from an ntfs boot sector
@ -168,7 +177,7 @@ static const char *last_sector_error =
*
* Return 0 on success or -1 on error with errno set to the error code EINVAL.
*/
int ntfs_boot_sector_parse(ntfs_volume *vol, const NTFS_BOOT_SECTOR *bs)
int ntfs_boot_sector_parse( ntfs_volume *vol, const NTFS_BOOT_SECTOR *bs )
{
s64 sectors;
u8 sectors_per_cluster;
@ -177,97 +186,103 @@ int ntfs_boot_sector_parse(ntfs_volume *vol, const NTFS_BOOT_SECTOR *bs)
/* We return -1 with errno = EINVAL on error. */
errno = EINVAL;
vol->sector_size = le16_to_cpu(bs->bpb.bytes_per_sector);
vol->sector_size_bits = ffs(vol->sector_size) - 1;
ntfs_log_debug("SectorSize = 0x%x\n", vol->sector_size);
ntfs_log_debug("SectorSizeBits = %u\n", vol->sector_size_bits);
vol->sector_size = le16_to_cpu( bs->bpb.bytes_per_sector );
vol->sector_size_bits = ffs( vol->sector_size ) - 1;
ntfs_log_debug( "SectorSize = 0x%x\n", vol->sector_size );
ntfs_log_debug( "SectorSizeBits = %u\n", vol->sector_size_bits );
/*
* The bounds checks on mft_lcn and mft_mirr_lcn (i.e. them being
* below or equal the number_of_clusters) really belong in the
* ntfs_boot_sector_is_ntfs but in this way we can just do this once.
*/
sectors_per_cluster = bs->bpb.sectors_per_cluster;
ntfs_log_debug("SectorsPerCluster = 0x%x\n", sectors_per_cluster);
if (sectors_per_cluster & (sectors_per_cluster - 1)) {
ntfs_log_error("sectors_per_cluster (%d) is not a power of 2."
"\n", sectors_per_cluster);
ntfs_log_debug( "SectorsPerCluster = 0x%x\n", sectors_per_cluster );
if ( sectors_per_cluster & ( sectors_per_cluster - 1 ) )
{
ntfs_log_error( "sectors_per_cluster (%d) is not a power of 2."
"\n", sectors_per_cluster );
return -1;
}
sectors = sle64_to_cpu(bs->number_of_sectors);
ntfs_log_debug("NumberOfSectors = %lld\n", (long long)sectors);
if (!sectors) {
ntfs_log_error("Volume size is set to zero.\n");
sectors = sle64_to_cpu( bs->number_of_sectors );
ntfs_log_debug( "NumberOfSectors = %lld\n", ( long long )sectors );
if ( !sectors )
{
ntfs_log_error( "Volume size is set to zero.\n" );
return -1;
}
if (vol->dev->d_ops->seek(vol->dev,
(sectors - 1) << vol->sector_size_bits,
SEEK_SET) == -1) {
ntfs_log_perror("Failed to read last sector (%lld)",
(long long)sectors);
ntfs_log_error("%s", last_sector_error);
if ( vol->dev->d_ops->seek( vol->dev,
( sectors - 1 ) << vol->sector_size_bits,
SEEK_SET ) == -1 )
{
ntfs_log_perror( "Failed to read last sector (%lld)",
( long long )sectors );
ntfs_log_error( "%s", last_sector_error );
return -1;
}
vol->nr_clusters = sectors >> (ffs(sectors_per_cluster) - 1);
vol->nr_clusters = sectors >> ( ffs( sectors_per_cluster ) - 1 );
vol->mft_lcn = sle64_to_cpu(bs->mft_lcn);
vol->mftmirr_lcn = sle64_to_cpu(bs->mftmirr_lcn);
ntfs_log_debug("MFT LCN = %lld\n", (long long)vol->mft_lcn);
ntfs_log_debug("MFTMirr LCN = %lld\n", (long long)vol->mftmirr_lcn);
if (vol->mft_lcn > vol->nr_clusters ||
vol->mftmirr_lcn > vol->nr_clusters) {
ntfs_log_error("$MFT LCN (%lld) or $MFTMirr LCN (%lld) is "
vol->mft_lcn = sle64_to_cpu( bs->mft_lcn );
vol->mftmirr_lcn = sle64_to_cpu( bs->mftmirr_lcn );
ntfs_log_debug( "MFT LCN = %lld\n", ( long long )vol->mft_lcn );
ntfs_log_debug( "MFTMirr LCN = %lld\n", ( long long )vol->mftmirr_lcn );
if ( vol->mft_lcn > vol->nr_clusters ||
vol->mftmirr_lcn > vol->nr_clusters )
{
ntfs_log_error( "$MFT LCN (%lld) or $MFTMirr LCN (%lld) is "
"greater than the number of clusters (%lld).\n",
(long long)vol->mft_lcn, (long long)vol->mftmirr_lcn,
(long long)vol->nr_clusters);
( long long )vol->mft_lcn, ( long long )vol->mftmirr_lcn,
( long long )vol->nr_clusters );
return -1;
}
vol->cluster_size = sectors_per_cluster * vol->sector_size;
if (vol->cluster_size & (vol->cluster_size - 1)) {
ntfs_log_error("cluster_size (%d) is not a power of 2.\n",
vol->cluster_size);
if ( vol->cluster_size & ( vol->cluster_size - 1 ) )
{
ntfs_log_error( "cluster_size (%d) is not a power of 2.\n",
vol->cluster_size );
return -1;
}
vol->cluster_size_bits = ffs(vol->cluster_size) - 1;
vol->cluster_size_bits = ffs( vol->cluster_size ) - 1;
/*
* Need to get the clusters per mft record and handle it if it is
* negative. Then calculate the mft_record_size. A value of 0x80 is
* illegal, thus signed char is actually ok!
*/
c = bs->clusters_per_mft_record;
ntfs_log_debug("ClusterSize = 0x%x\n", (unsigned)vol->cluster_size);
ntfs_log_debug("ClusterSizeBits = %u\n", vol->cluster_size_bits);
ntfs_log_debug("ClustersPerMftRecord = 0x%x\n", c);
ntfs_log_debug( "ClusterSize = 0x%x\n", ( unsigned )vol->cluster_size );
ntfs_log_debug( "ClusterSizeBits = %u\n", vol->cluster_size_bits );
ntfs_log_debug( "ClustersPerMftRecord = 0x%x\n", c );
/*
* When clusters_per_mft_record is negative, it means that it is to
* be taken to be the negative base 2 logarithm of the mft_record_size
* min bytes. Then:
* mft_record_size = 2^(-clusters_per_mft_record) bytes.
*/
if (c < 0)
if ( c < 0 )
vol->mft_record_size = 1 << -c;
else
vol->mft_record_size = c << vol->cluster_size_bits;
if (vol->mft_record_size & (vol->mft_record_size - 1)) {
ntfs_log_error("mft_record_size (%d) is not a power of 2.\n",
vol->mft_record_size);
if ( vol->mft_record_size & ( vol->mft_record_size - 1 ) )
{
ntfs_log_error( "mft_record_size (%d) is not a power of 2.\n",
vol->mft_record_size );
return -1;
}
vol->mft_record_size_bits = ffs(vol->mft_record_size) - 1;
ntfs_log_debug("MftRecordSize = 0x%x\n", (unsigned)vol->mft_record_size);
ntfs_log_debug("MftRecordSizeBits = %u\n", vol->mft_record_size_bits);
vol->mft_record_size_bits = ffs( vol->mft_record_size ) - 1;
ntfs_log_debug( "MftRecordSize = 0x%x\n", ( unsigned )vol->mft_record_size );
ntfs_log_debug( "MftRecordSizeBits = %u\n", vol->mft_record_size_bits );
/* Same as above for INDX record. */
c = bs->clusters_per_index_record;
ntfs_log_debug("ClustersPerINDXRecord = 0x%x\n", c);
if (c < 0)
ntfs_log_debug( "ClustersPerINDXRecord = 0x%x\n", c );
if ( c < 0 )
vol->indx_record_size = 1 << -c;
else
vol->indx_record_size = c << vol->cluster_size_bits;
vol->indx_record_size_bits = ffs(vol->indx_record_size) - 1;
ntfs_log_debug("INDXRecordSize = 0x%x\n", (unsigned)vol->indx_record_size);
ntfs_log_debug("INDXRecordSizeBits = %u\n", vol->indx_record_size_bits);
vol->indx_record_size_bits = ffs( vol->indx_record_size ) - 1;
ntfs_log_debug( "INDXRecordSize = 0x%x\n", ( unsigned )vol->indx_record_size );
ntfs_log_debug( "INDXRecordSizeBits = %u\n", vol->indx_record_size_bits );
/*
* Work out the size of the MFT mirror in number of mft records. If the
* cluster size is less than or equal to the size taken by four mft
@ -276,7 +291,7 @@ int ntfs_boot_sector_parse(ntfs_volume *vol, const NTFS_BOOT_SECTOR *bs)
* mft mirror contains as many mft records as will fit into one
* cluster.
*/
if (vol->cluster_size <= 4 * vol->mft_record_size)
if ( vol->cluster_size <= 4 * vol->mft_record_size )
vol->mftmirr_size = 4;
else
vol->mftmirr_size = vol->cluster_size / vol->mft_record_size;

View File

@ -35,8 +35,8 @@
* This function checks the boot sector in @b for describing a valid ntfs
* volume. Return TRUE if @b is a valid NTFS boot sector or FALSE otherwise.
*/
extern BOOL ntfs_boot_sector_is_ntfs(NTFS_BOOT_SECTOR *b);
extern int ntfs_boot_sector_parse(ntfs_volume *vol, const NTFS_BOOT_SECTOR *bs);
extern BOOL ntfs_boot_sector_is_ntfs( NTFS_BOOT_SECTOR *b );
extern int ntfs_boot_sector_parse( ntfs_volume *vol, const NTFS_BOOT_SECTOR *bs );
#endif /* defined _NTFS_BOOTSECT_H */

View File

@ -60,38 +60,45 @@
* Do not call when a record has been modified (with no key change)
*/
static void inserthashindex(struct CACHE_HEADER *cache,
struct CACHED_GENERIC *current)
static void inserthashindex( struct CACHE_HEADER *cache,
struct CACHED_GENERIC *current )
{
int h;
struct HASH_ENTRY *link;
struct HASH_ENTRY *first;
if (cache->dohash) {
h = cache->dohash(current);
if ((h >= 0) && (h < cache->max_hash)) {
if ( cache->dohash )
{
h = cache->dohash( current );
if ( ( h >= 0 ) && ( h < cache->max_hash ) )
{
/* get a free link and insert at top of hash list */
link = cache->free_hash;
if (link) {
if ( link )
{
cache->free_hash = link->next;
first = cache->first_hash[h];
if (first)
if ( first )
link->next = first;
else
link->next = NULL;
link->entry = current;
cache->first_hash[h] = link;
} else {
ntfs_log_error("No more hash entries,"
" cache %s hashing dropped\n",
cache->name);
cache->dohash = (cache_hash)NULL;
}
} else {
ntfs_log_error("Illegal hash value,"
else
{
ntfs_log_error( "No more hash entries,"
" cache %s hashing dropped\n",
cache->name);
cache->dohash = (cache_hash)NULL;
cache->name );
cache->dohash = ( cache_hash )NULL;
}
}
else
{
ntfs_log_error( "Illegal hash value,"
" cache %s hashing dropped\n",
cache->name );
cache->dohash = ( cache_hash )NULL;
}
}
}
@ -100,39 +107,47 @@ static void inserthashindex(struct CACHE_HEADER *cache,
* Drop a hash index when a record is about to be deleted
*/
static void drophashindex(struct CACHE_HEADER *cache,
const struct CACHED_GENERIC *current, int hash)
static void drophashindex( struct CACHE_HEADER *cache,
const struct CACHED_GENERIC *current, int hash )
{
struct HASH_ENTRY *link;
struct HASH_ENTRY *previous;
if (cache->dohash) {
if ((hash >= 0) && (hash < cache->max_hash)) {
if ( cache->dohash )
{
if ( ( hash >= 0 ) && ( hash < cache->max_hash ) )
{
/* find the link and unlink */
link = cache->first_hash[hash];
previous = (struct HASH_ENTRY*)NULL;
while (link && (link->entry != current)) {
previous = ( struct HASH_ENTRY* )NULL;
while ( link && ( link->entry != current ) )
{
previous = link;
link = link->next;
}
if (link) {
if (previous)
if ( link )
{
if ( previous )
previous->next = link->next;
else
cache->first_hash[hash] = link->next;
link->next = cache->free_hash;
cache->free_hash = link;
} else {
ntfs_log_error("Bad hash list,"
" cache %s hashing dropped\n",
cache->name);
cache->dohash = (cache_hash)NULL;
}
} else {
ntfs_log_error("Illegal hash value,"
else
{
ntfs_log_error( "Bad hash list,"
" cache %s hashing dropped\n",
cache->name);
cache->dohash = (cache_hash)NULL;
cache->name );
cache->dohash = ( cache_hash )NULL;
}
}
else
{
ntfs_log_error( "Illegal hash value,"
" cache %s hashing dropped\n",
cache->name );
cache->dohash = ( cache_hash )NULL;
}
}
}
@ -144,49 +159,55 @@ static void drophashindex(struct CACHE_HEADER *cache,
* The returned entry may be modified, but not freed
*/
struct CACHED_GENERIC *ntfs_fetch_cache(struct CACHE_HEADER *cache,
const struct CACHED_GENERIC *wanted, cache_compare compare)
struct CACHED_GENERIC *ntfs_fetch_cache( struct CACHE_HEADER *cache,
const struct CACHED_GENERIC *wanted, cache_compare compare )
{
struct CACHED_GENERIC *current;
struct CACHED_GENERIC *previous;
struct HASH_ENTRY *link;
int h;
current = (struct CACHED_GENERIC*)NULL;
if (cache) {
if (cache->dohash) {
current = ( struct CACHED_GENERIC* )NULL;
if ( cache )
{
if ( cache->dohash )
{
/*
* When possible, use the hash table to
* locate the entry if present
*/
h = cache->dohash(wanted);
h = cache->dohash( wanted );
link = cache->first_hash[h];
while (link && compare(link->entry, wanted))
while ( link && compare( link->entry, wanted ) )
link = link->next;
if (link)
if ( link )
current = link->entry;
}
if (!cache->dohash) {
if ( !cache->dohash )
{
/*
* Search sequentially in LRU list if no hash table
* or if hashing has just failed
*/
current = cache->most_recent_entry;
while (current
&& compare(current, wanted)) {
while ( current
&& compare( current, wanted ) )
{
current = current->next;
}
}
if (current) {
if ( current )
{
previous = current->previous;
cache->hits++;
if (previous) {
if ( previous )
{
/*
* found and not at head of list, unlink from current
* position and relink as head of list
*/
previous->next = current->next;
if (current->next)
if ( current->next )
current->next->previous
= current->previous;
else
@ -194,14 +215,14 @@ struct CACHED_GENERIC *ntfs_fetch_cache(struct CACHE_HEADER *cache,
= current->previous;
current->next = cache->most_recent_entry;
current->previous
= (struct CACHED_GENERIC*)NULL;
= ( struct CACHED_GENERIC* )NULL;
cache->most_recent_entry->previous = current;
cache->most_recent_entry = current;
}
}
cache->reads++;
}
return (current);
return ( current );
}
/*
@ -209,31 +230,35 @@ struct CACHED_GENERIC *ntfs_fetch_cache(struct CACHE_HEADER *cache,
* returns the cache entry or NULL if not possible
*/
struct CACHED_GENERIC *ntfs_enter_cache(struct CACHE_HEADER *cache,
struct CACHED_GENERIC *ntfs_enter_cache( struct CACHE_HEADER *cache,
const struct CACHED_GENERIC *item,
cache_compare compare)
cache_compare compare )
{
struct CACHED_GENERIC *current;
struct CACHED_GENERIC *before;
struct HASH_ENTRY *link;
int h;
current = (struct CACHED_GENERIC*)NULL;
if (cache) {
if (cache->dohash) {
current = ( struct CACHED_GENERIC* )NULL;
if ( cache )
{
if ( cache->dohash )
{
/*
* When possible, use the hash table to
* find out whether the entry if present
*/
h = cache->dohash(item);
h = cache->dohash( item );
link = cache->first_hash[h];
while (link && compare(link->entry, item))
while ( link && compare( link->entry, item ) )
link = link->next;
if (link) {
if ( link )
{
current = link->entry;
}
}
if (!cache->dohash) {
if ( !cache->dohash )
{
/*
* Search sequentially in LRU list to locate the end,
* and find out whether the entry is already in list
@ -241,13 +266,15 @@ struct CACHED_GENERIC *ntfs_enter_cache(struct CACHE_HEADER *cache,
* kept.
*/
current = cache->most_recent_entry;
while (current
&& compare(current, item)) {
while ( current
&& compare( current, item ) )
{
current = current->next;
}
}
if (!current) {
if ( !current )
{
/*
* Not in list, get a free entry or reuse the
* last entry, and relink as head of list
@ -256,54 +283,66 @@ struct CACHED_GENERIC *ntfs_enter_cache(struct CACHE_HEADER *cache,
* an entry is reused.
*/
if (cache->free_entry) {
if ( cache->free_entry )
{
current = cache->free_entry;
cache->free_entry = cache->free_entry->next;
if (item->varsize) {
if ( item->varsize )
{
current->variable = ntfs_malloc(
item->varsize);
} else
current->variable = (void*)NULL;
item->varsize );
}
else
current->variable = ( void* )NULL;
current->varsize = item->varsize;
if (!cache->oldest_entry)
if ( !cache->oldest_entry )
cache->oldest_entry = current;
} else {
}
else
{
/* reusing the oldest entry */
current = cache->oldest_entry;
before = current->previous;
before->next = (struct CACHED_GENERIC*)NULL;
if (cache->dohash)
drophashindex(cache,current,
cache->dohash(current));
if (cache->dofree)
cache->dofree(current);
before->next = ( struct CACHED_GENERIC* )NULL;
if ( cache->dohash )
drophashindex( cache, current,
cache->dohash( current ) );
if ( cache->dofree )
cache->dofree( current );
cache->oldest_entry = current->previous;
if (item->varsize) {
if (current->varsize)
if ( item->varsize )
{
if ( current->varsize )
current->variable = realloc(
current->variable,
item->varsize);
item->varsize );
else
current->variable = ntfs_malloc(
item->varsize);
} else {
if (current->varsize)
free(current->variable);
current->variable = (void*)NULL;
item->varsize );
}
else
{
if ( current->varsize )
free( current->variable );
current->variable = ( void* )NULL;
}
current->varsize = item->varsize;
}
current->next = cache->most_recent_entry;
current->previous = (struct CACHED_GENERIC*)NULL;
if (cache->most_recent_entry)
current->previous = ( struct CACHED_GENERIC* )NULL;
if ( cache->most_recent_entry )
cache->most_recent_entry->previous = current;
cache->most_recent_entry = current;
memcpy(current->fixed, item->fixed, cache->fixed_size);
if (item->varsize) {
if (current->variable) {
memcpy(current->variable,
item->variable, item->varsize);
} else {
memcpy( current->fixed, item->fixed, cache->fixed_size );
if ( item->varsize )
{
if ( current->variable )
{
memcpy( current->variable,
item->variable, item->varsize );
}
else
{
/*
* no more memory for variable part
* recycle entry in free list
@ -312,18 +351,20 @@ struct CACHED_GENERIC *ntfs_enter_cache(struct CACHE_HEADER *cache,
cache->most_recent_entry = current->next;
current->next = cache->free_entry;
cache->free_entry = current;
current = (struct CACHED_GENERIC*)NULL;
current = ( struct CACHED_GENERIC* )NULL;
}
} else {
current->variable = (void*)NULL;
}
else
{
current->variable = ( void* )NULL;
current->varsize = 0;
}
if (cache->dohash && current)
inserthashindex(cache,current);
if ( cache->dohash && current )
inserthashindex( cache, current );
}
cache->writes++;
}
return (current);
return ( current );
}
/*
@ -332,31 +373,31 @@ struct CACHED_GENERIC *ntfs_enter_cache(struct CACHE_HEADER *cache,
* A specific function may be called for entry deletion
*/
static void do_invalidate(struct CACHE_HEADER *cache,
struct CACHED_GENERIC *current, int flags)
static void do_invalidate( struct CACHE_HEADER *cache,
struct CACHED_GENERIC *current, int flags )
{
struct CACHED_GENERIC *previous;
previous = current->previous;
if ((flags & CACHE_FREE) && cache->dofree)
cache->dofree(current);
if ( ( flags & CACHE_FREE ) && cache->dofree )
cache->dofree( current );
/*
* Relink into free list
*/
if (current->next)
if ( current->next )
current->next->previous = current->previous;
else
cache->oldest_entry = current->previous;
if (previous)
if ( previous )
previous->next = current->next;
else
cache->most_recent_entry = current->next;
current->next = cache->free_entry;
cache->free_entry = current;
if (current->variable)
free(current->variable);
if ( current->variable )
free( current->variable );
current->varsize = 0;
}
}
/*
@ -371,9 +412,9 @@ static void do_invalidate(struct CACHE_HEADER *cache,
* supposed to be found.
*/
int ntfs_invalidate_cache(struct CACHE_HEADER *cache,
int ntfs_invalidate_cache( struct CACHE_HEADER *cache,
const struct CACHED_GENERIC *item, cache_compare compare,
int flags)
int flags )
{
struct CACHED_GENERIC *current;
struct CACHED_GENERIC *previous;
@ -382,87 +423,100 @@ int ntfs_invalidate_cache(struct CACHE_HEADER *cache,
int count;
int h;
current = (struct CACHED_GENERIC*)NULL;
current = ( struct CACHED_GENERIC* )NULL;
count = 0;
if (cache) {
if (!(flags & CACHE_NOHASH) && cache->dohash) {
if ( cache )
{
if ( !( flags & CACHE_NOHASH ) && cache->dohash )
{
/*
* When possible, use the hash table to
* find out whether the entry if present
*/
h = cache->dohash(item);
h = cache->dohash( item );
link = cache->first_hash[h];
while (link) {
if (compare(link->entry, item))
while ( link )
{
if ( compare( link->entry, item ) )
link = link->next;
else {
else
{
current = link->entry;
link = link->next;
if (current) {
drophashindex(cache,current,h);
do_invalidate(cache,
current,flags);
if ( current )
{
drophashindex( cache, current, h );
do_invalidate( cache,
current, flags );
count++;
}
}
}
}
if ((flags & CACHE_NOHASH) || !cache->dohash) {
if ( ( flags & CACHE_NOHASH ) || !cache->dohash )
{
/*
* Search sequentially in LRU list
*/
current = cache->most_recent_entry;
previous = (struct CACHED_GENERIC*)NULL;
while (current) {
if (!compare(current, item)) {
previous = ( struct CACHED_GENERIC* )NULL;
while ( current )
{
if ( !compare( current, item ) )
{
next = current->next;
if (cache->dohash)
drophashindex(cache,current,
cache->dohash(current));
do_invalidate(cache,current,flags);
if ( cache->dohash )
drophashindex( cache, current,
cache->dohash( current ) );
do_invalidate( cache, current, flags );
current = next;
count++;
} else {
}
else
{
previous = current;
current = current->next;
}
}
}
}
return (count);
return ( count );
}
int ntfs_remove_cache(struct CACHE_HEADER *cache,
struct CACHED_GENERIC *item, int flags)
int ntfs_remove_cache( struct CACHE_HEADER *cache,
struct CACHED_GENERIC *item, int flags )
{
int count;
count = 0;
if (cache) {
if (cache->dohash)
drophashindex(cache,item,cache->dohash(item));
do_invalidate(cache,item,flags);
if ( cache )
{
if ( cache->dohash )
drophashindex( cache, item, cache->dohash( item ) );
do_invalidate( cache, item, flags );
count++;
}
return (count);
return ( count );
}
/*
* Free memory allocated to a cache
*/
static void ntfs_free_cache(struct CACHE_HEADER *cache)
static void ntfs_free_cache( struct CACHE_HEADER *cache )
{
struct CACHED_GENERIC *entry;
if (cache) {
for (entry=cache->most_recent_entry; entry; entry=entry->next) {
if (cache->dofree)
cache->dofree(entry);
if (entry->variable)
free(entry->variable);
if ( cache )
{
for ( entry = cache->most_recent_entry; entry; entry = entry->next )
{
if ( cache->dofree )
cache->dofree( entry );
if ( entry->variable )
free( entry->variable );
}
free(cache);
free( cache );
}
}
@ -472,10 +526,10 @@ static void ntfs_free_cache(struct CACHE_HEADER *cache)
* Returns the cache header, or NULL if the cache could not be created
*/
static struct CACHE_HEADER *ntfs_create_cache(const char *name,
static struct CACHE_HEADER *ntfs_create_cache( const char *name,
cache_free dofree, cache_hash dohash,
int full_item_size,
int item_count, int max_hash)
int item_count, int max_hash )
{
struct CACHE_HEADER *cache;
struct CACHED_GENERIC *pc;
@ -486,68 +540,78 @@ static struct CACHE_HEADER *ntfs_create_cache(const char *name,
size_t size;
int i;
size = sizeof(struct CACHE_HEADER) + item_count*full_item_size;
if (max_hash)
size += item_count*sizeof(struct HASH_ENTRY)
+ max_hash*sizeof(struct HASH_ENTRY*);
cache = (struct CACHE_HEADER*)ntfs_malloc(size);
if (cache) {
size = sizeof( struct CACHE_HEADER ) + item_count*full_item_size;
if ( max_hash )
size += item_count*sizeof( struct HASH_ENTRY )
+ max_hash*sizeof( struct HASH_ENTRY* );
cache = ( struct CACHE_HEADER* )ntfs_malloc( size );
if ( cache )
{
/* header */
cache->name = name;
cache->dofree = dofree;
if (dohash && max_hash) {
if ( dohash && max_hash )
{
cache->dohash = dohash;
cache->max_hash = max_hash;
} else {
cache->dohash = (cache_hash)NULL;
}
else
{
cache->dohash = ( cache_hash )NULL;
cache->max_hash = 0;
}
cache->fixed_size = full_item_size - sizeof(struct CACHED_GENERIC);
cache->fixed_size = full_item_size - sizeof( struct CACHED_GENERIC );
cache->reads = 0;
cache->writes = 0;
cache->hits = 0;
/* chain the data entries, and mark an invalid entry */
cache->most_recent_entry = (struct CACHED_GENERIC*)NULL;
cache->oldest_entry = (struct CACHED_GENERIC*)NULL;
cache->most_recent_entry = ( struct CACHED_GENERIC* )NULL;
cache->oldest_entry = ( struct CACHED_GENERIC* )NULL;
cache->free_entry = &cache->entry[0];
pc = &cache->entry[0];
for (i=0; i<(item_count - 1); i++) {
qc = (struct CACHED_GENERIC*)((char*)pc
+ full_item_size);
for ( i = 0; i < ( item_count - 1 ); i++ )
{
qc = ( struct CACHED_GENERIC* )( ( char* )pc
+ full_item_size );
pc->next = qc;
pc->variable = (void*)NULL;
pc->variable = ( void* )NULL;
pc->varsize = 0;
pc = qc;
}
/* special for the last entry */
pc->next = (struct CACHED_GENERIC*)NULL;
pc->variable = (void*)NULL;
pc->next = ( struct CACHED_GENERIC* )NULL;
pc->variable = ( void* )NULL;
pc->varsize = 0;
if (max_hash) {
if ( max_hash )
{
/* chain the hash entries */
ph = (struct HASH_ENTRY*)(((char*)pc) + full_item_size);
ph = ( struct HASH_ENTRY* )( ( ( char* )pc ) + full_item_size );
cache->free_hash = ph;
for (i=0; i<(item_count - 1); i++) {
for ( i = 0; i < ( item_count - 1 ); i++ )
{
qh = &ph[1];
ph->next = qh;
ph = qh;
}
/* special for the last entry */
if (item_count) {
ph->next = (struct HASH_ENTRY*)NULL;
if ( item_count )
{
ph->next = ( struct HASH_ENTRY* )NULL;
}
/* create and initialize the hash indexes */
px = (struct HASH_ENTRY**)&ph[1];
px = ( struct HASH_ENTRY** ) & ph[1];
cache->first_hash = px;
for (i=0; i<max_hash; i++)
px[i] = (struct HASH_ENTRY*)NULL;
} else {
cache->free_hash = (struct HASH_ENTRY*)NULL;
cache->first_hash = (struct HASH_ENTRY**)NULL;
for ( i = 0; i < max_hash; i++ )
px[i] = ( struct HASH_ENTRY* )NULL;
}
else
{
cache->free_hash = ( struct HASH_ENTRY* )NULL;
cache->first_hash = ( struct HASH_ENTRY** )NULL;
}
}
return (cache);
return ( cache );
}
/*
@ -557,33 +621,33 @@ static struct CACHE_HEADER *ntfs_create_cache(const char *name,
* just be not available
*/
void ntfs_create_lru_caches(ntfs_volume *vol)
void ntfs_create_lru_caches( ntfs_volume *vol )
{
#if CACHE_INODE_SIZE
/* inode cache */
vol->xinode_cache = ntfs_create_cache("inode",(cache_free)NULL,
ntfs_dir_inode_hash, sizeof(struct CACHED_INODE),
CACHE_INODE_SIZE, 2*CACHE_INODE_SIZE);
vol->xinode_cache = ntfs_create_cache( "inode", ( cache_free )NULL,
ntfs_dir_inode_hash, sizeof( struct CACHED_INODE ),
CACHE_INODE_SIZE, 2 * CACHE_INODE_SIZE );
#endif
#if CACHE_NIDATA_SIZE
/* idata cache */
vol->nidata_cache = ntfs_create_cache("nidata",
vol->nidata_cache = ntfs_create_cache( "nidata",
ntfs_inode_nidata_free, ntfs_inode_nidata_hash,
sizeof(struct CACHED_NIDATA),
CACHE_NIDATA_SIZE, 2*CACHE_NIDATA_SIZE);
sizeof( struct CACHED_NIDATA ),
CACHE_NIDATA_SIZE, 2 * CACHE_NIDATA_SIZE );
#endif
#if CACHE_LOOKUP_SIZE
/* lookup cache */
vol->lookup_cache = ntfs_create_cache("lookup",
(cache_free)NULL, ntfs_dir_lookup_hash,
sizeof(struct CACHED_LOOKUP),
CACHE_LOOKUP_SIZE, 2*CACHE_LOOKUP_SIZE);
vol->lookup_cache = ntfs_create_cache( "lookup",
( cache_free )NULL, ntfs_dir_lookup_hash,
sizeof( struct CACHED_LOOKUP ),
CACHE_LOOKUP_SIZE, 2 * CACHE_LOOKUP_SIZE );
#endif
vol->securid_cache = ntfs_create_cache("securid",(cache_free)NULL,
(cache_hash)NULL,sizeof(struct CACHED_SECURID), CACHE_SECURID_SIZE, 0);
vol->securid_cache = ntfs_create_cache( "securid", ( cache_free )NULL,
( cache_hash )NULL, sizeof( struct CACHED_SECURID ), CACHE_SECURID_SIZE, 0 );
#if CACHE_LEGACY_SIZE
vol->legacy_cache = ntfs_create_cache("legacy",(cache_free)NULL,
(cache_hash)NULL, sizeof(struct CACHED_PERMISSIONS_LEGACY), CACHE_LEGACY_SIZE, 0);
vol->legacy_cache = ntfs_create_cache( "legacy", ( cache_free )NULL,
( cache_hash )NULL, sizeof( struct CACHED_PERMISSIONS_LEGACY ), CACHE_LEGACY_SIZE, 0 );
#endif
}
@ -591,19 +655,19 @@ void ntfs_create_lru_caches(ntfs_volume *vol)
* Free all LRU caches
*/
void ntfs_free_lru_caches(ntfs_volume *vol)
void ntfs_free_lru_caches( ntfs_volume *vol )
{
#if CACHE_INODE_SIZE
ntfs_free_cache(vol->xinode_cache);
ntfs_free_cache( vol->xinode_cache );
#endif
#if CACHE_NIDATA_SIZE
ntfs_free_cache(vol->nidata_cache);
ntfs_free_cache( vol->nidata_cache );
#endif
#if CACHE_LOOKUP_SIZE
ntfs_free_cache(vol->lookup_cache);
ntfs_free_cache( vol->lookup_cache );
#endif
ntfs_free_cache(vol->securid_cache);
ntfs_free_cache( vol->securid_cache );
#if CACHE_LEGACY_SIZE
ntfs_free_cache(vol->legacy_cache);
ntfs_free_cache( vol->legacy_cache );
#endif
}

View File

@ -24,19 +24,22 @@
#include "volume.h"
struct CACHED_GENERIC {
struct CACHED_GENERIC
{
struct CACHED_GENERIC *next;
struct CACHED_GENERIC *previous;
void *variable;
size_t varsize;
union {
union
{
/* force alignment for pointers and u64 */
u64 u64align;
void *ptralign;
} fixed[0];
} ;
struct CACHED_INODE {
struct CACHED_INODE
{
struct CACHED_INODE *next;
struct CACHED_INODE *previous;
const char *pathname;
@ -45,7 +48,8 @@ struct CACHED_INODE {
u64 inum;
} ;
struct CACHED_NIDATA {
struct CACHED_NIDATA
{
struct CACHED_NIDATA *next;
struct CACHED_NIDATA *previous;
const char *pathname; /* not used */
@ -55,7 +59,8 @@ struct CACHED_NIDATA {
ntfs_inode *ni;
} ;
struct CACHED_LOOKUP {
struct CACHED_LOOKUP
{
struct CACHED_LOOKUP *next;
struct CACHED_LOOKUP *previous;
const char *name;
@ -65,22 +70,25 @@ struct CACHED_LOOKUP {
u64 inum;
} ;
enum {
enum
{
CACHE_FREE = 1,
CACHE_NOHASH = 2
} ;
typedef int (*cache_compare)(const struct CACHED_GENERIC *cached,
const struct CACHED_GENERIC *item);
typedef void (*cache_free)(const struct CACHED_GENERIC *cached);
typedef int (*cache_hash)(const struct CACHED_GENERIC *cached);
typedef int ( *cache_compare )( const struct CACHED_GENERIC *cached,
const struct CACHED_GENERIC *item );
typedef void ( *cache_free )( const struct CACHED_GENERIC *cached );
typedef int ( *cache_hash )( const struct CACHED_GENERIC *cached );
struct HASH_ENTRY {
struct HASH_ENTRY
{
struct HASH_ENTRY *next;
struct CACHED_GENERIC *entry;
} ;
struct CACHE_HEADER {
struct CACHE_HEADER
{
const char *name;
struct CACHED_GENERIC *most_recent_entry;
struct CACHED_GENERIC *oldest_entry;
@ -97,23 +105,23 @@ struct CACHE_HEADER {
struct CACHED_GENERIC entry[0];
} ;
/* cast to generic, avoiding gcc warnings */
/* cast to generic, avoiding gcc warnings */
#define GENERIC(pstr) ((const struct CACHED_GENERIC*)(const void*)(pstr))
struct CACHED_GENERIC *ntfs_fetch_cache(struct CACHE_HEADER *cache,
struct CACHED_GENERIC *ntfs_fetch_cache( struct CACHE_HEADER *cache,
const struct CACHED_GENERIC *wanted,
cache_compare compare);
struct CACHED_GENERIC *ntfs_enter_cache(struct CACHE_HEADER *cache,
cache_compare compare );
struct CACHED_GENERIC *ntfs_enter_cache( struct CACHE_HEADER *cache,
const struct CACHED_GENERIC *item,
cache_compare compare);
int ntfs_invalidate_cache(struct CACHE_HEADER *cache,
cache_compare compare );
int ntfs_invalidate_cache( struct CACHE_HEADER *cache,
const struct CACHED_GENERIC *item,
cache_compare compare, int flags);
int ntfs_remove_cache(struct CACHE_HEADER *cache,
struct CACHED_GENERIC *item, int flags);
cache_compare compare, int flags );
int ntfs_remove_cache( struct CACHE_HEADER *cache,
struct CACHED_GENERIC *item, int flags );
void ntfs_create_lru_caches(ntfs_volume *vol);
void ntfs_free_lru_caches(ntfs_volume *vol);
void ntfs_create_lru_caches( ntfs_volume *vol );
void ntfs_free_lru_caches( ntfs_volume *vol );
#endif /* _NTFS_CACHE_H_ */

View File

@ -45,23 +45,27 @@
#define CACHE_FREE UINT_MAX
NTFS_CACHE* _NTFS_cache_constructor (unsigned int numberOfPages, unsigned int sectorsPerPage, const DISC_INTERFACE* discInterface, sec_t endOfPartition, sec_t sectorSize) {
NTFS_CACHE* _NTFS_cache_constructor ( unsigned int numberOfPages, unsigned int sectorsPerPage, const DISC_INTERFACE* discInterface, sec_t endOfPartition, sec_t sectorSize )
{
NTFS_CACHE* cache;
unsigned int i;
NTFS_CACHE_ENTRY* cacheEntries;
if(numberOfPages==0 || sectorsPerPage==0) return NULL;
if ( numberOfPages == 0 || sectorsPerPage == 0 ) return NULL;
if (numberOfPages < 4) {
if ( numberOfPages < 4 )
{
numberOfPages = 4;
}
if (sectorsPerPage < 32) {
if ( sectorsPerPage < 32 )
{
sectorsPerPage = 32;
}
cache = (NTFS_CACHE*) ntfs_alloc (sizeof(NTFS_CACHE));
if (cache == NULL) {
cache = ( NTFS_CACHE* ) ntfs_alloc ( sizeof( NTFS_CACHE ) );
if ( cache == NULL )
{
return NULL;
}
@ -72,18 +76,20 @@ NTFS_CACHE* _NTFS_cache_constructor (unsigned int numberOfPages, unsigned int se
cache->sectorSize = sectorSize;
cacheEntries = (NTFS_CACHE_ENTRY*) ntfs_alloc ( sizeof(NTFS_CACHE_ENTRY) * numberOfPages);
if (cacheEntries == NULL) {
ntfs_free (cache);
cacheEntries = ( NTFS_CACHE_ENTRY* ) ntfs_alloc ( sizeof( NTFS_CACHE_ENTRY ) * numberOfPages );
if ( cacheEntries == NULL )
{
ntfs_free ( cache );
return NULL;
}
for (i = 0; i < numberOfPages; i++) {
for ( i = 0; i < numberOfPages; i++ )
{
cacheEntries[i].sector = CACHE_FREE;
cacheEntries[i].count = 0;
cacheEntries[i].last_access = 0;
cacheEntries[i].dirty = false;
cacheEntries[i].cache = (uint8_t*) ntfs_align ( sectorsPerPage * cache->sectorSize );
cacheEntries[i].cache = ( uint8_t* ) ntfs_align ( sectorsPerPage * cache->sectorSize );
}
cache->cacheEntries = cacheEntries;
@ -91,30 +97,33 @@ NTFS_CACHE* _NTFS_cache_constructor (unsigned int numberOfPages, unsigned int se
return cache;
}
void _NTFS_cache_destructor (NTFS_CACHE* cache) {
void _NTFS_cache_destructor ( NTFS_CACHE* cache )
{
unsigned int i;
if(cache==NULL) return;
if ( cache == NULL ) return;
// Clear out cache before destroying it
_NTFS_cache_flush(cache);
_NTFS_cache_flush( cache );
// Free memory in reverse allocation order
for (i = 0; i < cache->numberOfPages; i++) {
ntfs_free (cache->cacheEntries[i].cache);
for ( i = 0; i < cache->numberOfPages; i++ )
{
ntfs_free ( cache->cacheEntries[i].cache );
}
ntfs_free (cache->cacheEntries);
ntfs_free (cache);
ntfs_free ( cache->cacheEntries );
ntfs_free ( cache );
}
static u32 accessCounter = 0;
static u32 accessTime(){
static u32 accessTime()
{
accessCounter++;
return accessCounter;
}
static NTFS_CACHE_ENTRY* _NTFS_cache_getPage(NTFS_CACHE *cache,sec_t sector)
static NTFS_CACHE_ENTRY* _NTFS_cache_getPage( NTFS_CACHE *cache, sec_t sector )
{
unsigned int i;
NTFS_CACHE_ENTRY* cacheEntries = cache->cacheEntries;
@ -125,37 +134,42 @@ static NTFS_CACHE_ENTRY* _NTFS_cache_getPage(NTFS_CACHE *cache,sec_t sector)
unsigned int oldUsed = 0;
unsigned int oldAccess = UINT_MAX;
for(i=0;i<numberOfPages;i++) {
if(sector>=cacheEntries[i].sector && sector<(cacheEntries[i].sector + cacheEntries[i].count)) {
for ( i = 0; i < numberOfPages; i++ )
{
if ( sector >= cacheEntries[i].sector && sector < ( cacheEntries[i].sector + cacheEntries[i].count ) )
{
cacheEntries[i].last_access = accessTime();
return &(cacheEntries[i]);
return &( cacheEntries[i] );
}
if(foundFree==false && (cacheEntries[i].sector==CACHE_FREE || cacheEntries[i].last_access<oldAccess)) {
if(cacheEntries[i].sector==CACHE_FREE) foundFree = true;
if ( foundFree == false && ( cacheEntries[i].sector == CACHE_FREE || cacheEntries[i].last_access < oldAccess ) )
{
if ( cacheEntries[i].sector == CACHE_FREE ) foundFree = true;
oldUsed = i;
oldAccess = cacheEntries[i].last_access;
}
}
if(foundFree==false && cacheEntries[oldUsed].dirty==true) {
if(!cache->disc->writeSectors(cacheEntries[oldUsed].sector,cacheEntries[oldUsed].count,cacheEntries[oldUsed].cache)) return NULL;
if ( foundFree == false && cacheEntries[oldUsed].dirty == true )
{
if ( !cache->disc->writeSectors( cacheEntries[oldUsed].sector, cacheEntries[oldUsed].count, cacheEntries[oldUsed].cache ) ) return NULL;
cacheEntries[oldUsed].dirty = false;
}
sector = (sector/sectorsPerPage)*sectorsPerPage; // align base sector to page size
sector = ( sector / sectorsPerPage ) * sectorsPerPage; // align base sector to page size
sec_t next_page = sector + sectorsPerPage;
if(next_page > cache->endOfPartition) next_page = cache->endOfPartition;
if ( next_page > cache->endOfPartition ) next_page = cache->endOfPartition;
if(!cache->disc->readSectors(sector,next_page-sector,cacheEntries[oldUsed].cache)) return NULL;
if ( !cache->disc->readSectors( sector, next_page - sector, cacheEntries[oldUsed].cache ) ) return NULL;
cacheEntries[oldUsed].sector = sector;
cacheEntries[oldUsed].count = next_page-sector;
cacheEntries[oldUsed].count = next_page - sector;
cacheEntries[oldUsed].last_access = accessTime();
return &(cacheEntries[oldUsed]);
return &( cacheEntries[oldUsed] );
}
static NTFS_CACHE_ENTRY* _NTFS_cache_findPage(NTFS_CACHE *cache, sec_t sector, sec_t count) {
static NTFS_CACHE_ENTRY* _NTFS_cache_findPage( NTFS_CACHE *cache, sec_t sector, sec_t count )
{
unsigned int i;
NTFS_CACHE_ENTRY* cacheEntries = cache->cacheEntries;
@ -163,16 +177,22 @@ static NTFS_CACHE_ENTRY* _NTFS_cache_findPage(NTFS_CACHE *cache, sec_t sector, s
NTFS_CACHE_ENTRY *entry = NULL;
sec_t lowest = UINT_MAX;
for(i=0;i<numberOfPages;i++) {
if (cacheEntries[i].sector != CACHE_FREE) {
for ( i = 0; i < numberOfPages; i++ )
{
if ( cacheEntries[i].sector != CACHE_FREE )
{
bool intersect;
if (sector > cacheEntries[i].sector) {
if ( sector > cacheEntries[i].sector )
{
intersect = sector - cacheEntries[i].sector < cacheEntries[i].count;
} else {
}
else
{
intersect = cacheEntries[i].sector - sector < count;
}
if ( intersect && (cacheEntries[i].sector < lowest)) {
if ( intersect && ( cacheEntries[i].sector < lowest ) )
{
lowest = cacheEntries[i].sector;
entry = &cacheEntries[i];
}
@ -182,24 +202,25 @@ static NTFS_CACHE_ENTRY* _NTFS_cache_findPage(NTFS_CACHE *cache, sec_t sector, s
return entry;
}
bool _NTFS_cache_readSectors(NTFS_CACHE *cache,sec_t sector,sec_t numSectors,void *buffer)
bool _NTFS_cache_readSectors( NTFS_CACHE *cache, sec_t sector, sec_t numSectors, void *buffer )
{
sec_t sec;
sec_t secs_to_read;
NTFS_CACHE_ENTRY *entry;
uint8_t *dest = buffer;
while(numSectors>0) {
entry = _NTFS_cache_getPage(cache,sector);
if(entry==NULL) return false;
while ( numSectors > 0 )
{
entry = _NTFS_cache_getPage( cache, sector );
if ( entry == NULL ) return false;
sec = sector - entry->sector;
secs_to_read = entry->count - sec;
if(secs_to_read>numSectors) secs_to_read = numSectors;
if ( secs_to_read > numSectors ) secs_to_read = numSectors;
memcpy(dest,entry->cache + (sec*cache->sectorSize),(secs_to_read*cache->sectorSize));
memcpy( dest, entry->cache + ( sec*cache->sectorSize ), ( secs_to_read*cache->sectorSize ) );
dest += (secs_to_read*cache->sectorSize);
dest += ( secs_to_read * cache->sectorSize );
sector += secs_to_read;
numSectors -= secs_to_read;
}
@ -211,30 +232,32 @@ bool _NTFS_cache_readSectors(NTFS_CACHE *cache,sec_t sector,sec_t numSectors,voi
Reads some data from a cache page, determined by the sector number
*/
bool _NTFS_cache_readPartialSector (NTFS_CACHE* cache, void* buffer, sec_t sector, unsigned int offset, size_t size)
bool _NTFS_cache_readPartialSector ( NTFS_CACHE* cache, void* buffer, sec_t sector, unsigned int offset, size_t size )
{
sec_t sec;
NTFS_CACHE_ENTRY *entry;
if (offset + size > cache->sectorSize) return false;
if ( offset + size > cache->sectorSize ) return false;
entry = _NTFS_cache_getPage(cache,sector);
if(entry==NULL) return false;
entry = _NTFS_cache_getPage( cache, sector );
if ( entry == NULL ) return false;
sec = sector - entry->sector;
memcpy(buffer,entry->cache + ((sec*cache->sectorSize) + offset),size);
memcpy( buffer, entry->cache + ( ( sec*cache->sectorSize ) + offset ), size );
return true;
}
bool _NTFS_cache_readLittleEndianValue (NTFS_CACHE* cache, uint32_t *value, sec_t sector, unsigned int offset, int num_bytes) {
bool _NTFS_cache_readLittleEndianValue ( NTFS_CACHE* cache, uint32_t *value, sec_t sector, unsigned int offset, int num_bytes )
{
uint8_t buf[4];
if (!_NTFS_cache_readPartialSector(cache, buf, sector, offset, num_bytes)) return false;
if ( !_NTFS_cache_readPartialSector( cache, buf, sector, offset, num_bytes ) ) return false;
switch(num_bytes) {
switch ( num_bytes )
{
case 1: *value = buf[0]; break;
case 2: *value = u8array_to_u16(buf,0); break;
case 4: *value = u8array_to_u32(buf,0); break;
case 2: *value = u8array_to_u16( buf, 0 ); break;
case 4: *value = u8array_to_u32( buf, 0 ); break;
default: return false;
}
return true;
@ -244,77 +267,81 @@ bool _NTFS_cache_readLittleEndianValue (NTFS_CACHE* cache, uint32_t *value, sec_
Writes some data to a cache page, making sure it is loaded into memory first.
*/
bool _NTFS_cache_writePartialSector (NTFS_CACHE* cache, const void* buffer, sec_t sector, unsigned int offset, size_t size)
bool _NTFS_cache_writePartialSector ( NTFS_CACHE* cache, const void* buffer, sec_t sector, unsigned int offset, size_t size )
{
sec_t sec;
NTFS_CACHE_ENTRY *entry;
if (offset + size > cache->sectorSize) return false;
if ( offset + size > cache->sectorSize ) return false;
entry = _NTFS_cache_getPage(cache,sector);
if(entry==NULL) return false;
entry = _NTFS_cache_getPage( cache, sector );
if ( entry == NULL ) return false;
sec = sector - entry->sector;
memcpy(entry->cache + ((sec*cache->sectorSize) + offset),buffer,size);
memcpy( entry->cache + ( ( sec*cache->sectorSize ) + offset ), buffer, size );
entry->dirty = true;
return true;
}
bool _NTFS_cache_writeLittleEndianValue (NTFS_CACHE* cache, const uint32_t value, sec_t sector, unsigned int offset, int size) {
bool _NTFS_cache_writeLittleEndianValue ( NTFS_CACHE* cache, const uint32_t value, sec_t sector, unsigned int offset, int size )
{
uint8_t buf[4] = {0, 0, 0, 0};
switch(size) {
switch ( size )
{
case 1: buf[0] = value; break;
case 2: u16_to_u8array(buf, 0, value); break;
case 4: u32_to_u8array(buf, 0, value); break;
case 2: u16_to_u8array( buf, 0, value ); break;
case 4: u32_to_u8array( buf, 0, value ); break;
default: return false;
}
return _NTFS_cache_writePartialSector(cache, buf, sector, offset, size);
return _NTFS_cache_writePartialSector( cache, buf, sector, offset, size );
}
/*
Writes some data to a cache page, zeroing out the page first
*/
bool _NTFS_cache_eraseWritePartialSector (NTFS_CACHE* cache, const void* buffer, sec_t sector, unsigned int offset, size_t size)
bool _NTFS_cache_eraseWritePartialSector ( NTFS_CACHE* cache, const void* buffer, sec_t sector, unsigned int offset, size_t size )
{
sec_t sec;
NTFS_CACHE_ENTRY *entry;
if (offset + size > cache->sectorSize) return false;
if ( offset + size > cache->sectorSize ) return false;
entry = _NTFS_cache_getPage(cache,sector);
if(entry==NULL) return false;
entry = _NTFS_cache_getPage( cache, sector );
if ( entry == NULL ) return false;
sec = sector - entry->sector;
memset(entry->cache + (sec*cache->sectorSize),0,cache->sectorSize);
memcpy(entry->cache + ((sec*cache->sectorSize) + offset),buffer,size);
memset( entry->cache + ( sec*cache->sectorSize ), 0, cache->sectorSize );
memcpy( entry->cache + ( ( sec*cache->sectorSize ) + offset ), buffer, size );
entry->dirty = true;
return true;
}
bool _NTFS_cache_writeSectors (NTFS_CACHE* cache, sec_t sector, sec_t numSectors, const void* buffer)
bool _NTFS_cache_writeSectors ( NTFS_CACHE* cache, sec_t sector, sec_t numSectors, const void* buffer )
{
sec_t sec;
sec_t secs_to_write;
NTFS_CACHE_ENTRY* entry;
const uint8_t *src = buffer;
while(numSectors>0)
while ( numSectors > 0 )
{
entry = _NTFS_cache_findPage(cache,sector,numSectors);
entry = _NTFS_cache_findPage( cache, sector, numSectors );
if(entry!=NULL) {
if ( entry != NULL )
{
if ( entry->sector > sector) {
if ( entry->sector > sector )
{
secs_to_write = entry->sector - sector;
cache->disc->writeSectors(sector,secs_to_write,src);
src += (secs_to_write*cache->sectorSize);
cache->disc->writeSectors( sector, secs_to_write, src );
src += ( secs_to_write * cache->sectorSize );
sector += secs_to_write;
numSectors -= secs_to_write;
}
@ -322,19 +349,21 @@ bool _NTFS_cache_writeSectors (NTFS_CACHE* cache, sec_t sector, sec_t numSectors
sec = sector - entry->sector;
secs_to_write = entry->count - sec;
if(secs_to_write>numSectors) secs_to_write = numSectors;
if ( secs_to_write > numSectors ) secs_to_write = numSectors;
memcpy(entry->cache + (sec*cache->sectorSize),src,(secs_to_write*cache->sectorSize));
memcpy( entry->cache + ( sec*cache->sectorSize ), src, ( secs_to_write*cache->sectorSize ) );
src += (secs_to_write*cache->sectorSize);
src += ( secs_to_write * cache->sectorSize );
sector += secs_to_write;
numSectors -= secs_to_write;
entry->dirty = true;
} else {
cache->disc->writeSectors(sector,numSectors,src);
numSectors=0;
}
else
{
cache->disc->writeSectors( sector, numSectors, src );
numSectors = 0;
}
}
return true;
@ -343,13 +372,17 @@ bool _NTFS_cache_writeSectors (NTFS_CACHE* cache, sec_t sector, sec_t numSectors
/*
Flushes all dirty pages to disc, clearing the dirty flag.
*/
bool _NTFS_cache_flush (NTFS_CACHE* cache) {
bool _NTFS_cache_flush ( NTFS_CACHE* cache )
{
unsigned int i;
if(cache==NULL) return true;
if ( cache == NULL ) return true;
for (i = 0; i < cache->numberOfPages; i++) {
if (cache->cacheEntries[i].dirty) {
if (!cache->disc->writeSectors (cache->cacheEntries[i].sector, cache->cacheEntries[i].count, cache->cacheEntries[i].cache)) {
for ( i = 0; i < cache->numberOfPages; i++ )
{
if ( cache->cacheEntries[i].dirty )
{
if ( !cache->disc->writeSectors ( cache->cacheEntries[i].sector, cache->cacheEntries[i].count, cache->cacheEntries[i].cache ) )
{
return false;
}
}
@ -359,13 +392,15 @@ bool _NTFS_cache_flush (NTFS_CACHE* cache) {
return true;
}
void _NTFS_cache_invalidate (NTFS_CACHE* cache) {
void _NTFS_cache_invalidate ( NTFS_CACHE* cache )
{
unsigned int i;
if(cache==NULL)
if ( cache == NULL )
return;
_NTFS_cache_flush(cache);
for (i = 0; i < cache->numberOfPages; i++) {
_NTFS_cache_flush( cache );
for ( i = 0; i < cache->numberOfPages; i++ )
{
cache->cacheEntries[i].sector = CACHE_FREE;
cache->cacheEntries[i].last_access = 0;
cache->cacheEntries[i].count = 0;

View File

@ -46,7 +46,8 @@
#include <ogc/disc_io.h>
#include <gccore.h>
typedef struct {
typedef struct
{
sec_t sector;
unsigned int count;
u64 last_access;
@ -54,7 +55,8 @@ typedef struct {
u8* cache;
} NTFS_CACHE_ENTRY;
typedef struct {
typedef struct
{
const DISC_INTERFACE* disc;
sec_t endOfPartition;
unsigned int numberOfPages;
@ -99,7 +101,7 @@ Precondition: offset + size <= BYTES_PER_READ
/*
Read several sectors from the NTFS_CACHE
*/
bool _NTFS_cache_readSectors (NTFS_CACHE* NTFS_CACHE, sec_t sector, sec_t numSectors, void* buffer);
bool _NTFS_cache_readSectors ( NTFS_CACHE* NTFS_CACHE, sec_t sector, sec_t numSectors, void* buffer );
/*
Read a full sector from the NTFS_CACHE
@ -115,21 +117,21 @@ Write a full sector to the NTFS_CACHE
// return _NTFS_cache_writePartialSector (NTFS_CACHE, buffer, sector, 0, BYTES_PER_READ);
//}
bool _NTFS_cache_writeSectors (NTFS_CACHE* NTFS_CACHE, sec_t sector, sec_t numSectors, const void* buffer);
bool _NTFS_cache_writeSectors ( NTFS_CACHE* NTFS_CACHE, sec_t sector, sec_t numSectors, const void* buffer );
/*
Write any dirty sectors back to disc and clear out the contents of the NTFS_CACHE
*/
bool _NTFS_cache_flush (NTFS_CACHE* NTFS_CACHE);
bool _NTFS_cache_flush ( NTFS_CACHE* NTFS_CACHE );
/*
Clear out the contents of the NTFS_CACHE without writing any dirty sectors first
*/
void _NTFS_cache_invalidate (NTFS_CACHE* NTFS_CACHE);
void _NTFS_cache_invalidate ( NTFS_CACHE* NTFS_CACHE );
NTFS_CACHE* _NTFS_cache_constructor (unsigned int numberOfPages, unsigned int sectorsPerPage, const DISC_INTERFACE* discInterface, sec_t endOfPartition, sec_t sectorSize);
NTFS_CACHE* _NTFS_cache_constructor ( unsigned int numberOfPages, unsigned int sectorsPerPage, const DISC_INTERFACE* discInterface, sec_t endOfPartition, sec_t sectorSize );
void _NTFS_cache_destructor (NTFS_CACHE* NTFS_CACHE);
void _NTFS_cache_destructor ( NTFS_CACHE* NTFS_CACHE );
#endif // _CACHE_H

View File

@ -52,21 +52,22 @@
*
* Returns:
*/
static int ntfs_collate_binary(ntfs_volume *vol __attribute__((unused)),
static int ntfs_collate_binary( ntfs_volume *vol __attribute__( ( unused ) ),
const void *data1, const int data1_len,
const void *data2, const int data2_len)
const void *data2, const int data2_len )
{
int rc;
ntfs_log_trace("Entering.\n");
rc = memcmp(data1, data2, min(data1_len, data2_len));
if (!rc && (data1_len != data2_len)) {
if (data1_len < data2_len)
ntfs_log_trace( "Entering.\n" );
rc = memcmp( data1, data2, min( data1_len, data2_len ) );
if ( !rc && ( data1_len != data2_len ) )
{
if ( data1_len < data2_len )
rc = -1;
else
rc = 1;
}
ntfs_log_trace("Done, returning %i.\n", rc);
ntfs_log_trace( "Done, returning %i.\n", rc );
return rc;
}
@ -82,29 +83,31 @@ static int ntfs_collate_binary(ntfs_volume *vol __attribute__((unused)),
*
* Returns:
*/
static int ntfs_collate_ntofs_ulong(ntfs_volume *vol __attribute__((unused)),
static int ntfs_collate_ntofs_ulong( ntfs_volume *vol __attribute__( ( unused ) ),
const void *data1, const int data1_len,
const void *data2, const int data2_len)
const void *data2, const int data2_len )
{
int rc;
u32 d1, d2;
ntfs_log_trace("Entering.\n");
if (data1_len != data2_len || data1_len != 4) {
ntfs_log_error("data1_len or/and data2_len not equal to 4.\n");
ntfs_log_trace( "Entering.\n" );
if ( data1_len != data2_len || data1_len != 4 )
{
ntfs_log_error( "data1_len or/and data2_len not equal to 4.\n" );
return NTFS_COLLATION_ERROR;
}
d1 = le32_to_cpup(data1);
d2 = le32_to_cpup(data2);
if (d1 < d2)
d1 = le32_to_cpup( data1 );
d2 = le32_to_cpup( data2 );
if ( d1 < d2 )
rc = -1;
else {
if (d1 == d2)
else
{
if ( d1 == d2 )
rc = 0;
else
rc = 1;
}
ntfs_log_trace("Done, returning %i.\n", rc);
ntfs_log_trace( "Done, returning %i.\n", rc );
return rc;
}
@ -114,38 +117,42 @@ static int ntfs_collate_ntofs_ulong(ntfs_volume *vol __attribute__((unused)),
* Returns: -1, 0 or 1 depending of how the arrays compare
*/
static int ntfs_collate_ntofs_ulongs(ntfs_volume *vol __attribute__((unused)),
static int ntfs_collate_ntofs_ulongs( ntfs_volume *vol __attribute__( ( unused ) ),
const void *data1, const int data1_len,
const void *data2, const int data2_len)
const void *data2, const int data2_len )
{
int rc;
int len;
const le32 *p1, *p2;
u32 d1, d2;
ntfs_log_trace("Entering.\n");
if ((data1_len != data2_len) || (data1_len <= 0) || (data1_len & 3)) {
ntfs_log_error("data1_len or data2_len not valid\n");
ntfs_log_trace( "Entering.\n" );
if ( ( data1_len != data2_len ) || ( data1_len <= 0 ) || ( data1_len & 3 ) )
{
ntfs_log_error( "data1_len or data2_len not valid\n" );
return NTFS_COLLATION_ERROR;
}
p1 = (const le32*)data1;
p2 = (const le32*)data2;
p1 = ( const le32* )data1;
p2 = ( const le32* )data2;
len = data1_len;
do {
d1 = le32_to_cpup(p1);
do
{
d1 = le32_to_cpup( p1 );
p1++;
d2 = le32_to_cpup(p2);
d2 = le32_to_cpup( p2 );
p2++;
} while ((d1 == d2) && ((len -= 4) > 0));
if (d1 < d2)
}
while ( ( d1 == d2 ) && ( ( len -= 4 ) > 0 ) );
if ( d1 < d2 )
rc = -1;
else {
if (d1 == d2)
else
{
if ( d1 == d2 )
rc = 0;
else
rc = 1;
}
ntfs_log_trace("Done, returning %i.\n", rc);
ntfs_log_trace( "Done, returning %i.\n", rc );
return rc;
}
@ -162,44 +169,48 @@ static int ntfs_collate_ntofs_ulongs(ntfs_volume *vol __attribute__((unused)),
*
* Returns: -1, 0 or 1 depending of how the keys compare
*/
static int ntfs_collate_ntofs_security_hash(ntfs_volume *vol __attribute__((unused)),
static int ntfs_collate_ntofs_security_hash( ntfs_volume *vol __attribute__( ( unused ) ),
const void *data1, const int data1_len,
const void *data2, const int data2_len)
const void *data2, const int data2_len )
{
int rc;
u32 d1, d2;
const le32 *p1, *p2;
ntfs_log_trace("Entering.\n");
if (data1_len != data2_len || data1_len != 8) {
ntfs_log_error("data1_len or/and data2_len not equal to 8.\n");
ntfs_log_trace( "Entering.\n" );
if ( data1_len != data2_len || data1_len != 8 )
{
ntfs_log_error( "data1_len or/and data2_len not equal to 8.\n" );
return NTFS_COLLATION_ERROR;
}
p1 = (const le32*)data1;
p2 = (const le32*)data2;
d1 = le32_to_cpup(p1);
d2 = le32_to_cpup(p2);
if (d1 < d2)
p1 = ( const le32* )data1;
p2 = ( const le32* )data2;
d1 = le32_to_cpup( p1 );
d2 = le32_to_cpup( p2 );
if ( d1 < d2 )
rc = -1;
else {
if (d1 > d2)
else
{
if ( d1 > d2 )
rc = 1;
else {
else
{
p1++;
p2++;
d1 = le32_to_cpup(p1);
d2 = le32_to_cpup(p2);
if (d1 < d2)
d1 = le32_to_cpup( p1 );
d2 = le32_to_cpup( p2 );
if ( d1 < d2 )
rc = -1;
else {
if (d1 > d2)
else
{
if ( d1 > d2 )
rc = 1;
else
rc = 0;
}
}
}
ntfs_log_trace("Done, returning %i.\n", rc);
ntfs_log_trace( "Done, returning %i.\n", rc );
return rc;
}
@ -215,24 +226,24 @@ static int ntfs_collate_ntofs_security_hash(ntfs_volume *vol __attribute__((unus
*
* Returns:
*/
static int ntfs_collate_file_name(ntfs_volume *vol,
const void *data1, const int data1_len __attribute__((unused)),
const void *data2, const int data2_len __attribute__((unused)))
static int ntfs_collate_file_name( ntfs_volume *vol,
const void *data1, const int data1_len __attribute__( ( unused ) ),
const void *data2, const int data2_len __attribute__( ( unused ) ) )
{
const FILE_NAME_ATTR *file_name_attr1;
const FILE_NAME_ATTR *file_name_attr2;
int rc;
ntfs_log_trace("Entering.\n");
file_name_attr1 = (const FILE_NAME_ATTR*)data1;
file_name_attr2 = (const FILE_NAME_ATTR*)data2;
ntfs_log_trace( "Entering.\n" );
file_name_attr1 = ( const FILE_NAME_ATTR* )data1;
file_name_attr2 = ( const FILE_NAME_ATTR* )data2;
rc = ntfs_names_full_collate(
(ntfschar*)&file_name_attr1->file_name,
( ntfschar* ) & file_name_attr1->file_name,
file_name_attr1->file_name_length,
(ntfschar*)&file_name_attr2->file_name,
( ntfschar* ) & file_name_attr2->file_name,
file_name_attr2->file_name_length,
CASE_SENSITIVE, vol->upcase, vol->upcase_len);
ntfs_log_trace("Done, returning %i.\n", rc);
CASE_SENSITIVE, vol->upcase, vol->upcase_len );
ntfs_log_trace( "Done, returning %i.\n", rc );
return rc;
}
@ -242,11 +253,12 @@ static int ntfs_collate_file_name(ntfs_volume *vol,
* Returns NULL if the needed function is not implemented
*/
COLLATE ntfs_get_collate_function(COLLATION_RULES cr)
COLLATE ntfs_get_collate_function( COLLATION_RULES cr )
{
COLLATE collate;
switch (cr) {
switch ( cr )
{
case COLLATION_BINARY :
collate = ntfs_collate_binary;
break;
@ -264,8 +276,8 @@ COLLATE ntfs_get_collate_function(COLLATION_RULES cr)
break;
default :
errno = EOPNOTSUPP;
collate = (COLLATE)NULL;
collate = ( COLLATE )NULL;
break;
}
return (collate);
return ( collate );
}

View File

@ -29,6 +29,6 @@
#define NTFS_COLLATION_ERROR -2
extern COLLATE ntfs_get_collate_function(COLLATION_RULES);
extern COLLATE ntfs_get_collate_function( COLLATION_RULES );
#endif /* _NTFS_COLLATE_H */

View File

@ -35,29 +35,34 @@
*
* Returns:
*/
int ffs(int x)
int ffs( int x )
{
int r = 1;
if (!x)
if ( !x )
return 0;
if (!(x & 0xffff)) {
if ( !( x & 0xffff ) )
{
x >>= 16;
r += 16;
}
if (!(x & 0xff)) {
if ( !( x & 0xff ) )
{
x >>= 8;
r += 8;
}
if (!(x & 0xf)) {
if ( !( x & 0xf ) )
{
x >>= 4;
r += 4;
}
if (!(x & 3)) {
if ( !( x & 3 ) )
{
x >>= 2;
r += 2;
}
if (!(x & 1)) {
if ( !( x & 1 ) )
{
x >>= 1;
r += 1;
}
@ -120,32 +125,35 @@ static const char rcsid[] = "$Id: compat.c,v 1.1.1.1.2.1 2008-08-16 15:17:44 jpa
#include <unistd.h>
#endif
int daemon(int nochdir, int noclose) {
int daemon( int nochdir, int noclose )
{
int fd;
switch (fork()) {
switch ( fork() )
{
case -1:
return (-1);
return ( -1 );
case 0:
break;
default:
_exit(0);
_exit( 0 );
}
if (setsid() == -1)
return (-1);
if ( setsid() == -1 )
return ( -1 );
if (!nochdir)
(void)chdir("/");
if ( !nochdir )
( void )chdir( "/" );
if (!noclose && (fd = open("/dev/null", O_RDWR, 0)) != -1) {
(void)dup2(fd, 0);
(void)dup2(fd, 1);
(void)dup2(fd, 2);
if (fd > 2)
(void)close (fd);
if ( !noclose && ( fd = open( "/dev/null", O_RDWR, 0 ) ) != -1 )
{
( void )dup2( fd, 0 );
( void )dup2( fd, 1 );
( void )dup2( fd, 2 );
if ( fd > 2 )
( void )close ( fd );
}
return (0);
return ( 0 );
}
/*
* End: src/lib/libresolv2/common/bsd/daemon.c
@ -218,27 +226,32 @@ static const char rcsid[] = "$Id: compat.c,v 1.1.1.1.2.1 2008-08-16 15:17:44 jpa
*
* If *stringp is NULL, strsep returns NULL.
*/
char *strsep(char **stringp, const char *delim) {
char *strsep( char **stringp, const char *delim )
{
char *s;
const char *spanp;
int c, sc;
char *tok;
if ((s = *stringp) == NULL)
return (NULL);
for (tok = s;;) {
if ( ( s = *stringp ) == NULL )
return ( NULL );
for ( tok = s;; )
{
c = *s++;
spanp = delim;
do {
if ((sc = *spanp++) == c) {
if (c == 0)
do
{
if ( ( sc = *spanp++ ) == c )
{
if ( c == 0 )
s = NULL;
else
s[-1] = 0;
*stringp = s;
return (tok);
return ( tok );
}
} while (sc != 0);
}
while ( sc != 0 );
}
/* NOTREACHED */
}

View File

@ -36,15 +36,15 @@
#endif
#ifndef HAVE_FFS
extern int ffs(int i);
extern int ffs( int i );
#endif /* HAVE_FFS */
#ifndef HAVE_DAEMON
extern int daemon(int nochdir, int noclose);
extern int daemon( int nochdir, int noclose );
#endif /* HAVE_DAEMON */
#ifndef HAVE_STRSEP
extern char *strsep(char **stringp, const char *delim);
extern char *strsep( char **stringp, const char *delim );
#endif /* HAVE_STRSEP */
#ifdef WINDOWS

File diff suppressed because it is too large Load Diff

View File

@ -26,16 +26,16 @@
#include "types.h"
#include "attrib.h"
extern s64 ntfs_compressed_attr_pread(ntfs_attr *na, s64 pos, s64 count,
void *b);
extern s64 ntfs_compressed_attr_pread( ntfs_attr *na, s64 pos, s64 count,
void *b );
extern s64 ntfs_compressed_pwrite(ntfs_attr *na, runlist_element *brl, s64 wpos,
extern s64 ntfs_compressed_pwrite( ntfs_attr *na, runlist_element *brl, s64 wpos,
s64 offs, s64 to_write, s64 rounded,
const void *b, int compressed_part,
VCN *update_from);
VCN *update_from );
extern int ntfs_compressed_close(ntfs_attr *na, runlist_element *brl,
s64 offs, VCN *update_from);
extern int ntfs_compressed_close( ntfs_attr *na, runlist_element *brl,
s64 offs, VCN *update_from );
#endif /* defined _NTFS_COMPRESS_H */

View File

@ -42,37 +42,43 @@
*
* Returns:
*/
void ntfs_debug_runlist_dump(const runlist_element *rl)
void ntfs_debug_runlist_dump( const runlist_element *rl )
{
int i = 0;
const char *lcn_str[5] = { "LCN_HOLE ", "LCN_RL_NOT_MAPPED",
"LCN_ENOENT ", "LCN_EINVAL ",
"LCN_unknown " };
"LCN_unknown "
};
ntfs_log_debug("NTFS-fs DEBUG: Dumping runlist (values in hex):\n");
if (!rl) {
ntfs_log_debug("Run list not present.\n");
ntfs_log_debug( "NTFS-fs DEBUG: Dumping runlist (values in hex):\n" );
if ( !rl )
{
ntfs_log_debug( "Run list not present.\n" );
return;
}
ntfs_log_debug("VCN LCN Run length\n");
do {
LCN lcn = (rl + i)->lcn;
ntfs_log_debug( "VCN LCN Run length\n" );
do
{
LCN lcn = ( rl + i )->lcn;
if (lcn < (LCN)0) {
if ( lcn < ( LCN )0 )
{
int idx = -lcn - 1;
if (idx > -LCN_EINVAL - 1)
if ( idx > -LCN_EINVAL - 1 )
idx = 4;
ntfs_log_debug("%-16lld %s %-16lld%s\n",
(long long)rl[i].vcn, lcn_str[idx],
(long long)rl[i].length,
rl[i].length ? "" : " (runlist end)");
} else
ntfs_log_debug("%-16lld %-16lld %-16lld%s\n",
(long long)rl[i].vcn, (long long)rl[i].lcn,
(long long)rl[i].length,
rl[i].length ? "" : " (runlist end)");
} while (rl[i++].length);
ntfs_log_debug( "%-16lld %s %-16lld%s\n",
( long long )rl[i].vcn, lcn_str[idx],
( long long )rl[i].length,
rl[i].length ? "" : " (runlist end)" );
}
else
ntfs_log_debug( "%-16lld %-16lld %-16lld%s\n",
( long long )rl[i].vcn, ( long long )rl[i].lcn,
( long long )rl[i].length,
rl[i].length ? "" : " (runlist end)" );
}
while ( rl[i++].length );
}
#endif

View File

@ -31,9 +31,9 @@
struct _runlist_element;
#ifdef DEBUG
extern void ntfs_debug_runlist_dump(const struct _runlist_element *rl);
extern void ntfs_debug_runlist_dump( const struct _runlist_element *rl );
#else
static __inline__ void ntfs_debug_runlist_dump(const struct _runlist_element *rl __attribute__((unused))) {}
static __inline__ void ntfs_debug_runlist_dump( const struct _runlist_element *rl __attribute__( ( unused ) ) ) {}
#endif
#define NTFS_BUG(msg) \

View File

@ -103,21 +103,24 @@
* On success return a pointer to the allocated ntfs device structure and on
* error return NULL with errno set to the error code returned by ntfs_malloc().
*/
struct ntfs_device *ntfs_device_alloc(const char *name, const long state,
struct ntfs_device_operations *dops, void *priv_data)
struct ntfs_device *ntfs_device_alloc( const char *name, const long state,
struct ntfs_device_operations *dops, void *priv_data )
{
struct ntfs_device *dev;
if (!name) {
if ( !name )
{
errno = EINVAL;
return NULL;
}
dev = ntfs_malloc(sizeof(struct ntfs_device));
if (dev) {
if (!(dev->d_name = strdup(name))) {
dev = ntfs_malloc( sizeof( struct ntfs_device ) );
if ( dev )
{
if ( !( dev->d_name = strdup( name ) ) )
{
int eo = errno;
free(dev);
free( dev );
errno = eo;
return NULL;
}
@ -139,18 +142,20 @@ struct ntfs_device *ntfs_device_alloc(const char *name, const long state,
* EINVAL Invalid pointer @dev.
* EBUSY Device is still open. Close it before freeing it!
*/
int ntfs_device_free(struct ntfs_device *dev)
int ntfs_device_free( struct ntfs_device *dev )
{
if (!dev) {
if ( !dev )
{
errno = EINVAL;
return -1;
}
if (NDevOpen(dev)) {
if ( NDevOpen( dev ) )
{
errno = EBUSY;
return -1;
}
free(dev->d_name);
free(dev);
free( dev->d_name );
free( dev );
return 0;
}
@ -173,29 +178,31 @@ int ntfs_device_free(struct ntfs_device *dev)
* to the return code of either seek, read, or set to EINVAL in case of
* invalid arguments.
*/
s64 ntfs_pread(struct ntfs_device *dev, const s64 pos, s64 count, void *b)
s64 ntfs_pread( struct ntfs_device *dev, const s64 pos, s64 count, void *b )
{
s64 br, total;
struct ntfs_device_operations *dops;
ntfs_log_trace("pos %lld, count %lld\n",(long long)pos,(long long)count);
ntfs_log_trace( "pos %lld, count %lld\n", ( long long )pos, ( long long )count );
if (!b || count < 0 || pos < 0) {
if ( !b || count < 0 || pos < 0 )
{
errno = EINVAL;
return -1;
}
if (!count)
if ( !count )
return 0;
dops = dev->d_ops;
for (total = 0; count; count -= br, total += br) {
br = dops->pread(dev, (char*)b + total, count, pos + total);
for ( total = 0; count; count -= br, total += br )
{
br = dops->pread( dev, ( char* )b + total, count, pos + total );
/* If everything ok, continue. */
if (br > 0)
if ( br > 0 )
continue;
/* If EOF or error return number of bytes read. */
if (!br || total)
if ( !br || total )
return total;
/* Nothing read and error, return error status. */
return br;
@ -223,38 +230,41 @@ s64 ntfs_pread(struct ntfs_device *dev, const s64 pos, s64 count, void *b)
* appropriately to the return code of either seek, write, or set
* to EINVAL in case of invalid arguments.
*/
s64 ntfs_pwrite(struct ntfs_device *dev, const s64 pos, s64 count,
const void *b)
s64 ntfs_pwrite( struct ntfs_device *dev, const s64 pos, s64 count,
const void *b )
{
s64 written, total, ret = -1;
struct ntfs_device_operations *dops;
ntfs_log_trace("pos %lld, count %lld\n",(long long)pos,(long long)count);
ntfs_log_trace( "pos %lld, count %lld\n", ( long long )pos, ( long long )count );
if (!b || count < 0 || pos < 0) {
if ( !b || count < 0 || pos < 0 )
{
errno = EINVAL;
goto out;
}
if (!count)
if ( !count )
return 0;
if (NDevReadOnly(dev)) {
if ( NDevReadOnly( dev ) )
{
errno = EROFS;
goto out;
}
dops = dev->d_ops;
NDevSetDirty(dev);
for (total = 0; count; count -= written, total += written) {
written = dops->pwrite(dev, (const char*)b + total, count,
pos + total);
NDevSetDirty( dev );
for ( total = 0; count; count -= written, total += written )
{
written = dops->pwrite( dev, ( const char* )b + total, count,
pos + total );
/* If everything ok, continue. */
if (written > 0)
if ( written > 0 )
continue;
/*
* If nothing written or error return number of bytes written.
*/
if (!written || total)
if ( !written || total )
break;
/* Nothing written and error, return error status. */
total = written;
@ -294,18 +304,19 @@ out:
* sector transfer error. This should be detected by the caller by checking for
* the magic being "BAAD".
*/
s64 ntfs_mst_pread(struct ntfs_device *dev, const s64 pos, s64 count,
const u32 bksize, void *b)
s64 ntfs_mst_pread( struct ntfs_device *dev, const s64 pos, s64 count,
const u32 bksize, void *b )
{
s64 br, i;
if (bksize & (bksize - 1) || bksize % NTFS_BLOCK_SIZE) {
if ( bksize & ( bksize - 1 ) || bksize % NTFS_BLOCK_SIZE )
{
errno = EINVAL;
return -1;
}
/* Do the read. */
br = ntfs_pread(dev, pos, count * bksize, b);
if (br < 0)
br = ntfs_pread( dev, pos, count * bksize, b );
if ( br < 0 )
return br;
/*
* Apply fixups to successfully read data, disregarding any errors
@ -314,9 +325,9 @@ s64 ntfs_mst_pread(struct ntfs_device *dev, const s64 pos, s64 count,
* magic will be detected later on.
*/
count = br / bksize;
for (i = 0; i < count; ++i)
ntfs_mst_post_read_fixup((NTFS_RECORD*)
((u8*)b + i * bksize), bksize);
for ( i = 0; i < count; ++i )
ntfs_mst_post_read_fixup( ( NTFS_RECORD* )
( ( u8* )b + i * bksize ), bksize );
/* Finally, return the number of complete blocks read. */
return count;
}
@ -351,37 +362,40 @@ s64 ntfs_mst_pread(struct ntfs_device *dev, const s64 pos, s64 count,
* simulating an mst read on the written data. This way cache coherency is
* achieved.
*/
s64 ntfs_mst_pwrite(struct ntfs_device *dev, const s64 pos, s64 count,
const u32 bksize, void *b)
s64 ntfs_mst_pwrite( struct ntfs_device *dev, const s64 pos, s64 count,
const u32 bksize, void *b )
{
s64 written, i;
if (count < 0 || bksize % NTFS_BLOCK_SIZE) {
if ( count < 0 || bksize % NTFS_BLOCK_SIZE )
{
errno = EINVAL;
return -1;
}
if (!count)
if ( !count )
return 0;
/* Prepare data for writing. */
for (i = 0; i < count; ++i) {
for ( i = 0; i < count; ++i )
{
int err;
err = ntfs_mst_pre_write_fixup((NTFS_RECORD*)
((u8*)b + i * bksize), bksize);
if (err < 0) {
err = ntfs_mst_pre_write_fixup( ( NTFS_RECORD* )
( ( u8* )b + i * bksize ), bksize );
if ( err < 0 )
{
/* Abort write at this position. */
if (!i)
if ( !i )
return err;
count = i;
break;
}
}
/* Write the prepared data. */
written = ntfs_pwrite(dev, pos, count * bksize, b);
written = ntfs_pwrite( dev, pos, count * bksize, b );
/* Quickly deprotect the data again. */
for (i = 0; i < count; ++i)
ntfs_mst_post_write_fixup((NTFS_RECORD*)((u8*)b + i * bksize));
if (written <= 0)
for ( i = 0; i < count; ++i )
ntfs_mst_post_write_fixup( ( NTFS_RECORD* )( ( u8* )b + i * bksize ) );
if ( written <= 0 )
return written;
/* Finally, return the number of complete blocks written. */
return written / bksize;
@ -398,26 +412,29 @@ s64 ntfs_mst_pwrite(struct ntfs_device *dev, const s64 pos, s64 count,
* volume @vol into buffer @b. Return number of clusters read or -1 on error,
* with errno set to the error code.
*/
s64 ntfs_cluster_read(const ntfs_volume *vol, const s64 lcn, const s64 count,
void *b)
s64 ntfs_cluster_read( const ntfs_volume *vol, const s64 lcn, const s64 count,
void *b )
{
s64 br;
if (!vol || lcn < 0 || count < 0) {
if ( !vol || lcn < 0 || count < 0 )
{
errno = EINVAL;
return -1;
}
if (vol->nr_clusters < lcn + count) {
if ( vol->nr_clusters < lcn + count )
{
errno = ESPIPE;
ntfs_log_perror("Trying to read outside of volume "
"(%lld < %lld)", (long long)vol->nr_clusters,
(long long)lcn + count);
ntfs_log_perror( "Trying to read outside of volume "
"(%lld < %lld)", ( long long )vol->nr_clusters,
( long long )lcn + count );
return -1;
}
br = ntfs_pread(vol->dev, lcn << vol->cluster_size_bits,
count << vol->cluster_size_bits, b);
if (br < 0) {
ntfs_log_perror("Error reading cluster(s)");
br = ntfs_pread( vol->dev, lcn << vol->cluster_size_bits,
count << vol->cluster_size_bits, b );
if ( br < 0 )
{
ntfs_log_perror( "Error reading cluster(s)" );
return br;
}
return br >> vol->cluster_size_bits;
@ -434,29 +451,32 @@ s64 ntfs_cluster_read(const ntfs_volume *vol, const s64 lcn, const s64 count,
* buffer @b to volume @vol. Return the number of clusters written or -1 on
* error, with errno set to the error code.
*/
s64 ntfs_cluster_write(const ntfs_volume *vol, const s64 lcn,
const s64 count, const void *b)
s64 ntfs_cluster_write( const ntfs_volume *vol, const s64 lcn,
const s64 count, const void *b )
{
s64 bw;
if (!vol || lcn < 0 || count < 0) {
if ( !vol || lcn < 0 || count < 0 )
{
errno = EINVAL;
return -1;
}
if (vol->nr_clusters < lcn + count) {
if ( vol->nr_clusters < lcn + count )
{
errno = ESPIPE;
ntfs_log_perror("Trying to write outside of volume "
"(%lld < %lld)", (long long)vol->nr_clusters,
(long long)lcn + count);
ntfs_log_perror( "Trying to write outside of volume "
"(%lld < %lld)", ( long long )vol->nr_clusters,
( long long )lcn + count );
return -1;
}
if (!NVolReadOnly(vol))
bw = ntfs_pwrite(vol->dev, lcn << vol->cluster_size_bits,
count << vol->cluster_size_bits, b);
if ( !NVolReadOnly( vol ) )
bw = ntfs_pwrite( vol->dev, lcn << vol->cluster_size_bits,
count << vol->cluster_size_bits, b );
else
bw = count << vol->cluster_size_bits;
if (bw < 0) {
ntfs_log_perror("Error writing cluster(s)");
if ( bw < 0 )
{
ntfs_log_perror( "Error writing cluster(s)" );
return bw;
}
return bw >> vol->cluster_size_bits;
@ -472,12 +492,12 @@ s64 ntfs_cluster_write(const ntfs_volume *vol, const s64 lcn,
*
* Return 0 if it is valid and -1 if it is not valid.
*/
static int ntfs_device_offset_valid(struct ntfs_device *dev, s64 ofs)
static int ntfs_device_offset_valid( struct ntfs_device *dev, s64 ofs )
{
char ch;
if (dev->d_ops->seek(dev, ofs, SEEK_SET) >= 0 &&
dev->d_ops->read(dev, &ch, 1) == 1)
if ( dev->d_ops->seek( dev, ofs, SEEK_SET ) >= 0 &&
dev->d_ops->read( dev, &ch, 1 ) == 1 )
return 0;
return -1;
}
@ -494,43 +514,47 @@ static int ntfs_device_offset_valid(struct ntfs_device *dev, s64 ofs)
*
* On error return -1 with errno set to the error code.
*/
s64 ntfs_device_size_get(struct ntfs_device *dev, int block_size)
s64 ntfs_device_size_get( struct ntfs_device *dev, int block_size )
{
s64 high, low;
if (!dev || block_size <= 0 || (block_size - 1) & block_size) {
if ( !dev || block_size <= 0 || ( block_size - 1 ) & block_size )
{
errno = EINVAL;
return -1;
}
#ifdef BLKGETSIZE64
{ u64 size;
if (dev->d_ops->ioctl(dev, BLKGETSIZE64, &size) >= 0) {
ntfs_log_debug("BLKGETSIZE64 nr bytes = %llu (0x%llx)\n",
(unsigned long long)size,
(unsigned long long)size);
return (s64)size / block_size;
if ( dev->d_ops->ioctl( dev, BLKGETSIZE64, &size ) >= 0 )
{
ntfs_log_debug( "BLKGETSIZE64 nr bytes = %llu (0x%llx)\n",
( unsigned long long )size,
( unsigned long long )size );
return ( s64 )size / block_size;
}
}
#endif
#ifdef BLKGETSIZE
{ unsigned long size;
if (dev->d_ops->ioctl(dev, BLKGETSIZE, &size) >= 0) {
ntfs_log_debug("BLKGETSIZE nr 512 byte blocks = %lu (0x%lx)\n",
size, size);
return (s64)size * 512 / block_size;
if ( dev->d_ops->ioctl( dev, BLKGETSIZE, &size ) >= 0 )
{
ntfs_log_debug( "BLKGETSIZE nr 512 byte blocks = %lu (0x%lx)\n",
size, size );
return ( s64 )size * 512 / block_size;
}
}
#endif
#ifdef FDGETPRM
{ struct floppy_struct this_floppy;
if (dev->d_ops->ioctl(dev, FDGETPRM, &this_floppy) >= 0) {
ntfs_log_debug("FDGETPRM nr 512 byte blocks = %lu (0x%lx)\n",
(unsigned long)this_floppy.size,
(unsigned long)this_floppy.size);
return (s64)this_floppy.size * 512 / block_size;
if ( dev->d_ops->ioctl( dev, FDGETPRM, &this_floppy ) >= 0 )
{
ntfs_log_debug( "FDGETPRM nr 512 byte blocks = %lu (0x%lx)\n",
( unsigned long )this_floppy.size,
( unsigned long )this_floppy.size );
return ( s64 )this_floppy.size * 512 / block_size;
}
}
#endif
@ -539,18 +563,19 @@ s64 ntfs_device_size_get(struct ntfs_device *dev, int block_size)
* so do binary search to find the size of the device.
*/
low = 0LL;
for (high = 1024LL; !ntfs_device_offset_valid(dev, high); high <<= 1)
for ( high = 1024LL; !ntfs_device_offset_valid( dev, high ); high <<= 1 )
low = high;
while (low < high - 1LL) {
const s64 mid = (low + high) / 2;
while ( low < high - 1LL )
{
const s64 mid = ( low + high ) / 2;
if (!ntfs_device_offset_valid(dev, mid))
if ( !ntfs_device_offset_valid( dev, mid ) )
low = mid;
else
high = mid;
}
dev->d_ops->seek(dev, 0LL, SEEK_SET);
return (low + 1LL) / block_size;
dev->d_ops->seek( dev, 0LL, SEEK_SET );
return ( low + 1LL ) / block_size;
}
/**
@ -565,18 +590,20 @@ s64 ntfs_device_size_get(struct ntfs_device *dev, int block_size)
* EOPNOTSUPP System does not support HDIO_GETGEO ioctl
* ENOTTY @dev is a file or a device not supporting HDIO_GETGEO
*/
s64 ntfs_device_partition_start_sector_get(struct ntfs_device *dev)
s64 ntfs_device_partition_start_sector_get( struct ntfs_device *dev )
{
if (!dev) {
if ( !dev )
{
errno = EINVAL;
return -1;
}
#ifdef HDIO_GETGEO
{ struct hd_geometry geo;
if (!dev->d_ops->ioctl(dev, HDIO_GETGEO, &geo)) {
ntfs_log_debug("HDIO_GETGEO start_sect = %lu (0x%lx)\n",
geo.start, geo.start);
if ( !dev->d_ops->ioctl( dev, HDIO_GETGEO, &geo ) )
{
ntfs_log_debug( "HDIO_GETGEO start_sect = %lu (0x%lx)\n",
geo.start, geo.start );
return geo.start;
}
}
@ -598,19 +625,21 @@ s64 ntfs_device_partition_start_sector_get(struct ntfs_device *dev)
* EOPNOTSUPP System does not support HDIO_GETGEO ioctl
* ENOTTY @dev is a file or a device not supporting HDIO_GETGEO
*/
int ntfs_device_heads_get(struct ntfs_device *dev)
int ntfs_device_heads_get( struct ntfs_device *dev )
{
if (!dev) {
if ( !dev )
{
errno = EINVAL;
return -1;
}
#ifdef HDIO_GETGEO
{ struct hd_geometry geo;
if (!dev->d_ops->ioctl(dev, HDIO_GETGEO, &geo)) {
ntfs_log_debug("HDIO_GETGEO heads = %u (0x%x)\n",
(unsigned)geo.heads,
(unsigned)geo.heads);
if ( !dev->d_ops->ioctl( dev, HDIO_GETGEO, &geo ) )
{
ntfs_log_debug( "HDIO_GETGEO heads = %u (0x%x)\n",
( unsigned )geo.heads,
( unsigned )geo.heads );
return geo.heads;
}
}
@ -632,19 +661,21 @@ int ntfs_device_heads_get(struct ntfs_device *dev)
* EOPNOTSUPP System does not support HDIO_GETGEO ioctl
* ENOTTY @dev is a file or a device not supporting HDIO_GETGEO
*/
int ntfs_device_sectors_per_track_get(struct ntfs_device *dev)
int ntfs_device_sectors_per_track_get( struct ntfs_device *dev )
{
if (!dev) {
if ( !dev )
{
errno = EINVAL;
return -1;
}
#ifdef HDIO_GETGEO
{ struct hd_geometry geo;
if (!dev->d_ops->ioctl(dev, HDIO_GETGEO, &geo)) {
ntfs_log_debug("HDIO_GETGEO sectors_per_track = %u (0x%x)\n",
(unsigned)geo.sectors,
(unsigned)geo.sectors);
if ( !dev->d_ops->ioctl( dev, HDIO_GETGEO, &geo ) )
{
ntfs_log_debug( "HDIO_GETGEO sectors_per_track = %u (0x%x)\n",
( unsigned )geo.sectors,
( unsigned )geo.sectors );
return geo.sectors;
}
}
@ -666,9 +697,10 @@ int ntfs_device_sectors_per_track_get(struct ntfs_device *dev)
* EOPNOTSUPP System does not support BLKSSZGET ioctl
* ENOTTY @dev is a file or a device not supporting BLKSSZGET
*/
int ntfs_device_sector_size_get(struct ntfs_device *dev)
int ntfs_device_sector_size_get( struct ntfs_device *dev )
{
if (!dev) {
if ( !dev )
{
errno = EINVAL;
return -1;
}
@ -676,9 +708,10 @@ int ntfs_device_sector_size_get(struct ntfs_device *dev)
{
int sect_size = 0;
if (!dev->d_ops->ioctl(dev, BLKSSZGET, &sect_size)) {
ntfs_log_debug("BLKSSZGET sector size = %d bytes\n",
sect_size);
if ( !dev->d_ops->ioctl( dev, BLKSSZGET, &sect_size ) )
{
ntfs_log_debug( "BLKSSZGET sector size = %d bytes\n",
sect_size );
return sect_size;
}
}
@ -701,28 +734,30 @@ int ntfs_device_sector_size_get(struct ntfs_device *dev)
* EOPNOTSUPP System does not support BLKBSZSET ioctl
* ENOTTY @dev is a file or a device not supporting BLKBSZSET
*/
int ntfs_device_block_size_set(struct ntfs_device *dev,
int block_size __attribute__((unused)))
int ntfs_device_block_size_set( struct ntfs_device *dev,
int block_size __attribute__( ( unused ) ) )
{
if (!dev) {
if ( !dev )
{
errno = EINVAL;
return -1;
}
#ifdef BLKBSZSET
{
size_t s_block_size = block_size;
if (!dev->d_ops->ioctl(dev, BLKBSZSET, &s_block_size)) {
ntfs_log_debug("Used BLKBSZSET to set block size to "
"%d bytes.\n", block_size);
if ( !dev->d_ops->ioctl( dev, BLKBSZSET, &s_block_size ) )
{
ntfs_log_debug( "Used BLKBSZSET to set block size to "
"%d bytes.\n", block_size );
return 0;
}
/* If not a block device, pretend it was successful. */
if (!NDevBlock(dev))
if ( !NDevBlock( dev ) )
return 0;
}
#else
/* If not a block device, pretend it was successful. */
if (!NDevBlock(dev))
if ( !NDevBlock( dev ) )
return 0;
errno = EOPNOTSUPP;
#endif

View File

@ -36,7 +36,8 @@
*
* Defined bits for the state field in the ntfs_device structure.
*/
typedef enum {
typedef enum
{
ND_Open, /* 1: Device is open. */
ND_ReadOnly, /* 1: Device is read-only. */
ND_Dirty, /* 1: Device is dirty, needs sync. */
@ -69,7 +70,8 @@ typedef enum {
* The ntfs device structure defining all operations needed to access the low
* level device underlying the ntfs volume.
*/
struct ntfs_device {
struct ntfs_device
{
struct ntfs_device_operations *d_ops; /* Device operations. */
unsigned long d_state; /* State of the device. */
char *d_name; /* Name of device. */
@ -85,44 +87,45 @@ struct stat;
* The ntfs device operations defining all operations that can be performed on
* the low level device described by an ntfs device structure.
*/
struct ntfs_device_operations {
int (*open)(struct ntfs_device *dev, int flags);
int (*close)(struct ntfs_device *dev);
s64 (*seek)(struct ntfs_device *dev, s64 offset, int whence);
s64 (*read)(struct ntfs_device *dev, void *buf, s64 count);
s64 (*write)(struct ntfs_device *dev, const void *buf, s64 count);
s64 (*pread)(struct ntfs_device *dev, void *buf, s64 count, s64 offset);
s64 (*pwrite)(struct ntfs_device *dev, const void *buf, s64 count,
s64 offset);
int (*sync)(struct ntfs_device *dev);
int (*stat)(struct ntfs_device *dev, struct stat *buf);
int (*ioctl)(struct ntfs_device *dev, int request, void *argp);
struct ntfs_device_operations
{
int ( *open )( struct ntfs_device *dev, int flags );
int ( *close )( struct ntfs_device *dev );
s64 ( *seek )( struct ntfs_device *dev, s64 offset, int whence );
s64 ( *read )( struct ntfs_device *dev, void *buf, s64 count );
s64 ( *write )( struct ntfs_device *dev, const void *buf, s64 count );
s64 ( *pread )( struct ntfs_device *dev, void *buf, s64 count, s64 offset );
s64 ( *pwrite )( struct ntfs_device *dev, const void *buf, s64 count,
s64 offset );
int ( *sync )( struct ntfs_device *dev );
int ( *stat )( struct ntfs_device *dev, struct stat *buf );
int ( *ioctl )( struct ntfs_device *dev, int request, void *argp );
};
extern struct ntfs_device *ntfs_device_alloc(const char *name, const long state,
struct ntfs_device_operations *dops, void *priv_data);
extern int ntfs_device_free(struct ntfs_device *dev);
extern struct ntfs_device *ntfs_device_alloc( const char *name, const long state,
struct ntfs_device_operations *dops, void *priv_data );
extern int ntfs_device_free( struct ntfs_device *dev );
extern s64 ntfs_pread(struct ntfs_device *dev, const s64 pos, s64 count,
void *b);
extern s64 ntfs_pwrite(struct ntfs_device *dev, const s64 pos, s64 count,
const void *b);
extern s64 ntfs_pread( struct ntfs_device *dev, const s64 pos, s64 count,
void *b );
extern s64 ntfs_pwrite( struct ntfs_device *dev, const s64 pos, s64 count,
const void *b );
extern s64 ntfs_mst_pread(struct ntfs_device *dev, const s64 pos, s64 count,
const u32 bksize, void *b);
extern s64 ntfs_mst_pwrite(struct ntfs_device *dev, const s64 pos, s64 count,
const u32 bksize, void *b);
extern s64 ntfs_mst_pread( struct ntfs_device *dev, const s64 pos, s64 count,
const u32 bksize, void *b );
extern s64 ntfs_mst_pwrite( struct ntfs_device *dev, const s64 pos, s64 count,
const u32 bksize, void *b );
extern s64 ntfs_cluster_read(const ntfs_volume *vol, const s64 lcn,
const s64 count, void *b);
extern s64 ntfs_cluster_write(const ntfs_volume *vol, const s64 lcn,
const s64 count, const void *b);
extern s64 ntfs_cluster_read( const ntfs_volume *vol, const s64 lcn,
const s64 count, void *b );
extern s64 ntfs_cluster_write( const ntfs_volume *vol, const s64 lcn,
const s64 count, const void *b );
extern s64 ntfs_device_size_get(struct ntfs_device *dev, int block_size);
extern s64 ntfs_device_partition_start_sector_get(struct ntfs_device *dev);
extern int ntfs_device_heads_get(struct ntfs_device *dev);
extern int ntfs_device_sectors_per_track_get(struct ntfs_device *dev);
extern int ntfs_device_sector_size_get(struct ntfs_device *dev);
extern int ntfs_device_block_size_set(struct ntfs_device *dev, int block_size);
extern s64 ntfs_device_size_get( struct ntfs_device *dev, int block_size );
extern s64 ntfs_device_partition_start_sector_get( struct ntfs_device *dev );
extern int ntfs_device_heads_get( struct ntfs_device *dev );
extern int ntfs_device_sectors_per_track_get( struct ntfs_device *dev );
extern int ntfs_device_sector_size_get( struct ntfs_device *dev );
extern int ntfs_device_block_size_set( struct ntfs_device *dev, int block_size );
#endif /* defined _NTFS_DEVICE_H */

View File

@ -45,7 +45,8 @@
/**
* struct hd_geometry -
*/
struct hd_geometry {
struct hd_geometry
{
unsigned char heads;
unsigned char sectors;
unsigned short cylinders;

File diff suppressed because it is too large Load Diff

View File

@ -59,27 +59,27 @@ extern ntfschar NTFS_INDEX_O[3];
extern ntfschar NTFS_INDEX_Q[3];
extern ntfschar NTFS_INDEX_R[3];
extern u64 ntfs_inode_lookup_by_name(ntfs_inode *dir_ni,
const ntfschar *uname, const int uname_len);
extern u64 ntfs_inode_lookup_by_mbsname(ntfs_inode *dir_ni, const char *name);
extern void ntfs_inode_update_mbsname(ntfs_inode *dir_ni, const char *name,
u64 inum);
extern u64 ntfs_inode_lookup_by_name( ntfs_inode *dir_ni,
const ntfschar *uname, const int uname_len );
extern u64 ntfs_inode_lookup_by_mbsname( ntfs_inode *dir_ni, const char *name );
extern void ntfs_inode_update_mbsname( ntfs_inode *dir_ni, const char *name,
u64 inum );
extern ntfs_inode *ntfs_pathname_to_inode(ntfs_volume *vol, ntfs_inode *parent,
const char *pathname);
extern ntfs_inode *ntfs_create(ntfs_inode *dir_ni, le32 securid,
ntfschar *name, u8 name_len, mode_t type);
extern ntfs_inode *ntfs_create_device(ntfs_inode *dir_ni, le32 securid,
ntfschar *name, u8 name_len, mode_t type, dev_t dev);
extern ntfs_inode *ntfs_create_symlink(ntfs_inode *dir_ni, le32 securid,
ntfschar *name, u8 name_len, ntfschar *target, int target_len);
extern int ntfs_check_empty_dir(ntfs_inode *ni);
extern int ntfs_delete(ntfs_volume *vol, const char *path,
extern ntfs_inode *ntfs_pathname_to_inode( ntfs_volume *vol, ntfs_inode *parent,
const char *pathname );
extern ntfs_inode *ntfs_create( ntfs_inode *dir_ni, le32 securid,
ntfschar *name, u8 name_len, mode_t type );
extern ntfs_inode *ntfs_create_device( ntfs_inode *dir_ni, le32 securid,
ntfschar *name, u8 name_len, mode_t type, dev_t dev );
extern ntfs_inode *ntfs_create_symlink( ntfs_inode *dir_ni, le32 securid,
ntfschar *name, u8 name_len, ntfschar *target, int target_len );
extern int ntfs_check_empty_dir( ntfs_inode *ni );
extern int ntfs_delete( ntfs_volume *vol, const char *path,
ntfs_inode *ni, ntfs_inode *dir_ni, ntfschar *name,
u8 name_len);
u8 name_len );
extern int ntfs_link(ntfs_inode *ni, ntfs_inode *dir_ni, ntfschar *name,
u8 name_len);
extern int ntfs_link( ntfs_inode *ni, ntfs_inode *dir_ni, ntfschar *name,
u8 name_len );
/*
* File types (adapted from include <linux/fs.h>)
@ -100,27 +100,27 @@ extern int ntfs_link(ntfs_inode *ni, ntfs_inode *dir_ni, ntfschar *name,
* This allows the caller to read directories into their application or
* to have different dirent layouts depending on the binary type.
*/
typedef int (*ntfs_filldir_t)(void *dirent, const ntfschar *name,
typedef int ( *ntfs_filldir_t )( void *dirent, const ntfschar *name,
const int name_len, const int name_type, const s64 pos,
const MFT_REF mref, const unsigned dt_type);
const MFT_REF mref, const unsigned dt_type );
extern int ntfs_readdir(ntfs_inode *dir_ni, s64 *pos,
void *dirent, ntfs_filldir_t filldir);
extern int ntfs_readdir( ntfs_inode *dir_ni, s64 *pos,
void *dirent, ntfs_filldir_t filldir );
ntfs_inode *ntfs_dir_parent_inode(ntfs_inode *ni);
ntfs_inode *ntfs_dir_parent_inode( ntfs_inode *ni );
int ntfs_get_ntfs_dos_name(ntfs_inode *ni, ntfs_inode *dir_ni,
char *value, size_t size);
int ntfs_set_ntfs_dos_name(ntfs_inode *ni, ntfs_inode *dir_ni,
const char *value, size_t size, int flags);
int ntfs_remove_ntfs_dos_name(ntfs_inode *ni, ntfs_inode *dir_ni);
int ntfs_get_ntfs_dos_name( ntfs_inode *ni, ntfs_inode *dir_ni,
char *value, size_t size );
int ntfs_set_ntfs_dos_name( ntfs_inode *ni, ntfs_inode *dir_ni,
const char *value, size_t size, int flags );
int ntfs_remove_ntfs_dos_name( ntfs_inode *ni, ntfs_inode *dir_ni );
#if CACHE_INODE_SIZE
struct CACHED_GENERIC;
extern int ntfs_dir_inode_hash(const struct CACHED_GENERIC *cached);
extern int ntfs_dir_lookup_hash(const struct CACHED_GENERIC *cached);
extern int ntfs_dir_inode_hash( const struct CACHED_GENERIC *cached );
extern int ntfs_dir_lookup_hash( const struct CACHED_GENERIC *cached );
#endif

View File

@ -60,12 +60,13 @@
#ifdef HAVE_SETXATTR /* extended attributes interface required */
static ntfschar logged_utility_stream_name[] = {
const_cpu_to_le16('$'),
const_cpu_to_le16('E'),
const_cpu_to_le16('F'),
const_cpu_to_le16('S'),
const_cpu_to_le16(0)
static ntfschar logged_utility_stream_name[] =
{
const_cpu_to_le16( '$' ),
const_cpu_to_le16( 'E' ),
const_cpu_to_le16( 'F' ),
const_cpu_to_le16( 'S' ),
const_cpu_to_le16( 0 )
} ;
@ -73,51 +74,64 @@ static ntfschar logged_utility_stream_name[] = {
* Get the ntfs EFS info into an extended attribute
*/
int ntfs_get_efs_info(ntfs_inode *ni, char *value, size_t size)
int ntfs_get_efs_info( ntfs_inode *ni, char *value, size_t size )
{
EFS_ATTR_HEADER *efs_info;
s64 attr_size = 0;
if (ni) {
if (ni->flags & FILE_ATTR_ENCRYPTED) {
efs_info = (EFS_ATTR_HEADER*)ntfs_attr_readall(ni,
AT_LOGGED_UTILITY_STREAM,(ntfschar*)NULL, 0,
&attr_size);
if (efs_info
&& (le32_to_cpu(efs_info->length) == attr_size)) {
if (attr_size <= (s64)size) {
if (value)
memcpy(value,efs_info,attr_size);
else {
if ( ni )
{
if ( ni->flags & FILE_ATTR_ENCRYPTED )
{
efs_info = ( EFS_ATTR_HEADER* )ntfs_attr_readall( ni,
AT_LOGGED_UTILITY_STREAM, ( ntfschar* )NULL, 0,
&attr_size );
if ( efs_info
&& ( le32_to_cpu( efs_info->length ) == attr_size ) )
{
if ( attr_size <= ( s64 )size )
{
if ( value )
memcpy( value, efs_info, attr_size );
else
{
errno = EFAULT;
attr_size = 0;
}
} else
if (size) {
}
else if ( size )
{
errno = ERANGE;
attr_size = 0;
}
free (efs_info);
} else {
if (efs_info) {
free(efs_info);
ntfs_log_error("Bad efs_info for inode %lld\n",
(long long)ni->mft_no);
} else {
ntfs_log_error("Could not get efsinfo"
free ( efs_info );
}
else
{
if ( efs_info )
{
free( efs_info );
ntfs_log_error( "Bad efs_info for inode %lld\n",
( long long )ni->mft_no );
}
else
{
ntfs_log_error( "Could not get efsinfo"
" for inode %lld\n",
(long long)ni->mft_no);
( long long )ni->mft_no );
}
errno = EIO;
attr_size = 0;
}
} else {
}
else
{
errno = ENODATA;
ntfs_log_trace("Inode %lld is not encrypted\n",
(long long)ni->mft_no);
ntfs_log_trace( "Inode %lld is not encrypted\n",
( long long )ni->mft_no );
}
}
return (attr_size ? (int)attr_size : -errno);
return ( attr_size ? ( int )attr_size : -errno );
}
/*
@ -133,7 +147,7 @@ int ntfs_get_efs_info(ntfs_inode *ni, char *value, size_t size)
* -1 if there is a problem.
*/
static int fixup_loop(ntfs_inode *ni)
static int fixup_loop( ntfs_inode *ni )
{
ntfs_attr_search_ctx *ctx;
ntfs_attr *na;
@ -145,66 +159,80 @@ static int fixup_loop(ntfs_inode *ni)
int res = 0;
maxcnt = 0;
do {
do
{
restart = FALSE;
ctx = ntfs_attr_get_search_ctx(ni, NULL);
if (!ctx) {
ntfs_log_error("Failed to get ctx for efs\n");
ctx = ntfs_attr_get_search_ctx( ni, NULL );
if ( !ctx )
{
ntfs_log_error( "Failed to get ctx for efs\n" );
res = -1;
}
cnt = 0;
while (!restart && !res
&& !ntfs_attr_lookup(AT_DATA, NULL, 0,
CASE_SENSITIVE, 0, NULL, 0, ctx)) {
while ( !restart && !res
&& !ntfs_attr_lookup( AT_DATA, NULL, 0,
CASE_SENSITIVE, 0, NULL, 0, ctx ) )
{
cnt++;
a = ctx->attr;
na = ntfs_attr_open(ctx->ntfs_ino, AT_DATA,
(ntfschar*)((u8*)a + le16_to_cpu(a->name_offset)),
a->name_length);
if (!na) {
ntfs_log_error("can't open DATA Attribute\n");
na = ntfs_attr_open( ctx->ntfs_ino, AT_DATA,
( ntfschar* )( ( u8* )a + le16_to_cpu( a->name_offset ) ),
a->name_length );
if ( !na )
{
ntfs_log_error( "can't open DATA Attribute\n" );
res = -1;
}
if (na && !(ctx->attr->flags & ATTR_IS_ENCRYPTED)) {
if (!NAttrNonResident(na)
&& ntfs_attr_make_non_resident(na, ctx)) {
if ( na && !( ctx->attr->flags & ATTR_IS_ENCRYPTED ) )
{
if ( !NAttrNonResident( na )
&& ntfs_attr_make_non_resident( na, ctx ) )
{
/*
* ntfs_attr_make_non_resident fails if there
* is not enough space in the MFT record.
* When this happens, force making non-resident
* so that some other attribute is expelled.
*/
if (ntfs_attr_force_non_resident(na)) {
if ( ntfs_attr_force_non_resident( na ) )
{
res = -1;
} else {
}
else
{
/* make sure there is some progress */
if (cnt <= maxcnt) {
if ( cnt <= maxcnt )
{
errno = EIO;
ntfs_log_error("Multiple failure"
" making non resident\n");
ntfs_log_error( "Multiple failure"
" making non resident\n" );
res = -1;
} else {
ntfs_attr_put_search_ctx(ctx);
ctx = (ntfs_attr_search_ctx*)NULL;
}
else
{
ntfs_attr_put_search_ctx( ctx );
ctx = ( ntfs_attr_search_ctx* )NULL;
restart = TRUE;
maxcnt = cnt;
}
}
}
if (!restart && !res
&& ntfs_efs_fixup_attribute(ctx, na)) {
ntfs_log_error("Error in efs fixup of AT_DATA Attribute\n");
if ( !restart && !res
&& ntfs_efs_fixup_attribute( ctx, na ) )
{
ntfs_log_error( "Error in efs fixup of AT_DATA Attribute\n" );
res = -1;
}
}
if (na)
ntfs_attr_close(na);
if ( na )
ntfs_attr_close( na );
}
first = FALSE;
} while (restart && !res);
if (ctx)
ntfs_attr_put_search_ctx(ctx);
return (res);
}
while ( restart && !res );
if ( ctx )
ntfs_attr_put_search_ctx( ctx );
return ( res );
}
/*
@ -213,8 +241,8 @@ static int fixup_loop(ntfs_inode *ni)
* Returns 0, or -1 if there is a problem
*/
int ntfs_set_efs_info(ntfs_inode *ni, const char *value, size_t size,
int flags)
int ntfs_set_efs_info( ntfs_inode *ni, const char *value, size_t size,
int flags )
{
int res;
@ -223,91 +251,112 @@ int ntfs_set_efs_info(ntfs_inode *ni, const char *value, size_t size,
const EFS_ATTR_HEADER *info_header;
res = 0;
if (ni && value && size) {
if (ni->flags & (FILE_ATTR_ENCRYPTED | FILE_ATTR_COMPRESSED)) {
if (ni->flags & FILE_ATTR_ENCRYPTED) {
ntfs_log_trace("Inode %lld already encrypted\n",
(long long)ni->mft_no);
if ( ni && value && size )
{
if ( ni->flags & ( FILE_ATTR_ENCRYPTED | FILE_ATTR_COMPRESSED ) )
{
if ( ni->flags & FILE_ATTR_ENCRYPTED )
{
ntfs_log_trace( "Inode %lld already encrypted\n",
( long long )ni->mft_no );
errno = EEXIST;
} else {
}
else
{
/*
* Possible problem : if encrypted file was
* restored in a compressed directory, it was
* restored as compressed.
* TODO : decompress first.
*/
ntfs_log_error("Inode %lld cannot be encrypted and compressed\n",
(long long)ni->mft_no);
ntfs_log_error( "Inode %lld cannot be encrypted and compressed\n",
( long long )ni->mft_no );
errno = EIO;
}
return -1;
}
info_header = (const EFS_ATTR_HEADER*)value;
info_header = ( const EFS_ATTR_HEADER* )value;
/* make sure we get a likely efsinfo */
if (le32_to_cpu(info_header->length) != size) {
if ( le32_to_cpu( info_header->length ) != size )
{
errno = EINVAL;
return (-1);
return ( -1 );
}
if (!ntfs_attr_exist(ni,AT_LOGGED_UTILITY_STREAM,
(ntfschar*)NULL,0)) {
if (!(flags & XATTR_REPLACE)) {
if ( !ntfs_attr_exist( ni, AT_LOGGED_UTILITY_STREAM,
( ntfschar* )NULL, 0 ) )
{
if ( !( flags & XATTR_REPLACE ) )
{
/*
* no logged_utility_stream attribute : add one,
* apparently, this does not feed the new value in
*/
res = ntfs_attr_add(ni,AT_LOGGED_UTILITY_STREAM,
logged_utility_stream_name,4,
(u8*)NULL,(s64)size);
} else {
res = ntfs_attr_add( ni, AT_LOGGED_UTILITY_STREAM,
logged_utility_stream_name, 4,
( u8* )NULL, ( s64 )size );
}
else
{
errno = ENODATA;
res = -1;
}
} else {
}
else
{
errno = EEXIST;
res = -1;
}
if (!res) {
if ( !res )
{
/*
* open and update the existing efs data
*/
na = ntfs_attr_open(ni, AT_LOGGED_UTILITY_STREAM,
logged_utility_stream_name, 4);
if (na) {
na = ntfs_attr_open( ni, AT_LOGGED_UTILITY_STREAM,
logged_utility_stream_name, 4 );
if ( na )
{
/* resize attribute */
res = ntfs_attr_truncate(na, (s64)size);
res = ntfs_attr_truncate( na, ( s64 )size );
/* overwrite value if any */
if (!res && value) {
written = (int)ntfs_attr_pwrite(na,
(s64)0, (s64)size, value);
if (written != (s64)size) {
ntfs_log_error("Failed to "
"update efs data\n");
if ( !res && value )
{
written = ( int )ntfs_attr_pwrite( na,
( s64 )0, ( s64 )size, value );
if ( written != ( s64 )size )
{
ntfs_log_error( "Failed to "
"update efs data\n" );
errno = EIO;
res = -1;
}
}
ntfs_attr_close(na);
} else
ntfs_attr_close( na );
}
else
res = -1;
}
if (!res) {
if ( !res )
{
/* Don't handle AT_DATA Attribute(s) if inode is a directory */
if (!(ni->mrec->flags & MFT_RECORD_IS_DIRECTORY)) {
if ( !( ni->mrec->flags & MFT_RECORD_IS_DIRECTORY ) )
{
/* iterate over AT_DATA attributes */
/* set encrypted flag, truncate attribute to match padding bytes */
if (fixup_loop(ni))
if ( fixup_loop( ni ) )
return -1;
}
ni->flags |= FILE_ATTR_ENCRYPTED;
NInoSetDirty(ni);
NInoFileNameSetDirty(ni);
NInoSetDirty( ni );
NInoFileNameSetDirty( ni );
}
} else {
}
else
{
errno = EINVAL;
res = -1;
}
return (res ? -1 : 0);
return ( res ? -1 : 0 );
}
/*
@ -321,7 +370,7 @@ int ntfs_set_efs_info(ntfs_inode *ni, const char *value, size_t size,
* -1 if failed (errno tells why)
*/
int ntfs_efs_fixup_attribute(ntfs_attr_search_ctx *ctx, ntfs_attr *na)
int ntfs_efs_fixup_attribute( ntfs_attr_search_ctx *ctx, ntfs_attr *na )
{
u64 newsize;
u64 oldsize;
@ -330,48 +379,59 @@ int ntfs_efs_fixup_attribute(ntfs_attr_search_ctx *ctx, ntfs_attr *na)
ntfs_inode *ni;
BOOL close_ctx = FALSE;
if (!na) {
ntfs_log_error("no na specified for efs_fixup_attribute\n");
if ( !na )
{
ntfs_log_error( "no na specified for efs_fixup_attribute\n" );
goto err_out;
}
if (!ctx) {
ctx = ntfs_attr_get_search_ctx(na->ni, NULL);
if (!ctx) {
ntfs_log_error("Failed to get ctx for efs\n");
if ( !ctx )
{
ctx = ntfs_attr_get_search_ctx( na->ni, NULL );
if ( !ctx )
{
ntfs_log_error( "Failed to get ctx for efs\n" );
goto err_out;
}
close_ctx = TRUE;
if (ntfs_attr_lookup(AT_DATA, na->name, na->name_len,
CASE_SENSITIVE, 0, NULL, 0, ctx)) {
ntfs_log_error("attr lookup for AT_DATA attribute failed in efs fixup\n");
if ( ntfs_attr_lookup( AT_DATA, na->name, na->name_len,
CASE_SENSITIVE, 0, NULL, 0, ctx ) )
{
ntfs_log_error( "attr lookup for AT_DATA attribute failed in efs fixup\n" );
goto err_out;
}
} else {
if (!NAttrNonResident(na)) {
ntfs_log_error("Cannot make non resident"
" when a context has been allocated\n");
}
else
{
if ( !NAttrNonResident( na ) )
{
ntfs_log_error( "Cannot make non resident"
" when a context has been allocated\n" );
goto err_out;
}
}
/* no extra bytes are added to void attributes */
oldsize = na->data_size;
if (oldsize) {
if ( oldsize )
{
/* make sure size is valid for a raw encrypted stream */
if ((oldsize & 511) != 2) {
ntfs_log_error("Bad raw encrypted stream\n");
if ( ( oldsize & 511 ) != 2 )
{
ntfs_log_error( "Bad raw encrypted stream\n" );
goto err_out;
}
/* read padding length from last two bytes of attribute */
if (ntfs_attr_pread(na, oldsize - 2, 2, &appended_bytes) != 2) {
ntfs_log_error("Error reading padding length\n");
if ( ntfs_attr_pread( na, oldsize - 2, 2, &appended_bytes ) != 2 )
{
ntfs_log_error( "Error reading padding length\n" );
goto err_out;
}
padding_length = le16_to_cpu(appended_bytes);
if (padding_length > 511 || padding_length > na->data_size-2) {
padding_length = le16_to_cpu( appended_bytes );
if ( padding_length > 511 || padding_length > na->data_size - 2 )
{
errno = EINVAL;
ntfs_log_error("invalid padding length %d for data_size %lld\n",
padding_length, (long long)oldsize);
ntfs_log_error( "invalid padding length %d for data_size %lld\n",
padding_length, ( long long )oldsize );
goto err_out;
}
newsize = oldsize - padding_length - 2;
@ -380,11 +440,13 @@ int ntfs_efs_fixup_attribute(ntfs_attr_search_ctx *ctx, ntfs_attr *na)
* for the last two bytes, but do not truncate to new size
* to avoid losing useful data
*/
if (ntfs_attr_truncate(na, oldsize - 2)) {
ntfs_log_error("Error truncating attribute\n");
if ( ntfs_attr_truncate( na, oldsize - 2 ) )
{
ntfs_log_error( "Error truncating attribute\n" );
goto err_out;
}
} else
}
else
newsize = 0;
/*
@ -393,47 +455,53 @@ int ntfs_efs_fixup_attribute(ntfs_attr_search_ctx *ctx, ntfs_attr *na)
* resizing down to zero may cause the attribute to be made
* resident.
*/
if (!NAttrNonResident(na)
&& ntfs_attr_make_non_resident(na, ctx)) {
if (!close_ctx
|| ntfs_attr_force_non_resident(na)) {
ntfs_log_error("Error making DATA attribute non-resident\n");
if ( !NAttrNonResident( na )
&& ntfs_attr_make_non_resident( na, ctx ) )
{
if ( !close_ctx
|| ntfs_attr_force_non_resident( na ) )
{
ntfs_log_error( "Error making DATA attribute non-resident\n" );
goto err_out;
} else {
}
else
{
/*
* must reinitialize context after forcing
* non-resident. We need a context for updating
* the state, and at this point, we are sure
* the context is not used elsewhere.
*/
ntfs_attr_reinit_search_ctx(ctx);
if (ntfs_attr_lookup(AT_DATA, na->name, na->name_len,
CASE_SENSITIVE, 0, NULL, 0, ctx)) {
ntfs_log_error("attr lookup for AT_DATA attribute failed in efs fixup\n");
ntfs_attr_reinit_search_ctx( ctx );
if ( ntfs_attr_lookup( AT_DATA, na->name, na->name_len,
CASE_SENSITIVE, 0, NULL, 0, ctx ) )
{
ntfs_log_error( "attr lookup for AT_DATA attribute failed in efs fixup\n" );
goto err_out;
}
}
}
ni = na->ni;
if (!na->name_len) {
if ( !na->name_len )
{
ni->data_size = newsize;
ni->allocated_size = na->allocated_size;
}
NInoSetDirty(ni);
NInoFileNameSetDirty(ni);
NInoSetDirty( ni );
NInoFileNameSetDirty( ni );
ctx->attr->data_size = cpu_to_le64(newsize);
if (le64_to_cpu(ctx->attr->initialized_size) > newsize)
ctx->attr->data_size = cpu_to_le64( newsize );
if ( le64_to_cpu( ctx->attr->initialized_size ) > newsize )
ctx->attr->initialized_size = ctx->attr->data_size;
ctx->attr->flags |= ATTR_IS_ENCRYPTED;
if (close_ctx)
ntfs_attr_put_search_ctx(ctx);
if ( close_ctx )
ntfs_attr_put_search_ctx( ctx );
return (0);
return ( 0 );
err_out:
if (close_ctx && ctx)
ntfs_attr_put_search_ctx(ctx);
return (-1);
if ( close_ctx && ctx )
ntfs_attr_put_search_ctx( ctx );
return ( -1 );
}
#endif /* HAVE_SETXATTR */

View File

@ -21,10 +21,10 @@
#ifndef EFS_H
#define EFS_H
int ntfs_get_efs_info(ntfs_inode *ni, char *value, size_t size);
int ntfs_get_efs_info( ntfs_inode *ni, char *value, size_t size );
int ntfs_set_efs_info(ntfs_inode *ni,
const char *value, size_t size, int flags);
int ntfs_efs_fixup_attribute(ntfs_attr_search_ctx *ctx, ntfs_attr *na);
int ntfs_set_efs_info( ntfs_inode *ni,
const char *value, size_t size, int flags );
int ntfs_efs_fixup_attribute( ntfs_attr_search_ctx *ctx, ntfs_attr *na );
#endif /* EFS_H */

View File

@ -66,83 +66,93 @@
#define DEV_FD(dev) ((gekko_fd *)dev->d_private)
/* Prototypes */
static s64 ntfs_device_gekko_io_readbytes(struct ntfs_device *dev, s64 offset, s64 count, void *buf);
static bool ntfs_device_gekko_io_readsectors(struct ntfs_device *dev, sec_t sector, sec_t numSectors, void* buffer);
static s64 ntfs_device_gekko_io_writebytes(struct ntfs_device *dev, s64 offset, s64 count, const void *buf);
static bool ntfs_device_gekko_io_writesectors(struct ntfs_device *dev, sec_t sector, sec_t numSectors, const void* buffer);
static s64 ntfs_device_gekko_io_readbytes( struct ntfs_device *dev, s64 offset, s64 count, void *buf );
static bool ntfs_device_gekko_io_readsectors( struct ntfs_device *dev, sec_t sector, sec_t numSectors, void* buffer );
static s64 ntfs_device_gekko_io_writebytes( struct ntfs_device *dev, s64 offset, s64 count, const void *buf );
static bool ntfs_device_gekko_io_writesectors( struct ntfs_device *dev, sec_t sector, sec_t numSectors, const void* buffer );
/**
*
*/
static int ntfs_device_gekko_io_open(struct ntfs_device *dev, int flags)
static int ntfs_device_gekko_io_open( struct ntfs_device *dev, int flags )
{
ntfs_log_trace("dev %p, flags %i\n", dev, flags);
ntfs_log_trace( "dev %p, flags %i\n", dev, flags );
// Get the device driver descriptor
gekko_fd *fd = DEV_FD(dev);
if (!fd) {
gekko_fd *fd = DEV_FD( dev );
if ( !fd )
{
errno = EBADF;
return -1;
}
// Get the device interface
const DISC_INTERFACE* interface = fd->interface;
if (!interface) {
if ( !interface )
{
errno = ENODEV;
return -1;
}
// Start the device interface and ensure that it is inserted
if (!interface->startup()) {
ntfs_log_perror("device failed to start\n");
if ( !interface->startup() )
{
ntfs_log_perror( "device failed to start\n" );
errno = EIO;
return -1;
}
if (!interface->isInserted()) {
ntfs_log_perror("device media is not inserted\n");
if ( !interface->isInserted() )
{
ntfs_log_perror( "device media is not inserted\n" );
errno = EIO;
return -1;
}
// Check that the device isn't already open (used by another volume?)
if (NDevOpen(dev)) {
ntfs_log_perror("device is busy (already open)\n");
if ( NDevOpen( dev ) )
{
ntfs_log_perror( "device is busy (already open)\n" );
errno = EBUSY;
return -1;
}
// Check that there is a valid NTFS boot sector at the start of the device
NTFS_BOOT_SECTOR boot;
if (interface->readSectors(fd->startSector, 1, &boot)) {
if (!ntfs_boot_sector_is_ntfs(&boot)) {
if ( interface->readSectors( fd->startSector, 1, &boot ) )
{
if ( !ntfs_boot_sector_is_ntfs( &boot ) )
{
errno = EINVALPART;
return -1;
}
} else {
ntfs_log_perror("read failure @ sector %d\n", fd->startSector);
}
else
{
ntfs_log_perror( "read failure @ sector %d\n", fd->startSector );
errno = EIO;
return -1;
}
// Parse the boot sector
fd->hiddenSectors = le32_to_cpu(boot.bpb.hidden_sectors);
fd->sectorSize = le16_to_cpu(boot.bpb.bytes_per_sector);
fd->sectorCount = sle64_to_cpu(boot.number_of_sectors);
fd->hiddenSectors = le32_to_cpu( boot.bpb.hidden_sectors );
fd->sectorSize = le16_to_cpu( boot.bpb.bytes_per_sector );
fd->sectorCount = sle64_to_cpu( boot.number_of_sectors );
fd->pos = 0;
fd->len = (fd->sectorCount * fd->sectorSize);
fd->ino = le64_to_cpu(boot.volume_serial_number);
fd->len = ( fd->sectorCount * fd->sectorSize );
fd->ino = le64_to_cpu( boot.volume_serial_number );
// Mark the device as read-only (if required)
if (flags & O_RDONLY) {
NDevSetReadOnly(dev);
if ( flags & O_RDONLY )
{
NDevSetReadOnly( dev );
}
// Create the cache
fd->cache = _NTFS_cache_constructor(fd->cachePageCount, fd->cachePageSize, interface, fd->startSector + fd->sectorCount, fd->sectorSize);
fd->cache = _NTFS_cache_constructor( fd->cachePageCount, fd->cachePageSize, interface, fd->startSector + fd->sectorCount, fd->sectorSize );
// Mark the device as open
NDevSetBlock(dev);
NDevSetOpen(dev);
NDevSetBlock( dev );
NDevSetOpen( dev );
return 0;
}
@ -150,43 +160,47 @@ static int ntfs_device_gekko_io_open(struct ntfs_device *dev, int flags)
/**
*
*/
static int ntfs_device_gekko_io_close(struct ntfs_device *dev)
static int ntfs_device_gekko_io_close( struct ntfs_device *dev )
{
ntfs_log_trace("dev %p\n", dev);
ntfs_log_trace( "dev %p\n", dev );
// Get the device driver descriptor
gekko_fd *fd = DEV_FD(dev);
if (!fd) {
gekko_fd *fd = DEV_FD( dev );
if ( !fd )
{
errno = EBADF;
return -1;
}
// Check that the device is actually open
if (!NDevOpen(dev)) {
ntfs_log_perror("device is not open\n");
if ( !NDevOpen( dev ) )
{
ntfs_log_perror( "device is not open\n" );
errno = EIO;
return -1;
}
// Mark the device as closed
NDevClearOpen(dev);
NDevClearBlock(dev);
NDevClearOpen( dev );
NDevClearBlock( dev );
// Flush the device (if dirty and not read-only)
if (NDevDirty(dev) && !NDevReadOnly(dev)) {
ntfs_log_debug("device is dirty, will now sync\n");
if ( NDevDirty( dev ) && !NDevReadOnly( dev ) )
{
ntfs_log_debug( "device is dirty, will now sync\n" );
// ...?
// Mark the device as clean
NDevClearDirty(dev);
NDevClearDirty( dev );
}
// Flush and destroy the cache (if required)
if (fd->cache) {
_NTFS_cache_flush(fd->cache);
_NTFS_cache_destructor(fd->cache);
if ( fd->cache )
{
_NTFS_cache_flush( fd->cache );
_NTFS_cache_destructor( fd->cache );
}
// Shutdown the device interface
@ -196,7 +210,7 @@ static int ntfs_device_gekko_io_close(struct ntfs_device *dev)
}*/
// Free the device driver private data
ntfs_free(dev->d_private);
ntfs_free( dev->d_private );
dev->d_private = NULL;
return 0;
@ -205,22 +219,24 @@ static int ntfs_device_gekko_io_close(struct ntfs_device *dev)
/**
*
*/
static s64 ntfs_device_gekko_io_seek(struct ntfs_device *dev, s64 offset, int whence)
static s64 ntfs_device_gekko_io_seek( struct ntfs_device *dev, s64 offset, int whence )
{
ntfs_log_trace("dev %p, offset %Li, whence %i\n", dev, offset, whence);
ntfs_log_trace( "dev %p, offset %Li, whence %i\n", dev, offset, whence );
// Get the device driver descriptor
gekko_fd *fd = DEV_FD(dev);
if (!fd) {
gekko_fd *fd = DEV_FD( dev );
if ( !fd )
{
errno = EBADF;
return -1;
}
// Set the current position on the device (in bytes)
switch(whence) {
case SEEK_SET: fd->pos = MIN(MAX(offset, 0), fd->len); break;
case SEEK_CUR: fd->pos = MIN(MAX(fd->pos + offset, 0), fd->len); break;
case SEEK_END: fd->pos = MIN(MAX(fd->len + offset, 0), fd->len); break;
switch ( whence )
{
case SEEK_SET: fd->pos = MIN( MAX( offset, 0 ), fd->len ); break;
case SEEK_CUR: fd->pos = MIN( MAX( fd->pos + offset, 0 ), fd->len ); break;
case SEEK_END: fd->pos = MIN( MAX( fd->len + offset, 0 ), fd->len ); break;
}
return 0;
@ -229,86 +245,92 @@ static s64 ntfs_device_gekko_io_seek(struct ntfs_device *dev, s64 offset, int wh
/**
*
*/
static s64 ntfs_device_gekko_io_read(struct ntfs_device *dev, void *buf, s64 count)
static s64 ntfs_device_gekko_io_read( struct ntfs_device *dev, void *buf, s64 count )
{
return ntfs_device_gekko_io_readbytes(dev, DEV_FD(dev)->pos, count, buf);
return ntfs_device_gekko_io_readbytes( dev, DEV_FD( dev )->pos, count, buf );
}
/**
*
*/
static s64 ntfs_device_gekko_io_write(struct ntfs_device *dev, const void *buf, s64 count)
static s64 ntfs_device_gekko_io_write( struct ntfs_device *dev, const void *buf, s64 count )
{
return ntfs_device_gekko_io_writebytes(dev, DEV_FD(dev)->pos, count, buf);
return ntfs_device_gekko_io_writebytes( dev, DEV_FD( dev )->pos, count, buf );
}
/**
*
*/
static s64 ntfs_device_gekko_io_pread(struct ntfs_device *dev, void *buf, s64 count, s64 offset)
static s64 ntfs_device_gekko_io_pread( struct ntfs_device *dev, void *buf, s64 count, s64 offset )
{
return ntfs_device_gekko_io_readbytes(dev, offset, count, buf);
return ntfs_device_gekko_io_readbytes( dev, offset, count, buf );
}
/**
*
*/
static s64 ntfs_device_gekko_io_pwrite(struct ntfs_device *dev, const void *buf, s64 count, s64 offset)
static s64 ntfs_device_gekko_io_pwrite( struct ntfs_device *dev, const void *buf, s64 count, s64 offset )
{
return ntfs_device_gekko_io_writebytes(dev, offset, count, buf);
return ntfs_device_gekko_io_writebytes( dev, offset, count, buf );
}
/**
*
*/
static s64 ntfs_device_gekko_io_readbytes(struct ntfs_device *dev, s64 offset, s64 count, void *buf)
static s64 ntfs_device_gekko_io_readbytes( struct ntfs_device *dev, s64 offset, s64 count, void *buf )
{
ntfs_log_trace("dev %p, offset %Li, count %Li\n", dev, offset, count);
ntfs_log_trace( "dev %p, offset %Li, count %Li\n", dev, offset, count );
// Get the device driver descriptor
gekko_fd *fd = DEV_FD(dev);
if (!fd) {
gekko_fd *fd = DEV_FD( dev );
if ( !fd )
{
errno = EBADF;
return -1;
}
// Get the device interface
const DISC_INTERFACE* interface = fd->interface;
if (!interface) {
if ( !interface )
{
errno = ENODEV;
return -1;
}
if(offset < 0)
if ( offset < 0 )
{
errno = EROFS;
return -1;
}
if(!count)
if ( !count )
return 0;
sec_t sec_start = (sec_t) fd->startSector;
sec_t sec_start = ( sec_t ) fd->startSector;
sec_t sec_count = 1;
u32 buffer_offset = (u32) (offset % fd->sectorSize);
u32 buffer_offset = ( u32 ) ( offset % fd->sectorSize );
u8 *buffer = NULL;
// Determine the range of sectors required for this read
if (offset > 0) {
sec_start += (sec_t) floor((f64) offset / (f64) fd->sectorSize);
if ( offset > 0 )
{
sec_start += ( sec_t ) floor( ( f64 ) offset / ( f64 ) fd->sectorSize );
}
if (buffer_offset+count > fd->sectorSize) {
sec_count = (sec_t) ceil((f64) (buffer_offset+count) / (f64) fd->sectorSize);
if ( buffer_offset + count > fd->sectorSize )
{
sec_count = ( sec_t ) ceil( ( f64 ) ( buffer_offset + count ) / ( f64 ) fd->sectorSize );
}
// If this read happens to be on the sector boundaries then do the read straight into the destination buffer
if((buffer_offset == 0) && (count % fd->sectorSize == 0)) {
if ( ( buffer_offset == 0 ) && ( count % fd->sectorSize == 0 ) )
{
// Read from the device
ntfs_log_trace("direct read from sector %d (%d sector(s) long)\n", sec_start, sec_count);
if (!ntfs_device_gekko_io_readsectors(dev, sec_start, sec_count, buf)) {
ntfs_log_perror("direct read failure @ sector %d (%d sector(s) long)\n", sec_start, sec_count);
ntfs_log_trace( "direct read from sector %d (%d sector(s) long)\n", sec_start, sec_count );
if ( !ntfs_device_gekko_io_readsectors( dev, sec_start, sec_count, buf ) )
{
ntfs_log_perror( "direct read failure @ sector %d (%d sector(s) long)\n", sec_start, sec_count );
errno = EIO;
return -1;
}
@ -319,25 +341,27 @@ static s64 ntfs_device_gekko_io_readbytes(struct ntfs_device *dev, s64 offset, s
{
// Allocate a buffer to hold the read data
buffer = (u8*)ntfs_alloc(sec_count * fd->sectorSize);
if (!buffer) {
buffer = ( u8* )ntfs_alloc( sec_count * fd->sectorSize );
if ( !buffer )
{
errno = ENOMEM;
return -1;
}
// Read from the device
ntfs_log_trace("buffered read from sector %d (%d sector(s) long)\n", sec_start, sec_count);
ntfs_log_trace("count: %d sec_count:%d fd->sectorSize: %d )\n", (u32)count, (u32)sec_count,(u32)fd->sectorSize);
if (!ntfs_device_gekko_io_readsectors(dev, sec_start, sec_count, buffer)) {
ntfs_log_perror("buffered read failure @ sector %d (%d sector(s) long)\n", sec_start, sec_count);
ntfs_free(buffer);
ntfs_log_trace( "buffered read from sector %d (%d sector(s) long)\n", sec_start, sec_count );
ntfs_log_trace( "count: %d sec_count:%d fd->sectorSize: %d )\n", ( u32 )count, ( u32 )sec_count, ( u32 )fd->sectorSize );
if ( !ntfs_device_gekko_io_readsectors( dev, sec_start, sec_count, buffer ) )
{
ntfs_log_perror( "buffered read failure @ sector %d (%d sector(s) long)\n", sec_start, sec_count );
ntfs_free( buffer );
errno = EIO;
return -1;
}
// Copy what was requested to the destination buffer
memcpy(buf, buffer + buffer_offset, count);
ntfs_free(buffer);
memcpy( buf, buffer + buffer_offset, count );
ntfs_free( buffer );
}
@ -347,58 +371,65 @@ static s64 ntfs_device_gekko_io_readbytes(struct ntfs_device *dev, s64 offset, s
/**
*
*/
static s64 ntfs_device_gekko_io_writebytes(struct ntfs_device *dev, s64 offset, s64 count, const void *buf)
static s64 ntfs_device_gekko_io_writebytes( struct ntfs_device *dev, s64 offset, s64 count, const void *buf )
{
ntfs_log_trace("dev %p, offset %lli, count %lli\n", dev, offset, count);
ntfs_log_trace( "dev %p, offset %lli, count %lli\n", dev, offset, count );
// Get the device driver descriptor
gekko_fd *fd = DEV_FD(dev);
if (!fd) {
gekko_fd *fd = DEV_FD( dev );
if ( !fd )
{
errno = EBADF;
return -1;
}
// Get the device interface
const DISC_INTERFACE* interface = fd->interface;
if (!interface) {
if ( !interface )
{
errno = ENODEV;
return -1;
}
// Check that the device can be written to
if (NDevReadOnly(dev)) {
if ( NDevReadOnly( dev ) )
{
errno = EROFS;
return -1;
}
if(count < 0 || offset < 0) {
if ( count < 0 || offset < 0 )
{
errno = EROFS;
return -1;
}
if(count == 0)
if ( count == 0 )
return 0;
sec_t sec_start = (sec_t) fd->startSector;
sec_t sec_start = ( sec_t ) fd->startSector;
sec_t sec_count = 1;
u32 buffer_offset = (u32) (offset % fd->sectorSize);
u32 buffer_offset = ( u32 ) ( offset % fd->sectorSize );
u8 *buffer = NULL;
// Determine the range of sectors required for this write
if (offset > 0) {
sec_start += (sec_t) floor((f64) offset / (f64) fd->sectorSize);
if ( offset > 0 )
{
sec_start += ( sec_t ) floor( ( f64 ) offset / ( f64 ) fd->sectorSize );
}
if ((buffer_offset+count) > fd->sectorSize) {
sec_count = (sec_t) ceil((f64) (buffer_offset+count) / (f64) fd->sectorSize);
if ( ( buffer_offset + count ) > fd->sectorSize )
{
sec_count = ( sec_t ) ceil( ( f64 ) ( buffer_offset + count ) / ( f64 ) fd->sectorSize );
}
// If this write happens to be on the sector boundaries then do the write straight to disc
if((buffer_offset == 0) && (count % fd->sectorSize == 0))
if ( ( buffer_offset == 0 ) && ( count % fd->sectorSize == 0 ) )
{
// Write to the device
ntfs_log_trace("direct write to sector %d (%d sector(s) long)\n", sec_start, sec_count);
if (!ntfs_device_gekko_io_writesectors(dev, sec_start, sec_count, buf)) {
ntfs_log_perror("direct write failure @ sector %d (%d sector(s) long)\n", sec_start, sec_count);
ntfs_log_trace( "direct write to sector %d (%d sector(s) long)\n", sec_start, sec_count );
if ( !ntfs_device_gekko_io_writesectors( dev, sec_start, sec_count, buf ) )
{
ntfs_log_perror( "direct write failure @ sector %d (%d sector(s) long)\n", sec_start, sec_count );
errno = EIO;
return -1;
}
@ -407,86 +438,92 @@ static s64 ntfs_device_gekko_io_writebytes(struct ntfs_device *dev, s64 offset,
else
{
// Allocate a buffer to hold the write data
buffer = (u8 *) ntfs_alloc(sec_count * fd->sectorSize);
if (!buffer) {
buffer = ( u8 * ) ntfs_alloc( sec_count * fd->sectorSize );
if ( !buffer )
{
errno = ENOMEM;
return -1;
}
// Read the first and last sectors of the buffer from disc (if required)
// NOTE: This is done because the data does not line up with the sector boundaries,
// we just read in the buffer edges where the data overlaps with the rest of the disc
if(buffer_offset != 0)
if ( buffer_offset != 0 )
{
if (!ntfs_device_gekko_io_readsectors(dev, sec_start, 1, buffer)) {
ntfs_log_perror("read failure @ sector %d\n", sec_start);
ntfs_free(buffer);
if ( !ntfs_device_gekko_io_readsectors( dev, sec_start, 1, buffer ) )
{
ntfs_log_perror( "read failure @ sector %d\n", sec_start );
ntfs_free( buffer );
errno = EIO;
return -1;
}
}
if((buffer_offset+count) % fd->sectorSize != 0)
if ( ( buffer_offset + count ) % fd->sectorSize != 0 )
{
if (!ntfs_device_gekko_io_readsectors(dev, sec_start + sec_count - 1, 1, buffer + ((sec_count-1) * fd->sectorSize))) {
ntfs_log_perror("read failure @ sector %d\n", sec_start + sec_count - 1);
ntfs_free(buffer);
if ( !ntfs_device_gekko_io_readsectors( dev, sec_start + sec_count - 1, 1, buffer + ( ( sec_count - 1 ) * fd->sectorSize ) ) )
{
ntfs_log_perror( "read failure @ sector %d\n", sec_start + sec_count - 1 );
ntfs_free( buffer );
errno = EIO;
return -1;
}
}
// Copy the data into the write buffer
memcpy(buffer + buffer_offset, buf, count);
memcpy( buffer + buffer_offset, buf, count );
// Write to the device
ntfs_log_trace("buffered write to sector %d (%d sector(s) long)\n", sec_start, sec_count);
if (!ntfs_device_gekko_io_writesectors(dev, sec_start, sec_count, buffer)) {
ntfs_log_perror("buffered write failure @ sector %d\n", sec_start);
ntfs_free(buffer);
ntfs_log_trace( "buffered write to sector %d (%d sector(s) long)\n", sec_start, sec_count );
if ( !ntfs_device_gekko_io_writesectors( dev, sec_start, sec_count, buffer ) )
{
ntfs_log_perror( "buffered write failure @ sector %d\n", sec_start );
ntfs_free( buffer );
errno = EIO;
return -1;
}
// Free the buffer
ntfs_free(buffer);
ntfs_free( buffer );
}
// Mark the device as dirty (if we actually wrote anything)
NDevSetDirty(dev);
NDevSetDirty( dev );
return count;
}
static bool ntfs_device_gekko_io_readsectors(struct ntfs_device *dev, sec_t sector, sec_t numSectors, void* buffer)
static bool ntfs_device_gekko_io_readsectors( struct ntfs_device *dev, sec_t sector, sec_t numSectors, void* buffer )
{
// Get the device driver descriptor
gekko_fd *fd = DEV_FD(dev);
if (!fd) {
gekko_fd *fd = DEV_FD( dev );
if ( !fd )
{
errno = EBADF;
return false;
}
// Read the sectors from disc (or cache, if enabled)
if (fd->cache)
return _NTFS_cache_readSectors(fd->cache, sector, numSectors, buffer);
if ( fd->cache )
return _NTFS_cache_readSectors( fd->cache, sector, numSectors, buffer );
else
return fd->interface->readSectors(sector, numSectors, buffer);
return fd->interface->readSectors( sector, numSectors, buffer );
return false;
}
static bool ntfs_device_gekko_io_writesectors(struct ntfs_device *dev, sec_t sector, sec_t numSectors, const void* buffer)
static bool ntfs_device_gekko_io_writesectors( struct ntfs_device *dev, sec_t sector, sec_t numSectors, const void* buffer )
{
// Get the device driver descriptor
gekko_fd *fd = DEV_FD(dev);
if (!fd) {
gekko_fd *fd = DEV_FD( dev );
if ( !fd )
{
errno = EBADF;
return false;
}
// Write the sectors to disc (or cache, if enabled)
if (fd->cache)
return _NTFS_cache_writeSectors(fd->cache, sector, numSectors, buffer);
if ( fd->cache )
return _NTFS_cache_writeSectors( fd->cache, sector, numSectors, buffer );
else
return fd->interface->writeSectors(sector, numSectors, buffer);
return fd->interface->writeSectors( sector, numSectors, buffer );
return false;
}
@ -494,23 +531,26 @@ static bool ntfs_device_gekko_io_writesectors(struct ntfs_device *dev, sec_t sec
/**
*
*/
static int ntfs_device_gekko_io_sync(struct ntfs_device *dev)
static int ntfs_device_gekko_io_sync( struct ntfs_device *dev )
{
gekko_fd *fd = DEV_FD(dev);
ntfs_log_trace("dev %p\n", dev);
gekko_fd *fd = DEV_FD( dev );
ntfs_log_trace( "dev %p\n", dev );
// Check that the device can be written to
if (NDevReadOnly(dev)) {
if ( NDevReadOnly( dev ) )
{
errno = EROFS;
return -1;
}
// Mark the device as clean
NDevClearDirty(dev);
NDevClearDirty( dev );
// Flush any sectors in the disc cache (if required)
if (fd->cache) {
if (!_NTFS_cache_flush(fd->cache)) {
if ( fd->cache )
{
if ( !_NTFS_cache_flush( fd->cache ) )
{
errno = EIO;
return -1;
}
@ -522,28 +562,29 @@ static int ntfs_device_gekko_io_sync(struct ntfs_device *dev)
/**
*
*/
static int ntfs_device_gekko_io_stat(struct ntfs_device *dev, struct stat *buf)
static int ntfs_device_gekko_io_stat( struct ntfs_device *dev, struct stat *buf )
{
ntfs_log_trace("dev %p, buf %p\n", dev, buf);
ntfs_log_trace( "dev %p, buf %p\n", dev, buf );
// Get the device driver descriptor
gekko_fd *fd = DEV_FD(dev);
if (!fd) {
gekko_fd *fd = DEV_FD( dev );
if ( !fd )
{
errno = EBADF;
return -1;
}
// Short circuit cases were we don't actually have to do anything
if (!buf)
if ( !buf )
return 0;
// Build the device mode
mode_t mode = (S_IFBLK) |
(S_IRUSR | S_IRGRP | S_IROTH) |
((!NDevReadOnly(dev)) ? (S_IWUSR | S_IWGRP | S_IWOTH) : 0);
mode_t mode = ( S_IFBLK ) |
( S_IRUSR | S_IRGRP | S_IROTH ) |
( ( !NDevReadOnly( dev ) ) ? ( S_IWUSR | S_IWGRP | S_IWOTH ) : 0 );
// Zero out the stat buffer
memset(buf, 0, sizeof(struct stat));
memset( buf, 0, sizeof( struct stat ) );
// Build the device stats
buf->st_dev = fd->interface->ioType;
@ -559,68 +600,76 @@ static int ntfs_device_gekko_io_stat(struct ntfs_device *dev, struct stat *buf)
/**
*
*/
static int ntfs_device_gekko_io_ioctl(struct ntfs_device *dev, int request, void *argp)
static int ntfs_device_gekko_io_ioctl( struct ntfs_device *dev, int request, void *argp )
{
ntfs_log_trace("dev %p, request %i, argp %p\n", dev, request, argp);
ntfs_log_trace( "dev %p, request %i, argp %p\n", dev, request, argp );
// Get the device driver descriptor
gekko_fd *fd = DEV_FD(dev);
if (!fd) {
gekko_fd *fd = DEV_FD( dev );
if ( !fd )
{
errno = EBADF;
return -1;
}
// Figure out which i/o control was requested
switch (request) {
switch ( request )
{
// Get block device size (sectors)
#if defined(BLKGETSIZE)
case BLKGETSIZE: {
*(u32*)argp = fd->sectorCount;
#if defined(BLKGETSIZE)
case BLKGETSIZE:
{
*( u32* )argp = fd->sectorCount;
return 0;
}
#endif
#endif
// Get block device size (bytes)
#if defined(BLKGETSIZE64)
case BLKGETSIZE64: {
*(u64*)argp = (fd->sectorCount * fd->sectorSize);
#if defined(BLKGETSIZE64)
case BLKGETSIZE64:
{
*( u64* )argp = ( fd->sectorCount * fd->sectorSize );
return 0;
}
#endif
#endif
// Get hard drive geometry
#if defined(HDIO_GETGEO)
case HDIO_GETGEO: {
struct hd_geometry *geo = (struct hd_geometry*)argp;
#if defined(HDIO_GETGEO)
case HDIO_GETGEO:
{
struct hd_geometry *geo = ( struct hd_geometry* )argp;
geo->sectors = 0;
geo->heads = 0;
geo->cylinders = 0;
geo->start = fd->hiddenSectors;
return -1;
}
#endif
#endif
// Get block device sector size (bytes)
#if defined(BLKSSZGET)
case BLKSSZGET: {
*(int*)argp = fd->sectorSize;
#if defined(BLKSSZGET)
case BLKSSZGET:
{
*( int* )argp = fd->sectorSize;
return 0;
}
#endif
#endif
// Set block device block size (bytes)
#if defined(BLKBSZSET)
case BLKBSZSET: {
int sectorSize = *(int*)argp;
#if defined(BLKBSZSET)
case BLKBSZSET:
{
int sectorSize = *( int* )argp;
fd->sectorSize = sectorSize;
return 0;
}
#endif
#endif
// Unimplemented ioctrl
default: {
ntfs_log_perror("Unimplemented ioctrl %i\n", request);
default:
{
ntfs_log_perror( "Unimplemented ioctrl %i\n", request );
errno = EOPNOTSUPP;
return -1;
}
@ -633,7 +682,8 @@ static int ntfs_device_gekko_io_ioctl(struct ntfs_device *dev, int request, void
/**
* Device operations for working with gekko style devices and files.
*/
struct ntfs_device_operations ntfs_device_gekko_io_ops = {
struct ntfs_device_operations ntfs_device_gekko_io_ops =
{
.open = ntfs_device_gekko_io_open,
.close = ntfs_device_gekko_io_close,
.seek = ntfs_device_gekko_io_seek,

View File

@ -33,7 +33,8 @@
/**
* gekko_fd - Gekko device driver descriptor
*/
typedef struct _gekko_fd {
typedef struct _gekko_fd
{
const DISC_INTERFACE* interface; /* Device disc interface */
sec_t startSector; /* LBA of partition start */
sec_t hiddenSectors; /* LBA offset to true partition start (as described by boot sector) */

File diff suppressed because it is too large Load Diff

View File

@ -63,8 +63,8 @@
#define MAX_PARENT_VCN 32
typedef int (*COLLATE)(ntfs_volume *vol, const void *data1, int len1,
const void *data2, int len2);
typedef int ( *COLLATE )( ntfs_volume *vol, const void *data1, int len1,
const void *data2, int len2 );
/**
* struct ntfs_index_context -
@ -112,7 +112,8 @@ typedef int (*COLLATE)(ntfs_volume *vol, const void *data1, int len1,
* the call to ntfs_index_ctx_put() to ensure that the changes are written
* to disk.
*/
typedef struct {
typedef struct
{
ntfs_inode *ni;
ntfschar *name;
u32 name_len;
@ -133,35 +134,35 @@ typedef struct {
u8 vcn_size_bits;
} ntfs_index_context;
extern ntfs_index_context *ntfs_index_ctx_get(ntfs_inode *ni,
ntfschar *name, u32 name_len);
extern void ntfs_index_ctx_put(ntfs_index_context *ictx);
extern void ntfs_index_ctx_reinit(ntfs_index_context *ictx);
extern ntfs_index_context *ntfs_index_ctx_get( ntfs_inode *ni,
ntfschar *name, u32 name_len );
extern void ntfs_index_ctx_put( ntfs_index_context *ictx );
extern void ntfs_index_ctx_reinit( ntfs_index_context *ictx );
extern int ntfs_index_lookup(const void *key, const int key_len,
ntfs_index_context *ictx) __attribute_warn_unused_result__;
extern int ntfs_index_lookup( const void *key, const int key_len,
ntfs_index_context *ictx ) __attribute_warn_unused_result__;
extern INDEX_ENTRY *ntfs_index_next(INDEX_ENTRY *ie,
ntfs_index_context *ictx);
extern INDEX_ENTRY *ntfs_index_next( INDEX_ENTRY *ie,
ntfs_index_context *ictx );
extern int ntfs_index_add_filename(ntfs_inode *ni, FILE_NAME_ATTR *fn,
MFT_REF mref);
extern int ntfs_index_remove(ntfs_inode *dir_ni, ntfs_inode *ni,
const void *key, const int keylen);
extern int ntfs_index_add_filename( ntfs_inode *ni, FILE_NAME_ATTR *fn,
MFT_REF mref );
extern int ntfs_index_remove( ntfs_inode *dir_ni, ntfs_inode *ni,
const void *key, const int keylen );
extern INDEX_ROOT *ntfs_index_root_get(ntfs_inode *ni, ATTR_RECORD *attr);
extern INDEX_ROOT *ntfs_index_root_get( ntfs_inode *ni, ATTR_RECORD *attr );
extern VCN ntfs_ie_get_vcn(INDEX_ENTRY *ie);
extern VCN ntfs_ie_get_vcn( INDEX_ENTRY *ie );
extern void ntfs_index_entry_mark_dirty(ntfs_index_context *ictx);
extern void ntfs_index_entry_mark_dirty( ntfs_index_context *ictx );
extern char *ntfs_ie_filename_get(INDEX_ENTRY *ie);
extern void ntfs_ie_filename_dump(INDEX_ENTRY *ie);
extern void ntfs_ih_filename_dump(INDEX_HEADER *ih);
extern char *ntfs_ie_filename_get( INDEX_ENTRY *ie );
extern void ntfs_ie_filename_dump( INDEX_ENTRY *ie );
extern void ntfs_ih_filename_dump( INDEX_HEADER *ih );
/* the following was added by JPA for use in security.c */
extern int ntfs_ie_add(ntfs_index_context *icx, INDEX_ENTRY *ie);
extern int ntfs_index_rm(ntfs_index_context *icx);
extern int ntfs_ie_add( ntfs_index_context *icx, INDEX_ENTRY *ie );
extern int ntfs_index_rm( ntfs_index_context *icx );
#endif /* _NTFS_INDEX_H */

Some files were not shown because too many files have changed in this diff Show More