* remove little unused code

* code cleanup
This commit is contained in:
giantpune 2010-09-18 23:16:05 +00:00
parent e1a36e8988
commit 9e79c9d99b
326 changed files with 87736 additions and 80266 deletions

View File

@ -2,8 +2,8 @@
<app version="1">
<name> USB Loader GX</name>
<coder>USB Loader GX Team</coder>
<version>1.0 r950</version>
<release_date>201009182245</release_date>
<version>1.0 r951</version>
<release_date>201009182308</release_date>
<short_description>Loads games from USB-devices</short_description>
<long_description>USB Loader GX is a libwiigui based USB iso loader with a wii-like GUI. You can install games to your HDDs and boot them with shorter loading times.
The interactive GUI is completely controllable with WiiMote, Classic Controller or GC Controller.

BIN
data/magic_patcher.o Normal file

Binary file not shown.

View File

@ -27,55 +27,55 @@
#include "filelist.h"
FreeTypeGX * fontSystem = NULL;
static FT_Byte * MainFont = (FT_Byte *) font_ttf;
static FT_Byte * MainFont = ( FT_Byte * ) font_ttf;
static u32 MainFontSize = font_ttf_size;
void ClearFontData()
{
if(fontSystem)
if ( fontSystem )
delete fontSystem;
fontSystem = NULL;
if(MainFont != (FT_Byte *) font_ttf)
if ( MainFont != ( FT_Byte * ) font_ttf )
{
if(MainFont != NULL)
if ( MainFont != NULL )
delete [] MainFont;
MainFont = (FT_Byte *) font_ttf;
MainFont = ( FT_Byte * ) font_ttf;
MainFontSize = font_ttf_size;
}
}
bool SetupDefaultFont(const char *path)
bool SetupDefaultFont( const char *path )
{
bool result = false;
FILE *pfile = NULL;
ClearFontData();
if(path)
pfile = fopen(path, "rb");
if ( path )
pfile = fopen( path, "rb" );
if(pfile)
if ( pfile )
{
fseek(pfile, 0, SEEK_END);
MainFontSize = ftell(pfile);
rewind(pfile);
fseek( pfile, 0, SEEK_END );
MainFontSize = ftell( pfile );
rewind( pfile );
MainFont = new (std::nothrow) FT_Byte[MainFontSize];
if(!MainFont)
MainFont = new ( std::nothrow ) FT_Byte[MainFontSize];
if ( !MainFont )
{
MainFont = (FT_Byte *) font_ttf;
MainFont = ( FT_Byte * ) font_ttf;
MainFontSize = font_ttf_size;
}
else
{
fread(MainFont, 1, MainFontSize, pfile);
fread( MainFont, 1, MainFontSize, pfile );
result = true;
}
fclose(pfile);
fclose( pfile );
}
fontSystem = new FreeTypeGX(MainFont, MainFontSize);
fontSystem = new FreeTypeGX( MainFont, MainFontSize );
return result;
}

View File

@ -26,7 +26,7 @@
#ifndef FONTSYSTEM_H_
#define FONTSYSTEM_H_
bool SetupDefaultFont(const char *path);
bool SetupDefaultFont( const char *path );
void ClearFontData();
#endif

View File

@ -30,44 +30,44 @@ using namespace std;
* This routine converts a supplied short character string into a wide character string.
* Note that it is the user's responsibility to clear the returned buffer once it is no longer needed.
*
* @param strChar Character string to be converted.
* @param strChar Character string to be converted.
* @return Wide character representation of supplied character string.
*/
wchar_t* charToWideChar(const char* strChar)
wchar_t* charToWideChar( const char* strChar )
{
if(!strChar)
if ( !strChar )
return NULL;
wchar_t *strWChar = new (std::nothrow) wchar_t[strlen(strChar) + 1];
if(!strWChar)
return NULL;
wchar_t *strWChar = new ( std::nothrow ) wchar_t[strlen( strChar ) + 1];
if ( !strWChar )
return NULL;
int bt = mbstowcs(strWChar, strChar, strlen(strChar));
if (bt > 0)
{
strWChar[bt] = 0;
return strWChar;
}
int bt = mbstowcs( strWChar, strChar, strlen( strChar ) );
if ( bt > 0 )
{
strWChar[bt] = 0;
return strWChar;
}
wchar_t *tempDest = strWChar;
while((*tempDest++ = *strChar++));
wchar_t *tempDest = strWChar;
while ( ( *tempDest++ = *strChar++ ) );
return strWChar;
return strWChar;
}
/**
* Default constructor for the FreeTypeGX class for WiiXplorer.
*/
FreeTypeGX::FreeTypeGX(const uint8_t* fontBuffer, FT_Long bufferSize)
FreeTypeGX::FreeTypeGX( const uint8_t* fontBuffer, FT_Long bufferSize )
{
ftPointSize = 0;
FT_Init_FreeType(&ftLibrary);
FT_New_Memory_Face(ftLibrary, (FT_Byte *)fontBuffer, bufferSize, 0, &ftFace);
FT_Init_FreeType( &ftLibrary );
FT_New_Memory_Face( ftLibrary, ( FT_Byte * )fontBuffer, bufferSize, 0, &ftFace );
setVertexFormat(GX_VTXFMT1);
ftKerningEnabled = FT_HAS_KERNING(ftFace);
setVertexFormat( GX_VTXFMT1 );
ftKerningEnabled = FT_HAS_KERNING( ftFace );
}
/**
@ -75,9 +75,9 @@ FreeTypeGX::FreeTypeGX(const uint8_t* fontBuffer, FT_Long bufferSize)
*/
FreeTypeGX::~FreeTypeGX()
{
unloadFont();
FT_Done_Face(ftFace);
FT_Done_FreeType(ftLibrary);
unloadFont();
FT_Done_Face( ftFace );
FT_Done_FreeType( ftLibrary );
}
/**
@ -87,14 +87,14 @@ FreeTypeGX::~FreeTypeGX()
* Note that this function should not need to be called except if the vertex formats are cleared or the specified
* vertex format index is modified.
*
* @param vertexIndex Vertex format index (GX_VTXFMT*) of the glyph textures as defined by the libogc gx.h header file.
* @param vertexIndex Vertex format index (GX_VTXFMT*) of the glyph textures as defined by the libogc gx.h header file.
*/
void FreeTypeGX::setVertexFormat(uint8_t vertexInd)
void FreeTypeGX::setVertexFormat( uint8_t vertexInd )
{
vertexIndex = vertexInd;
GX_SetVtxAttrFmt(vertexIndex, GX_VA_POS, GX_POS_XYZ, GX_S16, 0);
GX_SetVtxAttrFmt(vertexIndex, GX_VA_TEX0, GX_TEX_ST, GX_F32, 0);
GX_SetVtxAttrFmt(vertexIndex, GX_VA_CLR0, GX_CLR_RGBA, GX_RGBA8, 0);
vertexIndex = vertexInd;
GX_SetVtxAttrFmt( vertexIndex, GX_VA_POS, GX_POS_XYZ, GX_S16, 0 );
GX_SetVtxAttrFmt( vertexIndex, GX_VA_TEX0, GX_TEX_ST, GX_F32, 0 );
GX_SetVtxAttrFmt( vertexIndex, GX_VA_CLR0, GX_CLR_RGBA, GX_RGBA8, 0 );
}
/**
@ -104,22 +104,22 @@ void FreeTypeGX::setVertexFormat(uint8_t vertexInd)
*/
void FreeTypeGX::unloadFont()
{
if(this->fontData.size() == 0)
return;
if ( this->fontData.size() == 0 )
return;
map<int16_t, map<wchar_t, ftgxCharData> >::iterator itr;
map<wchar_t, ftgxCharData>::iterator itr2;
for(itr = fontData.begin(); itr != fontData.end(); itr++)
{
for(itr2 = itr->second.begin(); itr2 != itr->second.end(); itr2++)
free(itr2->second.glyphDataTexture);
for ( itr = fontData.begin(); itr != fontData.end(); itr++ )
{
for ( itr2 = itr->second.begin(); itr2 != itr->second.end(); itr2++ )
free( itr2->second.glyphDataTexture );
itr->second.clear();
}
}
fontData.clear();
ftgxAlign.clear();
fontData.clear();
ftgxAlign.clear();
}
/**
@ -128,70 +128,70 @@ void FreeTypeGX::unloadFont()
* This routine renders and stores the requested glyph's bitmap and relevant information into its own quickly addressible
* structure within an instance-specific map.
*
* @param charCode The requested glyph's character code.
* @param charCode The requested glyph's character code.
* @return A pointer to the allocated font structure.
*/
ftgxCharData * FreeTypeGX::cacheGlyphData(wchar_t charCode, int16_t pixelSize)
ftgxCharData * FreeTypeGX::cacheGlyphData( wchar_t charCode, int16_t pixelSize )
{
map<int16_t, map<wchar_t, ftgxCharData> >::iterator itr;
map<wchar_t, ftgxCharData>::iterator itr2;
itr = fontData.find(pixelSize);
if(itr != fontData.end())
itr = fontData.find( pixelSize );
if ( itr != fontData.end() )
{
itr2 = itr->second.find(charCode);
itr2 = itr->second.find( charCode );
if(itr2 != itr->second.end())
if ( itr2 != itr->second.end() )
{
return &itr2->second;
}
}
FT_UInt gIndex;
uint16_t textureWidth = 0, textureHeight = 0;
FT_UInt gIndex;
uint16_t textureWidth = 0, textureHeight = 0;
if(ftPointSize != pixelSize)
{
ftPointSize = pixelSize;
FT_Set_Pixel_Sizes(ftFace, 0, ftPointSize);
if ( ftPointSize != pixelSize )
{
ftPointSize = pixelSize;
FT_Set_Pixel_Sizes( ftFace, 0, ftPointSize );
//!Cache ascender and decender as well
map<int16_t, ftgxDataOffset>::iterator itrAlign = ftgxAlign.find(ftPointSize);
if(itrAlign == ftgxAlign.end())
map<int16_t, ftgxDataOffset>::iterator itrAlign = ftgxAlign.find( ftPointSize );
if ( itrAlign == ftgxAlign.end() )
{
ftgxAlign[ftPointSize].ascender = (int16_t) ftFace->size->metrics.ascender>>6;
ftgxAlign[ftPointSize].descender = (int16_t) ftFace->size->metrics.descender>>6;
ftgxAlign[ftPointSize].ascender = ( int16_t ) ftFace->size->metrics.ascender >> 6;
ftgxAlign[ftPointSize].descender = ( int16_t ) ftFace->size->metrics.descender >> 6;
ftgxAlign[ftPointSize].max = 0;
ftgxAlign[ftPointSize].min = 0;
}
}
}
gIndex = FT_Get_Char_Index(ftFace, (FT_ULong) charCode);
if (gIndex != 0 && FT_Load_Glyph(ftFace, gIndex, FT_LOAD_DEFAULT | FT_LOAD_RENDER) == 0)
{
if(ftFace->glyph->format == FT_GLYPH_FORMAT_BITMAP)
{
FT_Bitmap *glyphBitmap = &ftFace->glyph->bitmap;
gIndex = FT_Get_Char_Index( ftFace, ( FT_ULong ) charCode );
if ( gIndex != 0 && FT_Load_Glyph( ftFace, gIndex, FT_LOAD_DEFAULT | FT_LOAD_RENDER ) == 0 )
{
if ( ftFace->glyph->format == FT_GLYPH_FORMAT_BITMAP )
{
FT_Bitmap *glyphBitmap = &ftFace->glyph->bitmap;
textureWidth = glyphBitmap->width + (4 - glyphBitmap->width % 4) % 4;
textureHeight = glyphBitmap->rows + (4 - glyphBitmap->rows % 4) % 4;
textureWidth = glyphBitmap->width + ( 4 - glyphBitmap->width % 4 ) % 4;
textureHeight = glyphBitmap->rows + ( 4 - glyphBitmap->rows % 4 ) % 4;
fontData[pixelSize][charCode].renderOffsetX = (int16_t) ftFace->glyph->bitmap_left;
fontData[pixelSize][charCode].glyphAdvanceX = (uint16_t) (ftFace->glyph->advance.x >> 6);
fontData[pixelSize][charCode].glyphIndex = (uint32_t) gIndex;
fontData[pixelSize][charCode].textureWidth = (uint16_t) textureWidth;
fontData[pixelSize][charCode].textureHeight = (uint16_t) textureHeight;
fontData[pixelSize][charCode].renderOffsetY = (int16_t) ftFace->glyph->bitmap_top;
fontData[pixelSize][charCode].renderOffsetMax = (int16_t) ftFace->glyph->bitmap_top;
fontData[pixelSize][charCode].renderOffsetMin = (int16_t) glyphBitmap->rows - ftFace->glyph->bitmap_top;
fontData[pixelSize][charCode].glyphDataTexture = NULL;
fontData[pixelSize][charCode].renderOffsetX = ( int16_t ) ftFace->glyph->bitmap_left;
fontData[pixelSize][charCode].glyphAdvanceX = ( uint16_t ) ( ftFace->glyph->advance.x >> 6 );
fontData[pixelSize][charCode].glyphIndex = ( uint32_t ) gIndex;
fontData[pixelSize][charCode].textureWidth = ( uint16_t ) textureWidth;
fontData[pixelSize][charCode].textureHeight = ( uint16_t ) textureHeight;
fontData[pixelSize][charCode].renderOffsetY = ( int16_t ) ftFace->glyph->bitmap_top;
fontData[pixelSize][charCode].renderOffsetMax = ( int16_t ) ftFace->glyph->bitmap_top;
fontData[pixelSize][charCode].renderOffsetMin = ( int16_t ) glyphBitmap->rows - ftFace->glyph->bitmap_top;
fontData[pixelSize][charCode].glyphDataTexture = NULL;
loadGlyphData(glyphBitmap, &fontData[pixelSize][charCode]);
loadGlyphData( glyphBitmap, &fontData[pixelSize][charCode] );
return &fontData[pixelSize][charCode];
}
}
return NULL;
return &fontData[pixelSize][charCode];
}
}
return NULL;
}
/**
@ -200,19 +200,19 @@ ftgxCharData * FreeTypeGX::cacheGlyphData(wchar_t charCode, int16_t pixelSize)
* This routine locates each character in the configured font face and renders the glyph's bitmap.
* Each bitmap and relevant information is loaded into its own quickly addressible structure within an instance-specific map.
*/
uint16_t FreeTypeGX::cacheGlyphDataComplete(int16_t pixelSize)
uint16_t FreeTypeGX::cacheGlyphDataComplete( int16_t pixelSize )
{
uint32_t i = 0;
FT_UInt gIndex;
uint32_t i = 0;
FT_UInt gIndex;
FT_ULong charCode = FT_Get_First_Char( ftFace, &gIndex );
while ( gIndex != 0 )
{
if(cacheGlyphData(charCode, pixelSize) != NULL)
++i;
charCode = FT_Get_Next_Char( ftFace, charCode, &gIndex );
}
return (uint16_t)(i);
FT_ULong charCode = FT_Get_First_Char( ftFace, &gIndex );
while ( gIndex != 0 )
{
if ( cacheGlyphData( charCode, pixelSize ) != NULL )
++i;
charCode = FT_Get_Next_Char( ftFace, charCode, &gIndex );
}
return ( uint16_t )( i );
}
/**
@ -221,40 +221,40 @@ uint16_t FreeTypeGX::cacheGlyphDataComplete(int16_t pixelSize)
* This routine does a simple byte-wise copy of the glyph's rendered 8-bit grayscale bitmap into the structure's buffer.
* Each byte is converted from the bitmap's intensity value into the a uint32_t RGBA value.
*
* @param bmp A pointer to the most recently rendered glyph's bitmap.
* @param charData A pointer to an allocated ftgxCharData structure whose data represent that of the last rendered glyph.
* @param bmp A pointer to the most recently rendered glyph's bitmap.
* @param charData A pointer to an allocated ftgxCharData structure whose data represent that of the last rendered glyph.
*
*
* Optimized for RGBA8 use by Dimok.
*/
void FreeTypeGX::loadGlyphData(FT_Bitmap *bmp, ftgxCharData *charData)
void FreeTypeGX::loadGlyphData( FT_Bitmap *bmp, ftgxCharData *charData )
{
int length = ((((charData->textureWidth+3)>>2)*((charData->textureHeight+3)>>2)*32*2 + 31) & ~31);
int length = ( ( ( ( charData->textureWidth + 3 ) >> 2 ) * ( ( charData->textureHeight + 3 ) >> 2 ) * 32 * 2 + 31 ) & ~31 );
uint8_t * glyphData = (uint8_t *) memalign(32, length);
if(!glyphData)
uint8_t * glyphData = ( uint8_t * ) memalign( 32, length );
if ( !glyphData )
return;
memset(glyphData, 0x00, length);
memset( glyphData, 0x00, length );
uint8_t *src = (uint8_t *)bmp->buffer;
uint32_t offset;
uint8_t *src = ( uint8_t * )bmp->buffer;
uint32_t offset;
for (int imagePosY = 0; imagePosY < bmp->rows; ++imagePosY)
{
for (int imagePosX = 0; imagePosX < bmp->width; ++imagePosX)
{
offset = ((((imagePosY >> 2) * (charData->textureWidth >> 2) + (imagePosX >> 2)) << 5) + ((imagePosY & 3) << 2) + (imagePosX & 3)) << 1;
glyphData[offset] = *src;
glyphData[offset+1] = *src;
glyphData[offset+32] = *src;
glyphData[offset+33] = *src;
++src;
}
}
DCFlushRange(glyphData, length);
for ( int imagePosY = 0; imagePosY < bmp->rows; ++imagePosY )
{
for ( int imagePosX = 0; imagePosX < bmp->width; ++imagePosX )
{
offset = ( ( ( ( imagePosY >> 2 ) * ( charData->textureWidth >> 2 ) + ( imagePosX >> 2 ) ) << 5 ) + ( ( imagePosY & 3 ) << 2 ) + ( imagePosX & 3 ) ) << 1;
glyphData[offset] = *src;
glyphData[offset+1] = *src;
glyphData[offset+32] = *src;
glyphData[offset+33] = *src;
++src;
}
}
DCFlushRange( glyphData, length );
charData->glyphDataTexture = glyphData;
charData->glyphDataTexture = glyphData;
}
/**
@ -262,18 +262,18 @@ void FreeTypeGX::loadGlyphData(FT_Bitmap *bmp, ftgxCharData *charData)
*
* This routine calculates the x offset of the rendered string based off of a supplied positional format parameter.
*
* @param width Current pixel width of the string.
* @param format Positional format of the string.
* @param width Current pixel width of the string.
* @param format Positional format of the string.
*/
int16_t FreeTypeGX::getStyleOffsetWidth(uint16_t width, uint16_t format)
int16_t FreeTypeGX::getStyleOffsetWidth( uint16_t width, uint16_t format )
{
if (format & FTGX_JUSTIFY_LEFT)
return 0;
else if (format & FTGX_JUSTIFY_CENTER)
return -(width >> 1);
else if (format & FTGX_JUSTIFY_RIGHT)
return -width;
return 0;
if ( format & FTGX_JUSTIFY_LEFT )
return 0;
else if ( format & FTGX_JUSTIFY_CENTER )
return -( width >> 1 );
else if ( format & FTGX_JUSTIFY_RIGHT )
return -width;
return 0;
}
/**
@ -281,40 +281,40 @@ int16_t FreeTypeGX::getStyleOffsetWidth(uint16_t width, uint16_t format)
*
* This routine calculates the y offset of the rendered string based off of a supplied positional format parameter.
*
* @param offset Current pixel offset data of the string.
* @param format Positional format of the string.
* @param offset Current pixel offset data of the string.
* @param format Positional format of the string.
*/
int16_t FreeTypeGX::getStyleOffsetHeight(int16_t format, uint16_t pixelSize)
int16_t FreeTypeGX::getStyleOffsetHeight( int16_t format, uint16_t pixelSize )
{
map<int16_t, ftgxDataOffset>::iterator itrAlign = ftgxAlign.find(pixelSize);
if(itrAlign == ftgxAlign.end())
map<int16_t, ftgxDataOffset>::iterator itrAlign = ftgxAlign.find( pixelSize );
if ( itrAlign == ftgxAlign.end() )
return 0;
switch(format & FTGX_ALIGN_MASK)
{
case FTGX_ALIGN_TOP:
return itrAlign->second.ascender;
switch ( format & FTGX_ALIGN_MASK )
{
case FTGX_ALIGN_TOP:
return itrAlign->second.ascender;
case FTGX_ALIGN_MIDDLE:
default:
return (itrAlign->second.ascender + itrAlign->second.descender + 1) >> 1;
case FTGX_ALIGN_MIDDLE:
default:
return ( itrAlign->second.ascender + itrAlign->second.descender + 1 ) >> 1;
case FTGX_ALIGN_BOTTOM:
return itrAlign->second.descender;
case FTGX_ALIGN_BOTTOM:
return itrAlign->second.descender;
case FTGX_ALIGN_BASELINE:
return 0;
case FTGX_ALIGN_BASELINE:
return 0;
case FTGX_ALIGN_GLYPH_TOP:
return itrAlign->second.max;
case FTGX_ALIGN_GLYPH_TOP:
return itrAlign->second.max;
case FTGX_ALIGN_GLYPH_MIDDLE:
return (itrAlign->second.max + itrAlign->second.min + 1) >> 1;
case FTGX_ALIGN_GLYPH_MIDDLE:
return ( itrAlign->second.max + itrAlign->second.min + 1 ) >> 1;
case FTGX_ALIGN_GLYPH_BOTTOM:
return itrAlign->second.min;
}
return 0;
case FTGX_ALIGN_GLYPH_BOTTOM:
return itrAlign->second.min;
}
return 0;
}
/**
@ -323,77 +323,77 @@ int16_t FreeTypeGX::getStyleOffsetHeight(int16_t format, uint16_t pixelSize)
* This routine processes each character of the supplied text string, loads the relevant preprocessed bitmap buffer,
* a texture from said buffer, and loads the resultant texture into the EFB.
*
* @param x Screen X coordinate at which to output the text.
* @param x Screen X coordinate at which to output the text.
* @param y Screen Y coordinate at which to output the text. Note that this value corresponds to the text string origin and not the top or bottom of the glyphs.
* @param text NULL terminated string to output.
* @param color Optional color to apply to the text characters. If not specified default value is ftgxWhite: (GXColor){0xff, 0xff, 0xff, 0xff}
* @param textStyle Flags which specify any styling which should be applied to the rendered string.
* @param text NULL terminated string to output.
* @param color Optional color to apply to the text characters. If not specified default value is ftgxWhite: (GXColor){0xff, 0xff, 0xff, 0xff}
* @param textStyle Flags which specify any styling which should be applied to the rendered string.
* @return The number of characters printed.
*/
uint16_t FreeTypeGX::drawText(int16_t x, int16_t y, int16_t z, const wchar_t *text, int16_t pixelSize, GXColor color, uint16_t textStyle, uint16_t textWidth, uint16_t widthLimit)
uint16_t FreeTypeGX::drawText( int16_t x, int16_t y, int16_t z, const wchar_t *text, int16_t pixelSize, GXColor color, uint16_t textStyle, uint16_t textWidth, uint16_t widthLimit )
{
if(!text)
if ( !text )
return 0;
uint16_t fullTextWidth = textWidth > 0 ? textWidth : getWidth(text, pixelSize);
uint16_t x_pos = x, printed = 0;
uint16_t x_offset = 0, y_offset = 0;
GXTexObj glyphTexture;
FT_Vector pairDelta;
uint16_t fullTextWidth = textWidth > 0 ? textWidth : getWidth( text, pixelSize );
uint16_t x_pos = x, printed = 0;
uint16_t x_offset = 0, y_offset = 0;
GXTexObj glyphTexture;
FT_Vector pairDelta;
if(textStyle & FTGX_JUSTIFY_MASK)
{
x_offset = getStyleOffsetWidth(fullTextWidth, textStyle);
}
if(textStyle & FTGX_ALIGN_MASK)
{
y_offset = getStyleOffsetHeight(textStyle, pixelSize);
}
if ( textStyle & FTGX_JUSTIFY_MASK )
{
x_offset = getStyleOffsetWidth( fullTextWidth, textStyle );
}
if ( textStyle & FTGX_ALIGN_MASK )
{
y_offset = getStyleOffsetHeight( textStyle, pixelSize );
}
int i = 0;
int i = 0;
while (text[i])
{
if(widthLimit > 0 && (x_pos-x) > widthLimit)
while ( text[i] )
{
if ( widthLimit > 0 && ( x_pos - x ) > widthLimit )
break;
ftgxCharData* glyphData = cacheGlyphData(text[i], pixelSize);
ftgxCharData* glyphData = cacheGlyphData( text[i], pixelSize );
if (glyphData != NULL)
{
if (ftKerningEnabled && i > 0)
{
FT_Get_Kerning(ftFace, fontData[pixelSize][text[i - 1]].glyphIndex, glyphData->glyphIndex, FT_KERNING_DEFAULT, &pairDelta);
x_pos += pairDelta.x >> 6;
}
if ( glyphData != NULL )
{
if ( ftKerningEnabled && i > 0 )
{
FT_Get_Kerning( ftFace, fontData[pixelSize][text[i - 1]].glyphIndex, glyphData->glyphIndex, FT_KERNING_DEFAULT, &pairDelta );
x_pos += pairDelta.x >> 6;
}
GX_InitTexObj(&glyphTexture, glyphData->glyphDataTexture, glyphData->textureWidth, glyphData->textureHeight, GX_TF_RGBA8, GX_CLAMP, GX_CLAMP, GX_FALSE);
copyTextureToFramebuffer(&glyphTexture, glyphData->textureWidth, glyphData->textureHeight, x_pos + glyphData->renderOffsetX + x_offset, y - glyphData->renderOffsetY + y_offset, z, color);
GX_InitTexObj( &glyphTexture, glyphData->glyphDataTexture, glyphData->textureWidth, glyphData->textureHeight, GX_TF_RGBA8, GX_CLAMP, GX_CLAMP, GX_FALSE );
copyTextureToFramebuffer( &glyphTexture, glyphData->textureWidth, glyphData->textureHeight, x_pos + glyphData->renderOffsetX + x_offset, y - glyphData->renderOffsetY + y_offset, z, color );
x_pos += glyphData->glyphAdvanceX;
++printed;
}
++i;
}
x_pos += glyphData->glyphAdvanceX;
++printed;
}
++i;
}
if(textStyle & FTGX_STYLE_MASK)
{
getOffset(text, pixelSize, widthLimit);
drawTextFeature(x + x_offset, y + y_offset, z, pixelSize, fullTextWidth, &ftgxAlign[pixelSize], textStyle, color);
}
if ( textStyle & FTGX_STYLE_MASK )
{
getOffset( text, pixelSize, widthLimit );
drawTextFeature( x + x_offset, y + y_offset, z, pixelSize, fullTextWidth, &ftgxAlign[pixelSize], textStyle, color );
}
return printed;
return printed;
}
void FreeTypeGX::drawTextFeature(int16_t x, int16_t y, int16_t z, int16_t pixelSize, uint16_t width, ftgxDataOffset *offsetData, uint16_t format, GXColor color)
void FreeTypeGX::drawTextFeature( int16_t x, int16_t y, int16_t z, int16_t pixelSize, uint16_t width, ftgxDataOffset *offsetData, uint16_t format, GXColor color )
{
uint16_t featureHeight = pixelSize >> 4 > 0 ? pixelSize >> 4 : 1;
uint16_t featureHeight = pixelSize >> 4 > 0 ? pixelSize >> 4 : 1;
if (format & FTGX_STYLE_UNDERLINE)
this->copyFeatureToFramebuffer(width, featureHeight, x, y + 1, z, color);
if ( format & FTGX_STYLE_UNDERLINE )
this->copyFeatureToFramebuffer( width, featureHeight, x, y + 1, z, color );
if (format & FTGX_STYLE_STRIKE)
this->copyFeatureToFramebuffer(width, featureHeight, x, y - ((offsetData->max) >> 1), z, color);
if ( format & FTGX_STYLE_STRIKE )
this->copyFeatureToFramebuffer( width, featureHeight, x, y - ( ( offsetData->max ) >> 1 ), z, color );
}
/**
@ -402,57 +402,57 @@ void FreeTypeGX::drawTextFeature(int16_t x, int16_t y, int16_t z, int16_t pixelS
* This routine processes each character of the supplied text string and calculates the width of the entire string.
* Note that if precaching of the entire font set is not enabled any uncached glyph will be cached after the call to this function.
*
* @param text NULL terminated string to calculate.
* @param text NULL terminated string to calculate.
* @return The width of the text string in pixels.
*/
uint16_t FreeTypeGX::getWidth(const wchar_t *text, int16_t pixelSize)
uint16_t FreeTypeGX::getWidth( const wchar_t *text, int16_t pixelSize )
{
if(!text)
if ( !text )
return 0;
uint16_t strWidth = 0;
FT_Vector pairDelta;
uint16_t strWidth = 0;
FT_Vector pairDelta;
int i = 0;
while (text[i])
{
ftgxCharData* glyphData = cacheGlyphData(text[i], pixelSize);
int i = 0;
while ( text[i] )
{
ftgxCharData* glyphData = cacheGlyphData( text[i], pixelSize );
if (glyphData != NULL)
{
if (ftKerningEnabled && (i > 0))
{
FT_Get_Kerning(ftFace, fontData[pixelSize][text[i - 1]].glyphIndex, glyphData->glyphIndex, FT_KERNING_DEFAULT, &pairDelta);
strWidth += pairDelta.x >> 6;
}
if ( glyphData != NULL )
{
if ( ftKerningEnabled && ( i > 0 ) )
{
FT_Get_Kerning( ftFace, fontData[pixelSize][text[i - 1]].glyphIndex, glyphData->glyphIndex, FT_KERNING_DEFAULT, &pairDelta );
strWidth += pairDelta.x >> 6;
}
strWidth += glyphData->glyphAdvanceX;
}
++i;
}
return strWidth;
strWidth += glyphData->glyphAdvanceX;
}
++i;
}
return strWidth;
}
/**
* Single char width
*/
uint16_t FreeTypeGX::getCharWidth(const wchar_t wChar, int16_t pixelSize, const wchar_t prevChar)
uint16_t FreeTypeGX::getCharWidth( const wchar_t wChar, int16_t pixelSize, const wchar_t prevChar )
{
uint16_t strWidth = 0;
ftgxCharData * glyphData = cacheGlyphData(wChar, pixelSize);
ftgxCharData * glyphData = cacheGlyphData( wChar, pixelSize );
if(glyphData != NULL)
if ( glyphData != NULL )
{
if (ftKerningEnabled && prevChar != 0x0000)
if ( ftKerningEnabled && prevChar != 0x0000 )
{
FT_Vector pairDelta;
FT_Get_Kerning(ftFace, fontData[pixelSize][prevChar].glyphIndex, glyphData->glyphIndex, FT_KERNING_DEFAULT, &pairDelta);
FT_Get_Kerning( ftFace, fontData[pixelSize][prevChar].glyphIndex, glyphData->glyphIndex, FT_KERNING_DEFAULT, &pairDelta );
strWidth += pairDelta.x >> 6;
}
strWidth += glyphData->glyphAdvanceX;
}
return strWidth;
return strWidth;
}
/**
@ -461,14 +461,14 @@ uint16_t FreeTypeGX::getCharWidth(const wchar_t wChar, int16_t pixelSize, const
* This routine processes each character of the supplied text string and calculates the height of the entire string.
* Note that if precaching of the entire font set is not enabled any uncached glyph will be cached after the call to this function.
*
* @param text NULL terminated string to calculate.
* @param text NULL terminated string to calculate.
* @return The height of the text string in pixels.
*/
uint16_t FreeTypeGX::getHeight(const wchar_t *text, int16_t pixelSize)
uint16_t FreeTypeGX::getHeight( const wchar_t *text, int16_t pixelSize )
{
getOffset(text, pixelSize);
getOffset( text, pixelSize );
return ftgxAlign[pixelSize].max - ftgxAlign[pixelSize].min;
return ftgxAlign[pixelSize].max - ftgxAlign[pixelSize].min;
}
/**
@ -477,47 +477,47 @@ uint16_t FreeTypeGX::getHeight(const wchar_t *text, int16_t pixelSize)
* This function calculates the maximum pixel height above the font origin line and the minimum
* pixel height below the font origin line and returns the values in an addressible structure.
*
* @param text NULL terminated string to calculate.
* @param text NULL terminated string to calculate.
* @param offset returns the max and min values above and below the font origin line
*
*/
void FreeTypeGX::getOffset(const wchar_t *text, int16_t pixelSize, uint16_t widthLimit)
void FreeTypeGX::getOffset( const wchar_t *text, int16_t pixelSize, uint16_t widthLimit )
{
if(ftgxAlign.find(pixelSize) != ftgxAlign.end())
if ( ftgxAlign.find( pixelSize ) != ftgxAlign.end() )
return;
int16_t strMax = 0, strMin = 9999;
uint16_t currWidth = 0;
int16_t strMax = 0, strMin = 9999;
uint16_t currWidth = 0;
int i = 0;
int i = 0;
while (text[i])
{
if(widthLimit > 0 && currWidth >= widthLimit)
while ( text[i] )
{
if ( widthLimit > 0 && currWidth >= widthLimit )
break;
ftgxCharData* glyphData = cacheGlyphData(text[i], pixelSize);
ftgxCharData* glyphData = cacheGlyphData( text[i], pixelSize );
if(glyphData != NULL)
{
strMax = glyphData->renderOffsetMax > strMax ? glyphData->renderOffsetMax : strMax;
strMin = glyphData->renderOffsetMin < strMin ? glyphData->renderOffsetMin : strMin;
currWidth += glyphData->glyphAdvanceX;
}
if ( glyphData != NULL )
{
strMax = glyphData->renderOffsetMax > strMax ? glyphData->renderOffsetMax : strMax;
strMin = glyphData->renderOffsetMin < strMin ? glyphData->renderOffsetMin : strMin;
currWidth += glyphData->glyphAdvanceX;
}
++i;
}
++i;
}
if(ftPointSize != pixelSize)
{
ftPointSize = pixelSize;
FT_Set_Pixel_Sizes(ftFace, 0, ftPointSize);
}
if ( ftPointSize != pixelSize )
{
ftPointSize = pixelSize;
FT_Set_Pixel_Sizes( ftFace, 0, ftPointSize );
}
ftgxAlign[pixelSize].ascender = ftFace->size->metrics.ascender>>6;
ftgxAlign[pixelSize].descender = ftFace->size->metrics.descender>>6;
ftgxAlign[pixelSize].max = strMax;
ftgxAlign[pixelSize].min = strMin;
ftgxAlign[pixelSize].ascender = ftFace->size->metrics.ascender >> 6;
ftgxAlign[pixelSize].descender = ftFace->size->metrics.descender >> 6;
ftgxAlign[pixelSize].max = strMax;
ftgxAlign[pixelSize].min = strMin;
}
/**
@ -525,41 +525,41 @@ void FreeTypeGX::getOffset(const wchar_t *text, int16_t pixelSize, uint16_t widt
*
* This routine uses the in-built GX quad builder functions to define the texture bounds and location on the EFB target.
*
* @param texObj A pointer to the glyph's initialized texture object.
* @param texWidth The pixel width of the texture object.
* @param texHeight The pixel height of the texture object.
* @param screenX The screen X coordinate at which to output the rendered texture.
* @param screenY The screen Y coordinate at which to output the rendered texture.
* @param color Color to apply to the texture.
* @param texObj A pointer to the glyph's initialized texture object.
* @param texWidth The pixel width of the texture object.
* @param texHeight The pixel height of the texture object.
* @param screenX The screen X coordinate at which to output the rendered texture.
* @param screenY The screen Y coordinate at which to output the rendered texture.
* @param color Color to apply to the texture.
*/
void FreeTypeGX::copyTextureToFramebuffer(GXTexObj *texObj, f32 texWidth, f32 texHeight, int16_t screenX, int16_t screenY, int16_t screenZ, GXColor color)
void FreeTypeGX::copyTextureToFramebuffer( GXTexObj *texObj, f32 texWidth, f32 texHeight, int16_t screenX, int16_t screenY, int16_t screenZ, GXColor color )
{
GX_LoadTexObj(texObj, GX_TEXMAP0);
GX_InvalidateTexAll();
GX_LoadTexObj( texObj, GX_TEXMAP0 );
GX_InvalidateTexAll();
GX_SetTevOp (GX_TEVSTAGE0, GX_MODULATE);
GX_SetVtxDesc (GX_VA_TEX0, GX_DIRECT);
GX_SetTevOp ( GX_TEVSTAGE0, GX_MODULATE );
GX_SetVtxDesc ( GX_VA_TEX0, GX_DIRECT );
GX_Begin(GX_QUADS, this->vertexIndex, 4);
GX_Position3s16(screenX, screenY, screenZ);
GX_Color4u8(color.r, color.g, color.b, color.a);
GX_TexCoord2f32(0.0f, 0.0f);
GX_Begin( GX_QUADS, this->vertexIndex, 4 );
GX_Position3s16( screenX, screenY, screenZ );
GX_Color4u8( color.r, color.g, color.b, color.a );
GX_TexCoord2f32( 0.0f, 0.0f );
GX_Position3s16(texWidth + screenX, screenY, screenZ);
GX_Color4u8(color.r, color.g, color.b, color.a);
GX_TexCoord2f32(1.0f, 0.0f);
GX_Position3s16( texWidth + screenX, screenY, screenZ );
GX_Color4u8( color.r, color.g, color.b, color.a );
GX_TexCoord2f32( 1.0f, 0.0f );
GX_Position3s16(texWidth + screenX, texHeight + screenY, screenZ);
GX_Color4u8(color.r, color.g, color.b, color.a);
GX_TexCoord2f32(1.0f, 1.0f);
GX_Position3s16( texWidth + screenX, texHeight + screenY, screenZ );
GX_Color4u8( color.r, color.g, color.b, color.a );
GX_TexCoord2f32( 1.0f, 1.0f );
GX_Position3s16(screenX, texHeight + screenY, screenZ);
GX_Color4u8(color.r, color.g, color.b, color.a);
GX_TexCoord2f32(0.0f, 1.0f);
GX_End();
GX_Position3s16( screenX, texHeight + screenY, screenZ );
GX_Color4u8( color.r, color.g, color.b, color.a );
GX_TexCoord2f32( 0.0f, 1.0f );
GX_End();
GX_SetTevOp(GX_TEVSTAGE0, GX_PASSCLR);
GX_SetVtxDesc(GX_VA_TEX0, GX_NONE);
GX_SetTevOp( GX_TEVSTAGE0, GX_PASSCLR );
GX_SetVtxDesc( GX_VA_TEX0, GX_NONE );
}
/**
@ -567,31 +567,31 @@ void FreeTypeGX::copyTextureToFramebuffer(GXTexObj *texObj, f32 texWidth, f32 te
*
* This function creates a simple quad for displaying underline or strikeout text styling.
*
* @param featureWidth The pixel width of the quad.
* @param featureHeight The pixel height of the quad.
* @param screenX The screen X coordinate at which to output the quad.
* @param screenY The screen Y coordinate at which to output the quad.
* @param color Color to apply to the texture.
* @param featureWidth The pixel width of the quad.
* @param featureHeight The pixel height of the quad.
* @param screenX The screen X coordinate at which to output the quad.
* @param screenY The screen Y coordinate at which to output the quad.
* @param color Color to apply to the texture.
*/
void FreeTypeGX::copyFeatureToFramebuffer(f32 featureWidth, f32 featureHeight, int16_t screenX, int16_t screenY, int16_t screenZ, GXColor color)
void FreeTypeGX::copyFeatureToFramebuffer( f32 featureWidth, f32 featureHeight, int16_t screenX, int16_t screenY, int16_t screenZ, GXColor color )
{
GX_SetTevOp (GX_TEVSTAGE0, GX_PASSCLR);
GX_SetVtxDesc (GX_VA_TEX0, GX_NONE);
GX_SetTevOp ( GX_TEVSTAGE0, GX_PASSCLR );
GX_SetVtxDesc ( GX_VA_TEX0, GX_NONE );
GX_Begin(GX_QUADS, this->vertexIndex, 4);
GX_Position3s16(screenX, screenY, screenZ);
GX_Color4u8(color.r, color.g, color.b, color.a);
GX_Begin( GX_QUADS, this->vertexIndex, 4 );
GX_Position3s16( screenX, screenY, screenZ );
GX_Color4u8( color.r, color.g, color.b, color.a );
GX_Position3s16(featureWidth + screenX, screenY, screenZ);
GX_Color4u8(color.r, color.g, color.b, color.a);
GX_Position3s16( featureWidth + screenX, screenY, screenZ );
GX_Color4u8( color.r, color.g, color.b, color.a );
GX_Position3s16(featureWidth + screenX, featureHeight + screenY, screenZ);
GX_Color4u8(color.r, color.g, color.b, color.a);
GX_Position3s16( featureWidth + screenX, featureHeight + screenY, screenZ );
GX_Color4u8( color.r, color.g, color.b, color.a );
GX_Position3s16(screenX, featureHeight + screenY, screenZ);
GX_Color4u8(color.r, color.g, color.b, color.a);
GX_End();
GX_Position3s16( screenX, featureHeight + screenY, screenZ );
GX_Color4u8( color.r, color.g, color.b, color.a );
GX_End();
GX_SetTevOp(GX_TEVSTAGE0, GX_PASSCLR);
GX_SetVtxDesc(GX_VA_TEX0, GX_NONE);
GX_SetTevOp( GX_TEVSTAGE0, GX_PASSCLR );
GX_SetVtxDesc( GX_VA_TEX0, GX_NONE );
}

View File

@ -37,30 +37,32 @@
*
* Font face character glyph relevant data structure.
*/
typedef struct ftgxCharData_ {
int16_t renderOffsetX; /**< Texture X axis bearing offset. */
uint16_t glyphAdvanceX; /**< Character glyph X coordinate advance in pixels. */
uint32_t glyphIndex; /**< Charachter glyph index in the font face. */
typedef struct ftgxCharData_
{
int16_t renderOffsetX; /**< Texture X axis bearing offset. */
uint16_t glyphAdvanceX; /**< Character glyph X coordinate advance in pixels. */
uint32_t glyphIndex; /**< Charachter glyph index in the font face. */
uint16_t textureWidth; /**< Texture width in pixels/bytes. */
uint16_t textureHeight; /**< Texture glyph height in pixels/bytes. */
uint16_t textureWidth; /**< Texture width in pixels/bytes. */
uint16_t textureHeight; /**< Texture glyph height in pixels/bytes. */
int16_t renderOffsetY; /**< Texture Y axis bearing offset. */
int16_t renderOffsetMax; /**< Texture Y axis bearing maximum value. */
int16_t renderOffsetMin; /**< Texture Y axis bearing minimum value. */
int16_t renderOffsetY; /**< Texture Y axis bearing offset. */
int16_t renderOffsetMax; /**< Texture Y axis bearing maximum value. */
int16_t renderOffsetMin; /**< Texture Y axis bearing minimum value. */
uint8_t* glyphDataTexture; /**< Glyph texture bitmap data buffer. */
uint8_t* glyphDataTexture; /**< Glyph texture bitmap data buffer. */
} ftgxCharData;
/*! \struct ftgxDataOffset_
*
* Offset structure which hold both a maximum and minimum value.
*/
typedef struct ftgxDataOffset_ {
int16_t ascender; /**< Maximum data offset. */
int16_t descender; /**< Minimum data offset. */
int16_t max; /**< Maximum data offset. */
int16_t min; /**< Minimum data offset. */
typedef struct ftgxDataOffset_
{
int16_t ascender; /**< Maximum data offset. */
int16_t descender; /**< Minimum data offset. */
int16_t max; /**< Maximum data offset. */
int16_t min; /**< Minimum data offset. */
} ftgxDataOffset;
typedef struct ftgxCharData_ ftgxCharData;
@ -68,28 +70,28 @@ typedef struct ftgxDataOffset_ ftgxDataOffset;
#define _TEXT(t) L ## t /**< Unicode helper macro. */
#define FTGX_NULL 0x0000
#define FTGX_JUSTIFY_LEFT 0x0001
#define FTGX_JUSTIFY_CENTER 0x0002
#define FTGX_JUSTIFY_RIGHT 0x0004
#define FTGX_JUSTIFY_MASK 0x000f
#define FTGX_NULL 0x0000
#define FTGX_JUSTIFY_LEFT 0x0001
#define FTGX_JUSTIFY_CENTER 0x0002
#define FTGX_JUSTIFY_RIGHT 0x0004
#define FTGX_JUSTIFY_MASK 0x000f
#define FTGX_ALIGN_TOP 0x0010
#define FTGX_ALIGN_MIDDLE 0x0020
#define FTGX_ALIGN_BOTTOM 0x0040
#define FTGX_ALIGN_BASELINE 0x0080
#define FTGX_ALIGN_GLYPH_TOP 0x0100
#define FTGX_ALIGN_GLYPH_MIDDLE 0x0200
#define FTGX_ALIGN_GLYPH_BOTTOM 0x0400
#define FTGX_ALIGN_MASK 0x0ff0
#define FTGX_ALIGN_TOP 0x0010
#define FTGX_ALIGN_MIDDLE 0x0020
#define FTGX_ALIGN_BOTTOM 0x0040
#define FTGX_ALIGN_BASELINE 0x0080
#define FTGX_ALIGN_GLYPH_TOP 0x0100
#define FTGX_ALIGN_GLYPH_MIDDLE 0x0200
#define FTGX_ALIGN_GLYPH_BOTTOM 0x0400
#define FTGX_ALIGN_MASK 0x0ff0
#define FTGX_STYLE_UNDERLINE 0x1000
#define FTGX_STYLE_STRIKE 0x2000
#define FTGX_STYLE_MASK 0xf000
#define FTGX_STYLE_UNDERLINE 0x1000
#define FTGX_STYLE_STRIKE 0x2000
#define FTGX_STYLE_MASK 0xf000
const GXColor ftgxWhite = (GXColor){0xff, 0xff, 0xff, 0xff}; /**< Constant color value used only to sanitize Doxygen documentation. */
const GXColor ftgxWhite = ( GXColor ) {0xff, 0xff, 0xff, 0xff}; /**< Constant color value used only to sanitize Doxygen documentation. */
wchar_t* charToWideChar(const char* p);
wchar_t* charToWideChar( const char* p );
/*! \class FreeTypeGX
* \brief Wrapper class for the libFreeType library with GX rendering.
@ -102,41 +104,41 @@ wchar_t* charToWideChar(const char* p);
*/
class FreeTypeGX
{
private:
private:
FT_Library ftLibrary; /**< FreeType FT_Library instance. */
FT_Face ftFace; /**< FreeType reusable FT_Face typographic object. */
int16_t ftPointSize; /**< Current set size of the rendered font. */
bool ftKerningEnabled; /**< Flag indicating the availability of font kerning data. */
uint8_t vertexIndex; /**< Vertex format descriptor index. */
std::map<int16_t, std::map<wchar_t, ftgxCharData> > fontData; /**< Map which holds the glyph data structures for the corresponding characters in one size. */
int16_t ftPointSize; /**< Current set size of the rendered font. */
bool ftKerningEnabled; /**< Flag indicating the availability of font kerning data. */
uint8_t vertexIndex; /**< Vertex format descriptor index. */
std::map<int16_t, std::map<wchar_t, ftgxCharData> > fontData; /**< Map which holds the glyph data structures for the corresponding characters in one size. */
std::map<int16_t, ftgxDataOffset> ftgxAlign; /**< Map which holds the ascender and decender for different sizes. */
int16_t getStyleOffsetWidth(uint16_t width, uint16_t format);
int16_t getStyleOffsetHeight(int16_t format, uint16_t pixelSize);
int16_t getStyleOffsetWidth( uint16_t width, uint16_t format );
int16_t getStyleOffsetHeight( int16_t format, uint16_t pixelSize );
void unloadFont();
ftgxCharData *cacheGlyphData(wchar_t charCode, int16_t pixelSize);
uint16_t cacheGlyphDataComplete(int16_t pixelSize);
void loadGlyphData(FT_Bitmap *bmp, ftgxCharData *charData);
void unloadFont();
ftgxCharData *cacheGlyphData( wchar_t charCode, int16_t pixelSize );
uint16_t cacheGlyphDataComplete( int16_t pixelSize );
void loadGlyphData( FT_Bitmap *bmp, ftgxCharData *charData );
void setDefaultMode();
void setDefaultMode();
void drawTextFeature(int16_t x, int16_t y,int16_t z, int16_t pixelSize, uint16_t width, ftgxDataOffset *offsetData, uint16_t format, GXColor color);
void copyTextureToFramebuffer(GXTexObj *texObj, f32 texWidth, f32 texHeight, int16_t screenX, int16_t screenY, int16_t screenZ, GXColor color);
void copyFeatureToFramebuffer(f32 featureWidth, f32 featureHeight, int16_t screenX, int16_t screenY, int16_t screenZ, GXColor color);
void drawTextFeature( int16_t x, int16_t y, int16_t z, int16_t pixelSize, uint16_t width, ftgxDataOffset *offsetData, uint16_t format, GXColor color );
void copyTextureToFramebuffer( GXTexObj *texObj, f32 texWidth, f32 texHeight, int16_t screenX, int16_t screenY, int16_t screenZ, GXColor color );
void copyFeatureToFramebuffer( f32 featureWidth, f32 featureHeight, int16_t screenX, int16_t screenY, int16_t screenZ, GXColor color );
public:
FreeTypeGX(const uint8_t* fontBuffer, FT_Long bufferSize);
~FreeTypeGX();
public:
FreeTypeGX( const uint8_t* fontBuffer, FT_Long bufferSize );
~FreeTypeGX();
void setVertexFormat(uint8_t vertexIndex);
void setVertexFormat( uint8_t vertexIndex );
uint16_t drawText(int16_t x, int16_t y, int16_t z, const wchar_t *text, int16_t pixelSize, GXColor color = ftgxWhite, uint16_t textStyling = FTGX_NULL, uint16_t textWidth = 0, uint16_t widthLimit = 0);
uint16_t drawText( int16_t x, int16_t y, int16_t z, const wchar_t *text, int16_t pixelSize, GXColor color = ftgxWhite, uint16_t textStyling = FTGX_NULL, uint16_t textWidth = 0, uint16_t widthLimit = 0 );
uint16_t getWidth(const wchar_t *text, int16_t pixelSize);
uint16_t getCharWidth(const wchar_t wChar, int16_t pixelSize, const wchar_t prevChar = 0x0000);
uint16_t getHeight(const wchar_t *text, int16_t pixelSize);
void getOffset(const wchar_t *text, int16_t pixelSize, uint16_t widthLimit = 0);
uint16_t getWidth( const wchar_t *text, int16_t pixelSize );
uint16_t getCharWidth( const wchar_t wChar, int16_t pixelSize, const wchar_t prevChar = 0x0000 );
uint16_t getHeight( const wchar_t *text, int16_t pixelSize );
void getOffset( const wchar_t *text, int16_t pixelSize, uint16_t widthLimit = 0 );
};
#endif /* FREETYPEGX_H_ */

View File

@ -39,16 +39,16 @@
#include "ZipFile.h"
#include "language/gettext.h"
ZipFile::ZipFile(const char *filepath)
ZipFile::ZipFile( const char *filepath )
{
File = unzOpen(filepath);
if(File)
File = unzOpen( filepath );
if ( File )
this->LoadList();
}
ZipFile::~ZipFile()
{
unzClose(File);
unzClose( File );
}
bool ZipFile::LoadList()
@ -56,78 +56,79 @@ bool ZipFile::LoadList()
return true;
}
bool ZipFile::ExtractAll(const char *dest)
bool ZipFile::ExtractAll( const char *dest )
{
if(!File)
if ( !File )
return false;
bool Stop = false;
u32 blocksize = 1024*50;
u32 blocksize = 1024 * 50;
u8 *buffer = new u8[blocksize];
if(!buffer)
if ( !buffer )
return false;
char writepath[MAXPATHLEN];
char filename[MAXPATHLEN];
memset(filename, 0, sizeof(filename));
memset( filename, 0, sizeof( filename ) );
int ret = unzGoToFirstFile(File);
if(ret != UNZ_OK)
int ret = unzGoToFirstFile( File );
if ( ret != UNZ_OK )
Stop = true;
while(!Stop)
while ( !Stop )
{
if(unzGetCurrentFileInfo(File, &cur_file_info, filename, sizeof(filename), NULL, NULL, NULL, NULL) != UNZ_OK)
if ( unzGetCurrentFileInfo( File, &cur_file_info, filename, sizeof( filename ), NULL, NULL, NULL, NULL ) != UNZ_OK )
Stop = true;
if(!Stop && filename[strlen(filename)-1] != '/')
if ( !Stop && filename[strlen( filename )-1] != '/' )
{
u32 uncompressed_size = cur_file_info.uncompressed_size;
u32 done = 0;
char *pointer = NULL;
ret = unzOpenCurrentFile(File);
ret = unzOpenCurrentFile( File );
snprintf(writepath, sizeof(writepath), "%s/%s", dest, filename);
snprintf( writepath, sizeof( writepath ), "%s/%s", dest, filename );
pointer = strrchr(writepath, '/');
int position = pointer-writepath+2;
pointer = strrchr( writepath, '/' );
int position = pointer - writepath + 2;
char temppath[strlen(writepath)];
snprintf(temppath, position, "%s", writepath);
char temppath[strlen( writepath )];
snprintf( temppath, position, "%s", writepath );
subfoldercreate(temppath);
subfoldercreate( temppath );
if(ret == UNZ_OK)
if ( ret == UNZ_OK )
{
FILE *pfile = fopen(writepath, "wb");
FILE *pfile = fopen( writepath, "wb" );
do
{
ShowProgress(tr("Extracting files..."), 0, pointer+1, done, uncompressed_size);
ShowProgress( tr( "Extracting files..." ), 0, pointer + 1, done, uncompressed_size );
if(uncompressed_size - done < blocksize)
if ( uncompressed_size - done < blocksize )
blocksize = uncompressed_size - done;
ret = unzReadCurrentFile(File, buffer, blocksize);
ret = unzReadCurrentFile( File, buffer, blocksize );
if(ret == 0)
if ( ret == 0 )
break;
fwrite(buffer, 1, blocksize, pfile);
fwrite( buffer, 1, blocksize, pfile );
done += ret;
} while(done < uncompressed_size);
}
while ( done < uncompressed_size );
fclose(pfile);
unzCloseCurrentFile(File);
fclose( pfile );
unzCloseCurrentFile( File );
}
}
if(unzGoToNextFile(File) != UNZ_OK)
if ( unzGoToNextFile( File ) != UNZ_OK )
Stop = true;
}

View File

@ -32,22 +32,22 @@
typedef struct
{
u64 offset; // ZipFile offset
u64 length; // uncompressed file length in 64 bytes for sizes higher than 4GB
bool isdir; // 0 - file, 1 - directory
char filename[256]; // full filename
u64 offset; // ZipFile offset
u64 length; // uncompressed file length in 64 bytes for sizes higher than 4GB
bool isdir; // 0 - file, 1 - directory
char filename[256]; // full filename
} FileStructure;
class ZipFile
{
public:
//!Constructor
ZipFile(const char *filepath);
//!Destructor
~ZipFile();
//!Extract all files from a zip file to a directory
//!\param dest Destination path to where to extract
bool ExtractAll(const char *dest);
//!Constructor
ZipFile( const char *filepath );
//!Destructor
~ZipFile();
//!Extract all files from a zip file to a directory
//!\param dest Destination path to where to extract
bool ExtractAll( const char *dest );
protected:
bool LoadList();
unzFile File;

View File

@ -15,10 +15,11 @@
*
* Initializes the Wii's audio subsystem
***************************************************************************/
void InitAudio() {
AUDIO_Init(NULL);
void InitAudio()
{
AUDIO_Init( NULL );
ASND_Init();
ASND_Pause(0);
ASND_Pause( 0 );
}
/****************************************************************************
@ -27,7 +28,8 @@ void InitAudio() {
* Shuts down audio subsystem. Useful to avoid unpleasant sounds if a
* crash occurs during shutdown.
***************************************************************************/
void ShutdownAudio() {
ASND_Pause(1);
void ShutdownAudio()
{
ASND_Pause( 1 );
ASND_End();
}

View File

@ -111,28 +111,28 @@
*/
static const uint8_t K[3][16] =
{
{
/* Round 1: skipped (since it is simply sequential). */
{ 1, 6, 11, 0, 5, 10, 15, 4, 9, 14, 3, 8, 13, 2, 7, 12 }, /* R2 */
{ 5, 8, 11, 14, 1, 4, 7, 10, 13, 0, 3, 6, 9, 12, 15, 2 }, /* R3 */
{ 0, 7, 14, 5, 12, 3, 10, 1, 8, 15, 6, 13, 4, 11, 2, 9 } /* R4 */
};
};
static const uint8_t S[4][4] =
{
{
{ 7, 12, 17, 22 }, /* Round 1 */
{ 5, 9, 14, 20 }, /* Round 2 */
{ 4, 11, 16, 23 }, /* Round 3 */
{ 6, 10, 15, 21 } /* Round 4 */
};
};
static const uint32_t T[4][16] =
{
{
{ 0xd76aa478, 0xe8c7b756, 0x242070db, 0xc1bdceee, /* Round 1 */
0xf57c0faf, 0x4787c62a, 0xa8304613, 0xfd469501,
0x698098d8, 0x8b44f7af, 0xffff5bb1, 0x895cd7be,
0x6b901122, 0xfd987193, 0xa679438e, 0x49b40821 },
0xf57c0faf, 0x4787c62a, 0xa8304613, 0xfd469501,
0x698098d8, 0x8b44f7af, 0xffff5bb1, 0x895cd7be,
0x6b901122, 0xfd987193, 0xa679438e, 0x49b40821 },
{ 0xf61e2562, 0xc040b340, 0x265e5a51, 0xe9b6c7aa, /* Round 2 */
0xd62f105d, 0x02441453, 0xd8a1e681, 0xe7d3fbc8,
@ -148,7 +148,7 @@ static const uint32_t T[4][16] =
0x655b59c3, 0x8f0ccc92, 0xffeff47d, 0x85845dd1,
0x6fa87e4f, 0xfe2ce6e0, 0xa3014314, 0x4e0811a1,
0xf7537e82, 0xbd3af235, 0x2ad7d2bb, 0xeb86d391 },
};
};
/* -------------------------------------------------------------------------- **
@ -178,122 +178,122 @@ static const uint32_t T[4][16] =
*/
static void Permute( uint32_t ABCD[4], const unsigned char block[64] )
/* ------------------------------------------------------------------------ **
* Permute the ABCD "registers" using the 64-byte <block> as a driver.
*
* Input: ABCD - Pointer to an array of four unsigned longwords.
* block - An array of bytes, 64 bytes in size.
*
* Output: none.
*
* Notes: The MD5 algorithm operates on a set of four longwords stored
* (conceptually) in four "registers". It is easy to imagine a
* simple MD4/5 chip that would operate this way. In any case,
* the mangling of the contents of those registers is driven by
* the input message. The message is chopped and finally padded
* into 64-byte chunks and each chunk is used to manipulate the
* contents of the registers.
*
* The MD5 Algorithm calls for padding the input to ensure that
* it is a multiple of 64 bytes in length. The last 16 bytes
* of the padding space are used to store the message length
* (the length of the original message, before padding, expressed
* in terms of bits). If there is not enough room for 16 bytes
* worth of bitcount (eg., if the original message was 122 bytes
* long) then the block is padded to the end with zeros and
* passed to this function. Then *another* block is filled with
* zeros except for the last 16 bytes which contain the length.
*
* Oh... and the algorithm requires that there be at least one
* padding byte. The first padding byte has a value of 0x80,
* and any others are 0x00.
*
* ------------------------------------------------------------------------ **
*/
{
int round;
int i, j;
uint8_t s;
uint32_t a, b, c, d;
uint32_t KeepABCD[4];
uint32_t X[16];
/* ------------------------------------------------------------------------ **
* Permute the ABCD "registers" using the 64-byte <block> as a driver.
*
* Input: ABCD - Pointer to an array of four unsigned longwords.
* block - An array of bytes, 64 bytes in size.
*
* Output: none.
*
* Notes: The MD5 algorithm operates on a set of four longwords stored
* (conceptually) in four "registers". It is easy to imagine a
* simple MD4/5 chip that would operate this way. In any case,
* the mangling of the contents of those registers is driven by
* the input message. The message is chopped and finally padded
* into 64-byte chunks and each chunk is used to manipulate the
* contents of the registers.
*
* The MD5 Algorithm calls for padding the input to ensure that
* it is a multiple of 64 bytes in length. The last 16 bytes
* of the padding space are used to store the message length
* (the length of the original message, before padding, expressed
* in terms of bits). If there is not enough room for 16 bytes
* worth of bitcount (eg., if the original message was 122 bytes
* long) then the block is padded to the end with zeros and
* passed to this function. Then *another* block is filled with
* zeros except for the last 16 bytes which contain the length.
*
* Oh... and the algorithm requires that there be at least one
* padding byte. The first padding byte has a value of 0x80,
* and any others are 0x00.
*
* ------------------------------------------------------------------------ **
*/
{
int round;
int i, j;
uint8_t s;
uint32_t a, b, c, d;
uint32_t KeepABCD[4];
uint32_t X[16];
/* Store the current ABCD values for later re-use.
*/
for( i = 0; i < 4; i++ )
KeepABCD[i] = ABCD[i];
/* Store the current ABCD values for later re-use.
*/
for ( i = 0; i < 4; i++ )
KeepABCD[i] = ABCD[i];
/* Convert the input block into an array of unsigned longs, taking care
* to read the block in Little Endian order (the algorithm assumes this).
* The uint32_t values are then handled in host order.
*/
for( i = 0, j = 0; i < 16; i++ )
/* Convert the input block into an array of unsigned longs, taking care
* to read the block in Little Endian order (the algorithm assumes this).
* The uint32_t values are then handled in host order.
*/
for ( i = 0, j = 0; i < 16; i++ )
{
X[i] = (uint32_t)block[j++];
X[i] |= ((uint32_t)block[j++] << 8);
X[i] |= ((uint32_t)block[j++] << 16);
X[i] |= ((uint32_t)block[j++] << 24);
X[i] = ( uint32_t )block[j++];
X[i] |= ( ( uint32_t )block[j++] << 8 );
X[i] |= ( ( uint32_t )block[j++] << 16 );
X[i] |= ( ( uint32_t )block[j++] << 24 );
}
/* This loop performs the four rounds of permutations.
* The rounds are each very similar. The differences are in three areas:
* - The function (F, G, H, or I) used to perform bitwise permutations
* on the registers,
* - The order in which values from X[] are chosen.
* - Changes to the number of bits by which the registers are rotated.
* This implementation uses a switch statement to deal with some of the
* differences between rounds. Other differences are handled by storing
* values in arrays and using the round number to select the correct set
* of values.
*
* (My implementation appears to be a poor compromise between speed, size,
* and clarity. Ugh. [crh])
*/
for( round = 0; round < 4; round++ )
/* This loop performs the four rounds of permutations.
* The rounds are each very similar. The differences are in three areas:
* - The function (F, G, H, or I) used to perform bitwise permutations
* on the registers,
* - The order in which values from X[] are chosen.
* - Changes to the number of bits by which the registers are rotated.
* This implementation uses a switch statement to deal with some of the
* differences between rounds. Other differences are handled by storing
* values in arrays and using the round number to select the correct set
* of values.
*
* (My implementation appears to be a poor compromise between speed, size,
* and clarity. Ugh. [crh])
*/
for ( round = 0; round < 4; round++ )
{
for( i = 0; i < 16; i++ )
{
j = (4 - (i % 4)) & 0x3; /* <j> handles the rotation of ABCD. */
s = S[round][i%4]; /* <s> is the bit shift for this iteration. */
b = ABCD[(j+1) & 0x3]; /* Copy the b,c,d values per ABCD rotation. */
c = ABCD[(j+2) & 0x3]; /* This isn't really necessary, it just looks */
d = ABCD[(j+3) & 0x3]; /* clean & will hopefully be optimized away. */
/* The actual perumation function.
* This is broken out to minimize the code within the switch().
*/
switch( round )
for ( i = 0; i < 16; i++ )
{
case 0:
/* round 1 */
a = md5F( b, c, d ) + X[i];
break;
case 1:
/* round 2 */
a = md5G( b, c, d ) + X[ K[0][i] ];
break;
case 2:
/* round 3 */
a = md5H( b, c, d ) + X[ K[1][i] ];
break;
default:
/* round 4 */
a = md5I( b, c, d ) + X[ K[2][i] ];
break;
j = ( 4 - ( i % 4 ) ) & 0x3; /* <j> handles the rotation of ABCD. */
s = S[round][i%4]; /* <s> is the bit shift for this iteration. */
b = ABCD[( j+1 ) & 0x3]; /* Copy the b,c,d values per ABCD rotation. */
c = ABCD[( j+2 ) & 0x3]; /* This isn't really necessary, it just looks */
d = ABCD[( j+3 ) & 0x3]; /* clean & will hopefully be optimized away. */
/* The actual perumation function.
* This is broken out to minimize the code within the switch().
*/
switch ( round )
{
case 0:
/* round 1 */
a = md5F( b, c, d ) + X[i];
break;
case 1:
/* round 2 */
a = md5G( b, c, d ) + X[ K[0][i] ];
break;
case 2:
/* round 3 */
a = md5H( b, c, d ) + X[ K[1][i] ];
break;
default:
/* round 4 */
a = md5I( b, c, d ) + X[ K[2][i] ];
break;
}
a = 0xFFFFFFFF & ( ABCD[j] + a + T[round][i] );
ABCD[j] = b + ( 0xFFFFFFFF & ( ( a << s ) | ( a >> ( 32 - s ) ) ) );
}
a = 0xFFFFFFFF & ( ABCD[j] + a + T[round][i] );
ABCD[j] = b + (0xFFFFFFFF & (( a << s ) | ( a >> (32 - s) )));
}
}
/* Use the stored original A, B, C, D values to perform
* one last convolution.
*/
for( i = 0; i < 4; i++ )
ABCD[i] = 0xFFFFFFFF & ( ABCD[i] + KeepABCD[i] );
/* Use the stored original A, B, C, D values to perform
* one last convolution.
*/
for ( i = 0; i < 4; i++ )
ABCD[i] = 0xFFFFFFFF & ( ABCD[i] + KeepABCD[i] );
} /* Permute */
} /* Permute */
/* -------------------------------------------------------------------------- **
@ -301,304 +301,307 @@ static void Permute( uint32_t ABCD[4], const unsigned char block[64] )
*/
auth_md5Ctx *auth_md5InitCtx( auth_md5Ctx *ctx )
/* ------------------------------------------------------------------------ **
* Initialize an MD5 context.
*
* Input: ctx - A pointer to the MD5 context structure to be initialized.
* Contexts are typically created thusly:
* ctx = (auth_md5Ctx *)malloc( sizeof(auth_md5Ctx) );
*
* Output: A pointer to the initialized context (same as <ctx>).
*
* Notes: The purpose of the context is to make it possible to generate
* an MD5 Message Digest in stages, rather than having to pass a
* single large block to a single MD5 function. The context
* structure keeps track of various bits of state information.
*
* Once the context is initialized, the blocks of message data
* are passed to the <auth_md5SumCtx()> function. Once the
* final bit of data has been handed to <auth_md5SumCtx()> the
* context can be closed out by calling <auth_md5CloseCtx()>,
* which also calculates the final MD5 result.
*
* Don't forget to free an allocated context structure when
* you've finished using it.
*
* See Also: <auth_md5SumCtx()>, <auth_md5CloseCtx()>
*
* ------------------------------------------------------------------------ **
*/
{
ctx->len = 0;
ctx->b_used = 0;
/* ------------------------------------------------------------------------ **
* Initialize an MD5 context.
*
* Input: ctx - A pointer to the MD5 context structure to be initialized.
* Contexts are typically created thusly:
* ctx = (auth_md5Ctx *)malloc( sizeof(auth_md5Ctx) );
*
* Output: A pointer to the initialized context (same as <ctx>).
*
* Notes: The purpose of the context is to make it possible to generate
* an MD5 Message Digest in stages, rather than having to pass a
* single large block to a single MD5 function. The context
* structure keeps track of various bits of state information.
*
* Once the context is initialized, the blocks of message data
* are passed to the <auth_md5SumCtx()> function. Once the
* final bit of data has been handed to <auth_md5SumCtx()> the
* context can be closed out by calling <auth_md5CloseCtx()>,
* which also calculates the final MD5 result.
*
* Don't forget to free an allocated context structure when
* you've finished using it.
*
* See Also: <auth_md5SumCtx()>, <auth_md5CloseCtx()>
*
* ------------------------------------------------------------------------ **
*/
{
ctx->len = 0;
ctx->b_used = 0;
ctx->ABCD[0] = 0x67452301; /* The array ABCD[] contains the four 4-byte */
ctx->ABCD[1] = 0xefcdab89; /* "registers" that are manipulated to */
ctx->ABCD[2] = 0x98badcfe; /* produce the MD5 digest. The input acts */
ctx->ABCD[3] = 0x10325476; /* upon the registers, not the other way */
/* 'round. The initial values are those */
/* given in RFC 1321 (pg. 4). Note, however, that RFC 1321 */
/* provides these values as bytes, not as longwords, and the */
/* bytes are arranged in little-endian order as if they were */
/* the bytes of (little endian) 32-bit ints. That's */
/* confusing as all getout (to me, anyway). The values given */
/* here are provided as 32-bit values in C language format, */
/* so they are endian-agnostic. */
return( ctx );
} /* auth_md5InitCtx */
ctx->ABCD[0] = 0x67452301; /* The array ABCD[] contains the four 4-byte */
ctx->ABCD[1] = 0xefcdab89; /* "registers" that are manipulated to */
ctx->ABCD[2] = 0x98badcfe; /* produce the MD5 digest. The input acts */
ctx->ABCD[3] = 0x10325476; /* upon the registers, not the other way */
/* 'round. The initial values are those */
/* given in RFC 1321 (pg. 4). Note, however, that RFC 1321 */
/* provides these values as bytes, not as longwords, and the */
/* bytes are arranged in little-endian order as if they were */
/* the bytes of (little endian) 32-bit ints. That's */
/* confusing as all getout (to me, anyway). The values given */
/* here are provided as 32-bit values in C language format, */
/* so they are endian-agnostic. */
return( ctx );
} /* auth_md5InitCtx */
auth_md5Ctx *auth_md5SumCtx( auth_md5Ctx *ctx,
const unsigned char *src,
const int len )
/* ------------------------------------------------------------------------ **
* Build an MD5 Message Digest within the given context.
*
* Input: ctx - Pointer to the context in which the MD5 sum is being
* built.
* src - A chunk of source data. This will be used to drive
* the MD5 algorithm.
* len - The number of bytes in <src>.
*
* Output: A pointer to the updated context (same as <ctx>).
*
* See Also: <auth_md5InitCtx()>, <auth_md5CloseCtx()>, <auth_md5Sum()>
*
* ------------------------------------------------------------------------ **
*/
{
int i;
/* ------------------------------------------------------------------------ **
* Build an MD5 Message Digest within the given context.
*
* Input: ctx - Pointer to the context in which the MD5 sum is being
* built.
* src - A chunk of source data. This will be used to drive
* the MD5 algorithm.
* len - The number of bytes in <src>.
*
* Output: A pointer to the updated context (same as <ctx>).
*
* See Also: <auth_md5InitCtx()>, <auth_md5CloseCtx()>, <auth_md5Sum()>
*
* ------------------------------------------------------------------------ **
*/
{
int i;
/* Add the new block's length to the total length.
*/
ctx->len += (uint32_t)len;
/* Add the new block's length to the total length.
*/
ctx->len += ( uint32_t )len;
/* Copy the new block's data into the context block.
* Call the Permute() function whenever the context block is full.
*/
for( i = 0; i < len; i++ )
/* Copy the new block's data into the context block.
* Call the Permute() function whenever the context block is full.
*/
for ( i = 0; i < len; i++ )
{
ctx->block[ ctx->b_used ] = src[i];
(ctx->b_used)++;
if( 64 == ctx->b_used )
{
Permute( ctx->ABCD, ctx->block );
ctx->b_used = 0;
}
ctx->block[ ctx->b_used ] = src[i];
( ctx->b_used )++;
if ( 64 == ctx->b_used )
{
Permute( ctx->ABCD, ctx->block );
ctx->b_used = 0;
}
}
/* Return the updated context.
*/
return( ctx );
} /* auth_md5SumCtx */
/* Return the updated context.
*/
return( ctx );
} /* auth_md5SumCtx */
auth_md5Ctx *auth_md5CloseCtx( auth_md5Ctx *ctx, unsigned char *dst )
/* ------------------------------------------------------------------------ **
* Close an MD5 Message Digest context and generate the final MD5 sum.
*
* Input: ctx - Pointer to the context in which the MD5 sum is being
* built.
* dst - A pointer to at least 16 bytes of memory, which will
* receive the finished MD5 sum.
*
* Output: A pointer to the closed context (same as <ctx>).
* You might use this to free a malloc'd context structure. :)
*
* Notes: The context (<ctx>) is returned in an undefined state.
* It must be re-initialized before re-use.
*
* See Also: <auth_md5InitCtx()>, <auth_md5SumCtx()>
*
* ------------------------------------------------------------------------ **
*/
{
int i;
uint32_t l;
/* ------------------------------------------------------------------------ **
* Close an MD5 Message Digest context and generate the final MD5 sum.
*
* Input: ctx - Pointer to the context in which the MD5 sum is being
* built.
* dst - A pointer to at least 16 bytes of memory, which will
* receive the finished MD5 sum.
*
* Output: A pointer to the closed context (same as <ctx>).
* You might use this to free a malloc'd context structure. :)
*
* Notes: The context (<ctx>) is returned in an undefined state.
* It must be re-initialized before re-use.
*
* See Also: <auth_md5InitCtx()>, <auth_md5SumCtx()>
*
* ------------------------------------------------------------------------ **
*/
{
int i;
uint32_t l;
/* Add the required 0x80 padding initiator byte.
* The auth_md5SumCtx() function always permutes and resets the context
* block when it gets full, so we know that there must be at least one
* free byte in the context block.
*/
ctx->block[ctx->b_used] = 0x80;
(ctx->b_used)++;
/* Add the required 0x80 padding initiator byte.
* The auth_md5SumCtx() function always permutes and resets the context
* block when it gets full, so we know that there must be at least one
* free byte in the context block.
*/
ctx->block[ctx->b_used] = 0x80;
( ctx->b_used )++;
/* Zero out any remaining free bytes in the context block.
*/
for( i = ctx->b_used; i < 64; i++ )
ctx->block[i] = 0;
/* Zero out any remaining free bytes in the context block.
*/
for ( i = ctx->b_used; i < 64; i++ )
ctx->block[i] = 0;
/* We need 8 bytes to store the length field.
* If we don't have 8, call Permute() and reset the context block.
*/
if( 56 < ctx->b_used )
/* We need 8 bytes to store the length field.
* If we don't have 8, call Permute() and reset the context block.
*/
if ( 56 < ctx->b_used )
{
Permute( ctx->ABCD, ctx->block );
for ( i = 0; i < 64; i++ )
ctx->block[i] = 0;
}
/* Add the total length and perform the final perumation.
* Note: The 60'th byte is read from the *original* <ctx->len> value
* and shifted to the correct position. This neatly avoids
* any MAXINT numeric overflow issues.
*/
l = ctx->len << 3;
for ( i = 0; i < 4; i++ )
ctx->block[56+i] |= GetLongByte( l, i );
ctx->block[60] = ( ( GetLongByte( ctx->len, 3 ) & 0xE0 ) >> 5 ); /* See Above! */
Permute( ctx->ABCD, ctx->block );
for( i = 0; i < 64; i++ )
ctx->block[i] = 0;
}
/* Add the total length and perform the final perumation.
* Note: The 60'th byte is read from the *original* <ctx->len> value
* and shifted to the correct position. This neatly avoids
* any MAXINT numeric overflow issues.
*/
l = ctx->len << 3;
for( i = 0; i < 4; i++ )
ctx->block[56+i] |= GetLongByte( l, i );
ctx->block[60] = ((GetLongByte( ctx->len, 3 ) & 0xE0) >> 5); /* See Above! */
Permute( ctx->ABCD, ctx->block );
/* Now copy the result into the output buffer and we're done.
*/
for( i = 0; i < 4; i++ )
/* Now copy the result into the output buffer and we're done.
*/
for ( i = 0; i < 4; i++ )
{
dst[ 0+i] = GetLongByte( ctx->ABCD[0], i );
dst[ 4+i] = GetLongByte( ctx->ABCD[1], i );
dst[ 8+i] = GetLongByte( ctx->ABCD[2], i );
dst[12+i] = GetLongByte( ctx->ABCD[3], i );
dst[ 0+i] = GetLongByte( ctx->ABCD[0], i );
dst[ 4+i] = GetLongByte( ctx->ABCD[1], i );
dst[ 8+i] = GetLongByte( ctx->ABCD[2], i );
dst[12+i] = GetLongByte( ctx->ABCD[3], i );
}
/* Return the context.
* This is done for compatibility with the other auth_md5*Ctx() functions.
*/
return( ctx );
} /* auth_md5CloseCtx */
/* Return the context.
* This is done for compatibility with the other auth_md5*Ctx() functions.
*/
return( ctx );
} /* auth_md5CloseCtx */
unsigned char * MD5(unsigned char *dst, const unsigned char *src, const int len )
/* ------------------------------------------------------------------------ **
* Compute an MD5 message digest.
*
* Input: dst - Destination buffer into which the result will be written.
* Must be 16 bytes, minimum.
* src - Source data block to be MD5'd.
* len - The length, in bytes, of the source block.
* (Note that the length is given in bytes, not bits.)
*
* Output: A pointer to <dst>, which will contain the calculated 16-byte
* MD5 message digest.
*
* Notes: This function is a shortcut. It takes a single input block.
* For more drawn-out operations, see <auth_md5InitCtx()>.
*
* This function is interface-compatible with the
* <auth_md4Sum()> function in the MD4 module.
*
* The MD5 algorithm is designed to work on data with an
* arbitrary *bit* length. Most implementations, this one
* included, handle the input data in byte-sized chunks.
*
* The MD5 algorithm does much of its work using four-byte
* words, and so can be tuned for speed based on the endian-ness
* of the host. This implementation is intended to be
* endian-neutral, which may make it a teeny bit slower than
* others. ...maybe.
*
* See Also: <auth_md5InitCtx()>
*
* ------------------------------------------------------------------------ **
*/
{
auth_md5Ctx ctx[1];
unsigned char * MD5( unsigned char *dst, const unsigned char *src, const int len )
/* ------------------------------------------------------------------------ **
* Compute an MD5 message digest.
*
* Input: dst - Destination buffer into which the result will be written.
* Must be 16 bytes, minimum.
* src - Source data block to be MD5'd.
* len - The length, in bytes, of the source block.
* (Note that the length is given in bytes, not bits.)
*
* Output: A pointer to <dst>, which will contain the calculated 16-byte
* MD5 message digest.
*
* Notes: This function is a shortcut. It takes a single input block.
* For more drawn-out operations, see <auth_md5InitCtx()>.
*
* This function is interface-compatible with the
* <auth_md4Sum()> function in the MD4 module.
*
* The MD5 algorithm is designed to work on data with an
* arbitrary *bit* length. Most implementations, this one
* included, handle the input data in byte-sized chunks.
*
* The MD5 algorithm does much of its work using four-byte
* words, and so can be tuned for speed based on the endian-ness
* of the host. This implementation is intended to be
* endian-neutral, which may make it a teeny bit slower than
* others. ...maybe.
*
* See Also: <auth_md5InitCtx()>
*
* ------------------------------------------------------------------------ **
*/
{
auth_md5Ctx ctx[1];
(void)auth_md5InitCtx( ctx ); /* Open a context. */
(void)auth_md5SumCtx( ctx, src, len ); /* Pass only one block. */
(void)auth_md5CloseCtx( ctx, dst ); /* Close the context. */
( void )auth_md5InitCtx( ctx ); /* Open a context. */
( void )auth_md5SumCtx( ctx, src, len ); /* Pass only one block. */
( void )auth_md5CloseCtx( ctx, dst ); /* Close the context. */
return( dst ); /* Makes life easy. */
} /* auth_md5Sum */
return( dst ); /* Makes life easy. */
} /* auth_md5Sum */
unsigned char * MD5fromFile(unsigned char *dst, const char *src)
/* ------------------------------------------------------------------------ **
* Compute an MD5 message digest.
*
* Input: dst - Destination buffer into which the result will be written.
* Must be 16 bytes, minimum.
* src - filepath of the file to be checked
*
* Output: A pointer to <dst>, which will contain the calculated 16-byte
* MD5 message digest.
*
* Notes: This function is a shortcut. It takes a single input block.
* For more drawn-out operations, see <auth_md5InitCtx()>.
*
* This function is interface-compatible with the
* <auth_md4Sum()> function in the MD4 module.
*
* The MD5 algorithm is designed to work on data with an
* arbitrary *bit* length. Most implementations, this one
* included, handle the input data in byte-sized chunks.
*
* The MD5 algorithm does much of its work using four-byte
* words, and so can be tuned for speed based on the endian-ness
* of the host. This implementation is intended to be
* endian-neutral, which may make it a teeny bit slower than
* others. ...maybe.
*
* See Also: <auth_md5InitCtx()>
*
* ------------------------------------------------------------------------ **
*/
{
auth_md5Ctx ctx[1];
unsigned char * MD5fromFile( unsigned char *dst, const char *src )
/* ------------------------------------------------------------------------ **
* Compute an MD5 message digest.
*
* Input: dst - Destination buffer into which the result will be written.
* Must be 16 bytes, minimum.
* src - filepath of the file to be checked
*
* Output: A pointer to <dst>, which will contain the calculated 16-byte
* MD5 message digest.
*
* Notes: This function is a shortcut. It takes a single input block.
* For more drawn-out operations, see <auth_md5InitCtx()>.
*
* This function is interface-compatible with the
* <auth_md4Sum()> function in the MD4 module.
*
* The MD5 algorithm is designed to work on data with an
* arbitrary *bit* length. Most implementations, this one
* included, handle the input data in byte-sized chunks.
*
* The MD5 algorithm does much of its work using four-byte
* words, and so can be tuned for speed based on the endian-ness
* of the host. This implementation is intended to be
* endian-neutral, which may make it a teeny bit slower than
* others. ...maybe.
*
* See Also: <auth_md5InitCtx()>
*
* ------------------------------------------------------------------------ **
*/
{
auth_md5Ctx ctx[1];
FILE * file;
unsigned int blksize = 0;
unsigned int read = 0;
file = fopen(src, "rb");
file = fopen( src, "rb" );
if (file==NULL){
if ( file == NULL )
{
return NULL;
}
(void)auth_md5InitCtx( ctx ); /* Open a context. */
( void )auth_md5InitCtx( ctx ); /* Open a context. */
fseek (file , 0 , SEEK_END);
unsigned long long filesize = ftell(file);
rewind (file);
fseek ( file , 0 , SEEK_END );
unsigned long long filesize = ftell( file );
rewind ( file );
if(filesize < 1048576) //1MB cache for files bigger than 1 MB
if ( filesize < 1048576 ) //1MB cache for files bigger than 1 MB
blksize = filesize;
else
blksize = 1048576;
unsigned char * buffer = malloc(blksize);
unsigned char * buffer = malloc( blksize );
if(buffer == NULL){
//no memory
fclose(file);
return NULL;
}
if ( buffer == NULL )
{
//no memory
fclose( file );
return NULL;
}
do
{
read = fread(buffer, 1, blksize, file);
(void)auth_md5SumCtx( ctx, buffer, read ); /* Pass only one block. */
do
{
read = fread( buffer, 1, blksize, file );
( void )auth_md5SumCtx( ctx, buffer, read ); /* Pass only one block. */
} while(read > 0);
}
while ( read > 0 );
fclose(file);
free(buffer);
fclose( file );
free( buffer );
(void)auth_md5CloseCtx( ctx, dst ); /* Close the context. */
( void )auth_md5CloseCtx( ctx, dst ); /* Close the context. */
return( dst ); /* Makes life easy. */
} /* auth_md5Sum */
} /* auth_md5Sum */
const char * MD5ToString(const unsigned char * hash, char * dst)
const char * MD5ToString( const unsigned char * hash, char * dst )
{
char hexchar[3];
short i = 0, n = 0;
for (i = 0; i < 16; i++)
for ( i = 0; i < 16; i++ )
{
sprintf(hexchar, "%02X", hash[i]);
sprintf( hexchar, "%02X", hash[i] );
dst[n++] = hexchar[0];
dst[n++] = hexchar[1];
@ -609,19 +612,19 @@ const char * MD5ToString(const unsigned char * hash, char * dst)
return dst;
}
unsigned char * StringToMD5(const char * hash, unsigned char * dst)
unsigned char * StringToMD5( const char * hash, unsigned char * dst )
{
char hexchar[2];
short i = 0, n = 0;
for (i = 0; i < 16; i++)
for ( i = 0; i < 16; i++ )
{
hexchar[0] = hash[n++];
hexchar[1] = hash[n++];
dst[i] = STR2HEX(hexchar[0]);
dst[i] = STR2HEX( hexchar[0] );
dst[i] <<= 4;
dst[i] += STR2HEX(hexchar[1]);
dst[i] += STR2HEX( hexchar[1] );
}
return dst;

View File

@ -5,240 +5,240 @@
extern "C"
{
#endif
/* ========================================================================== **
*
* MD5.h
*
* Copyright:
* Copyright (C) 2003-2005 by Christopher R. Hertel
*
* Email: crh@ubiqx.mn.org
*
* $Id: MD5.h,v 0.6 2005/06/08 18:35:59 crh Exp $
*
* Modifications and additions by dimok
*
* -------------------------------------------------------------------------- **
*
* Description:
* Implements the MD5 hash algorithm, as described in RFC 1321.
*
* -------------------------------------------------------------------------- **
*
* License:
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* -------------------------------------------------------------------------- **
*
* Notes:
*
* None of this will make any sense unless you're studying RFC 1321 as you
* read the code.
*
* MD5 is described in RFC 1321.
* The MD*4* algorithm is described in RFC 1320 (that's 1321 - 1).
* MD5 is very similar to MD4, but not quite similar enough to justify
* putting the two into a single module. Besides, I wanted to add a few
* extra functions to this one to expand its usability.
*
* There are three primary motivations for this particular implementation.
* 1) Programmer's pride. I wanted to be able to say I'd done it, and I
* wanted to learn from the experience.
* 2) Portability. I wanted an implementation that I knew to be portable
* to a reasonable number of platforms. In particular, the algorithm is
* designed with little-endian platforms in mind, but I wanted an
* endian-agnostic implementation.
* 3) Compactness. While not an overriding goal, I thought it worth-while
* to see if I could reduce the overall size of the result. This is in
* keeping with my hopes that this library will be suitable for use in
* some embedded environments.
* Beyond that, cleanliness and clarity are always worth pursuing.
*
* As mentioned above, the code really only makes sense if you are familiar
* with the MD5 algorithm or are using RFC 1321 as a guide. This code is
* quirky, however, so you'll want to be reading carefully.
*
* Yeah...most of the comments are cut-and-paste from my MD4 implementation.
*
* -------------------------------------------------------------------------- **
*
* References:
* IETF RFC 1321: The MD5 Message-Digest Algorithm
* Ron Rivest. IETF, April, 1992
*
* ========================================================================== **
*/
/* -------------------------------------------------------------------------- **
* Typedefs:
*/
/* ========================================================================== **
*
* MD5.h
*
* Copyright:
* Copyright (C) 2003-2005 by Christopher R. Hertel
*
* Email: crh@ubiqx.mn.org
*
* $Id: MD5.h,v 0.6 2005/06/08 18:35:59 crh Exp $
*
* Modifications and additions by dimok
*
* -------------------------------------------------------------------------- **
*
* Description:
* Implements the MD5 hash algorithm, as described in RFC 1321.
*
* -------------------------------------------------------------------------- **
*
* License:
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* -------------------------------------------------------------------------- **
*
* Notes:
*
* None of this will make any sense unless you're studying RFC 1321 as you
* read the code.
*
* MD5 is described in RFC 1321.
* The MD*4* algorithm is described in RFC 1320 (that's 1321 - 1).
* MD5 is very similar to MD4, but not quite similar enough to justify
* putting the two into a single module. Besides, I wanted to add a few
* extra functions to this one to expand its usability.
*
* There are three primary motivations for this particular implementation.
* 1) Programmer's pride. I wanted to be able to say I'd done it, and I
* wanted to learn from the experience.
* 2) Portability. I wanted an implementation that I knew to be portable
* to a reasonable number of platforms. In particular, the algorithm is
* designed with little-endian platforms in mind, but I wanted an
* endian-agnostic implementation.
* 3) Compactness. While not an overriding goal, I thought it worth-while
* to see if I could reduce the overall size of the result. This is in
* keeping with my hopes that this library will be suitable for use in
* some embedded environments.
* Beyond that, cleanliness and clarity are always worth pursuing.
*
* As mentioned above, the code really only makes sense if you are familiar
* with the MD5 algorithm or are using RFC 1321 as a guide. This code is
* quirky, however, so you'll want to be reading carefully.
*
* Yeah...most of the comments are cut-and-paste from my MD4 implementation.
*
* -------------------------------------------------------------------------- **
*
* References:
* IETF RFC 1321: The MD5 Message-Digest Algorithm
* Ron Rivest. IETF, April, 1992
*
* ========================================================================== **
*/
/* -------------------------------------------------------------------------- **
* Typedefs:
*/
typedef struct
{
unsigned int len;
unsigned int ABCD[4];
int b_used;
unsigned char block[64];
} auth_md5Ctx;
typedef struct
{
unsigned int len;
unsigned int ABCD[4];
int b_used;
unsigned char block[64];
} auth_md5Ctx;
/* -------------------------------------------------------------------------- **
* Functions:
*/
/* -------------------------------------------------------------------------- **
* Functions:
*/
auth_md5Ctx *auth_md5InitCtx( auth_md5Ctx *ctx );
/* ------------------------------------------------------------------------ **
* Initialize an MD5 context.
*
* Input: ctx - A pointer to the MD5 context structure to be initialized.
* Contexts are typically created thusly:
* ctx = (auth_md5Ctx *)malloc( sizeof(auth_md5Ctx) );
*
* Output: A pointer to the initialized context (same as <ctx>).
*
* Notes: The purpose of the context is to make it possible to generate
* an MD5 Message Digest in stages, rather than having to pass a
* single large block to a single MD5 function. The context
* structure keeps track of various bits of state information.
*
* Once the context is initialized, the blocks of message data
* are passed to the <auth_md5SumCtx()> function. Once the
* final bit of data has been handed to <auth_md5SumCtx()> the
* context can be closed out by calling <auth_md5CloseCtx()>,
* which also calculates the final MD5 result.
*
* Don't forget to free an allocated context structure when
* you've finished using it.
*
* See Also: <auth_md5SumCtx()>, <auth_md5CloseCtx()>
*
* ------------------------------------------------------------------------ **
*/
auth_md5Ctx *auth_md5InitCtx( auth_md5Ctx *ctx );
/* ------------------------------------------------------------------------ **
* Initialize an MD5 context.
*
* Input: ctx - A pointer to the MD5 context structure to be initialized.
* Contexts are typically created thusly:
* ctx = (auth_md5Ctx *)malloc( sizeof(auth_md5Ctx) );
*
* Output: A pointer to the initialized context (same as <ctx>).
*
* Notes: The purpose of the context is to make it possible to generate
* an MD5 Message Digest in stages, rather than having to pass a
* single large block to a single MD5 function. The context
* structure keeps track of various bits of state information.
*
* Once the context is initialized, the blocks of message data
* are passed to the <auth_md5SumCtx()> function. Once the
* final bit of data has been handed to <auth_md5SumCtx()> the
* context can be closed out by calling <auth_md5CloseCtx()>,
* which also calculates the final MD5 result.
*
* Don't forget to free an allocated context structure when
* you've finished using it.
*
* See Also: <auth_md5SumCtx()>, <auth_md5CloseCtx()>
*
* ------------------------------------------------------------------------ **
*/
auth_md5Ctx *auth_md5SumCtx( auth_md5Ctx *ctx,
const unsigned char *src,
const int len );
/* ------------------------------------------------------------------------ **
* Build an MD5 Message Digest within the given context.
*
* Input: ctx - Pointer to the context in which the MD5 sum is being
* built.
* src - A chunk of source data. This will be used to drive
* the MD5 algorithm.
* len - The number of bytes in <src>.
*
* Output: A pointer to the updated context (same as <ctx>).
*
* See Also: <auth_md5InitCtx()>, <auth_md5CloseCtx()>, <auth_md5Sum()>
*
* ------------------------------------------------------------------------ **
*/
auth_md5Ctx *auth_md5SumCtx( auth_md5Ctx *ctx,
const unsigned char *src,
const int len );
/* ------------------------------------------------------------------------ **
* Build an MD5 Message Digest within the given context.
*
* Input: ctx - Pointer to the context in which the MD5 sum is being
* built.
* src - A chunk of source data. This will be used to drive
* the MD5 algorithm.
* len - The number of bytes in <src>.
*
* Output: A pointer to the updated context (same as <ctx>).
*
* See Also: <auth_md5InitCtx()>, <auth_md5CloseCtx()>, <auth_md5Sum()>
*
* ------------------------------------------------------------------------ **
*/
auth_md5Ctx *auth_md5CloseCtx( auth_md5Ctx *ctx, unsigned char *dst );
/* ------------------------------------------------------------------------ **
* Close an MD5 Message Digest context and generate the final MD5 sum.
*
* Input: ctx - Pointer to the context in which the MD5 sum is being
* built.
* dst - A pointer to at least 16 bytes of memory, which will
* receive the finished MD5 sum.
*
* Output: A pointer to the closed context (same as <ctx>).
* You might use this to free a malloc'd context structure. :)
*
* Notes: The context (<ctx>) is returned in an undefined state.
* It must be re-initialized before re-use.
*
* See Also: <auth_md5InitCtx()>, <auth_md5SumCtx()>
*
* ------------------------------------------------------------------------ **
*/
auth_md5Ctx *auth_md5CloseCtx( auth_md5Ctx *ctx, unsigned char *dst );
/* ------------------------------------------------------------------------ **
* Close an MD5 Message Digest context and generate the final MD5 sum.
*
* Input: ctx - Pointer to the context in which the MD5 sum is being
* built.
* dst - A pointer to at least 16 bytes of memory, which will
* receive the finished MD5 sum.
*
* Output: A pointer to the closed context (same as <ctx>).
* You might use this to free a malloc'd context structure. :)
*
* Notes: The context (<ctx>) is returned in an undefined state.
* It must be re-initialized before re-use.
*
* See Also: <auth_md5InitCtx()>, <auth_md5SumCtx()>
*
* ------------------------------------------------------------------------ **
*/
unsigned char * MD5(unsigned char * hash, const unsigned char *src, const int len );
/* ------------------------------------------------------------------------ **
* Compute an MD5 message digest.
*
* Input: dst - Destination buffer into which the result will be written.
* Must be 16 bytes, minimum.
* src - Source data block to be MD5'd.
* len - The length, in bytes, of the source block.
* (Note that the length is given in bytes, not bits.)
*
* Output: A pointer to <dst>, which will contain the calculated 16-byte
* MD5 message digest.
*
* Notes: This function is a shortcut. It takes a single input block.
* For more drawn-out operations, see <auth_md5InitCtx()>.
*
* This function is interface-compatible with the
* <auth_md4Sum()> function in the MD4 module.
*
* The MD5 algorithm is designed to work on data with an
* arbitrary *bit* length. Most implementations, this one
* included, handle the input data in byte-sized chunks.
*
* The MD5 algorithm does much of its work using four-byte
* words, and so can be tuned for speed based on the endian-ness
* of the host. This implementation is intended to be
* endian-neutral, which may make it a teeny bit slower than
* others. ...maybe.
*
* See Also: <auth_md5InitCtx()>
*
* ------------------------------------------------------------------------ **
*/
unsigned char * MD5( unsigned char * hash, const unsigned char *src, const int len );
/* ------------------------------------------------------------------------ **
* Compute an MD5 message digest.
*
* Input: dst - Destination buffer into which the result will be written.
* Must be 16 bytes, minimum.
* src - Source data block to be MD5'd.
* len - The length, in bytes, of the source block.
* (Note that the length is given in bytes, not bits.)
*
* Output: A pointer to <dst>, which will contain the calculated 16-byte
* MD5 message digest.
*
* Notes: This function is a shortcut. It takes a single input block.
* For more drawn-out operations, see <auth_md5InitCtx()>.
*
* This function is interface-compatible with the
* <auth_md4Sum()> function in the MD4 module.
*
* The MD5 algorithm is designed to work on data with an
* arbitrary *bit* length. Most implementations, this one
* included, handle the input data in byte-sized chunks.
*
* The MD5 algorithm does much of its work using four-byte
* words, and so can be tuned for speed based on the endian-ness
* of the host. This implementation is intended to be
* endian-neutral, which may make it a teeny bit slower than
* others. ...maybe.
*
* See Also: <auth_md5InitCtx()>
*
* ------------------------------------------------------------------------ **
*/
unsigned char * MD5fromFile(unsigned char *dst, const char *src);
/* ------------------------------------------------------------------------ **
* Compute an MD5 message digest.
*
* Input: dst - Destination buffer into which the result will be written.
* Must be 16 bytes, minimum.
* src - filepath to the file to be MD5'd.
*
* Output: A pointer to <dst>, which will contain the calculated 16-byte
* MD5 message digest.
*
* Notes: This function is a shortcut. It takes a single input block.
* For more drawn-out operations, see <auth_md5InitCtx()>.
*
* This function is interface-compatible with the
* <auth_md4Sum()> function in the MD4 module.
*
* The MD5 algorithm is designed to work on data with an
* arbitrary *bit* length. Most implementations, this one
* included, handle the input data in byte-sized chunks.
*
* The MD5 algorithm does much of its work using four-byte
* words, and so can be tuned for speed based on the endian-ness
* of the host. This implementation is intended to be
* endian-neutral, which may make it a teeny bit slower than
* others. ...maybe.
*
* See Also: <auth_md5InitCtx()>
*
* ------------------------------------------------------------------------ **
*/
unsigned char * MD5fromFile( unsigned char *dst, const char *src );
/* ------------------------------------------------------------------------ **
* Compute an MD5 message digest.
*
* Input: dst - Destination buffer into which the result will be written.
* Must be 16 bytes, minimum.
* src - filepath to the file to be MD5'd.
*
* Output: A pointer to <dst>, which will contain the calculated 16-byte
* MD5 message digest.
*
* Notes: This function is a shortcut. It takes a single input block.
* For more drawn-out operations, see <auth_md5InitCtx()>.
*
* This function is interface-compatible with the
* <auth_md4Sum()> function in the MD4 module.
*
* The MD5 algorithm is designed to work on data with an
* arbitrary *bit* length. Most implementations, this one
* included, handle the input data in byte-sized chunks.
*
* The MD5 algorithm does much of its work using four-byte
* words, and so can be tuned for speed based on the endian-ness
* of the host. This implementation is intended to be
* endian-neutral, which may make it a teeny bit slower than
* others. ...maybe.
*
* See Also: <auth_md5InitCtx()>
*
* ------------------------------------------------------------------------ **
*/
const char * MD5ToString(const unsigned char *hash, char *dst);
unsigned char * StringToMD5(const char * hash, unsigned char * dst);
const char * MD5ToString( const unsigned char *hash, char *dst );
unsigned char * StringToMD5( const char * hash, unsigned char * dst );
/* ========================================================================== */
/* ========================================================================== */
#ifdef __cplusplus
}

View File

@ -22,106 +22,107 @@
#include "patches/fst.h"
#include "usbloader/fstfile.h"
s32 dump_banner(const u8* discid,const char * dest)
s32 dump_banner( const u8* discid, const char * dest )
{
// Mount the disc
//Disc_SetWBFS(1, (u8*)discid);
Disc_SetUSB(discid);
// Mount the disc
//Disc_SetWBFS(1, (u8*)discid);
Disc_SetUSB( discid );
Disc_Open();
Disc_Open();
u64 offset;
s32 ret;
u64 offset;
s32 ret;
ret = __Disc_FindPartition(&offset);
if (ret < 0)
return ret;
ret = __Disc_FindPartition( &offset );
if ( ret < 0 )
return ret;
ret = WDVD_OpenPartition(offset);
ret = WDVD_OpenPartition( offset );
if (ret < 0) {
//printf("ERROR: OpenPartition(0x%llx) %d\n", offset, ret);
return ret;
}
if ( ret < 0 )
{
//printf("ERROR: OpenPartition(0x%llx) %d\n", offset, ret);
return ret;
}
// Read where to find the fst.bin
u32 *buffer = memalign(32, 0x20);
// Read where to find the fst.bin
u32 *buffer = memalign( 32, 0x20 );
if (buffer == NULL)
{
//Out of memory
return -1;
}
if ( buffer == NULL )
{
//Out of memory
return -1;
}
ret = WDVD_Read(buffer, 0x20, 0x420);
if (ret < 0)
return ret;
ret = WDVD_Read( buffer, 0x20, 0x420 );
if ( ret < 0 )
return ret;
// Read fst.bin
void *fstbuffer = memalign(32, buffer[2]*4);
FST_ENTRY *fst = (FST_ENTRY *)fstbuffer;
// Read fst.bin
void *fstbuffer = memalign( 32, buffer[2] * 4 );
FST_ENTRY *fst = ( FST_ENTRY * )fstbuffer;
if (fst == NULL)
{
//Out of memory
free(buffer);
return -1;
}
if ( fst == NULL )
{
//Out of memory
free( buffer );
return -1;
}
ret = WDVD_Read(fstbuffer, buffer[2]*4, buffer[1]*4);
if (ret < 0)
return ret;
ret = WDVD_Read( fstbuffer, buffer[2] * 4, buffer[1] * 4 );
if ( ret < 0 )
return ret;
free(buffer);
free( buffer );
// Search the fst.bin
u32 count = fst[0].filelen;
int i;
u32 index = 0;
// Search the fst.bin
u32 count = fst[0].filelen;
int i;
u32 index = 0;
for (i=1;i<count;i++)
{
if (strstr(fstfiles(fst, i), "opening.bnr") != NULL)
{
index = i;
}
}
for ( i = 1; i < count; i++ )
{
if ( strstr( fstfiles( fst, i ), "opening.bnr" ) != NULL )
{
index = i;
}
}
if (index == 0)
{
//opening.bnr not found
free(fstbuffer);
return -1;
}
if ( index == 0 )
{
//opening.bnr not found
free( fstbuffer );
return -1;
}
// Load the .bnr
u8 *banner = memalign(32, fst[index].filelen);
// Load the .bnr
u8 *banner = memalign( 32, fst[index].filelen );
if (banner == NULL)
{
//Out of memory
free(fstbuffer);
return -1;
}
if ( banner == NULL )
{
//Out of memory
free( fstbuffer );
return -1;
}
ret = WDVD_Read((void *)banner, fst[index].filelen, fst[index].fileoffset * 4);
if (ret < 0)
return ret;
ret = WDVD_Read( ( void * )banner, fst[index].filelen, fst[index].fileoffset * 4 );
if ( ret < 0 )
return ret;
WDVD_Reset();
WDVD_ClosePartition();
//fatInitDefault();
//SDCard_Init();
WDVD_SetUSBMode(NULL, 0);
FILE *fp = fopen(dest, "wb");
if(fp)
{
fwrite(banner, 1, fst[index].filelen, fp);
fclose(fp);
}
free(fstbuffer);
free(banner);
//fatInitDefault();
//SDCard_Init();
WDVD_SetUSBMode( NULL, 0 );
FILE *fp = fopen( dest, "wb" );
if ( fp )
{
fwrite( banner, 1, fst[index].filelen, fp );
fclose( fp );
}
free( fstbuffer );
free( banner );
return 1;
return 1;
}

View File

@ -13,7 +13,7 @@ extern "C"
{
#endif
s32 dump_banner(const u8 *discid,const char * dest);
s32 dump_banner( const u8 *discid, const char * dest );
#ifdef __cplusplus
}

View File

@ -6,65 +6,71 @@
***************************************************************************/
#include "gui_banner.h"
GuiBanner::GuiBanner(const char *tplfilepath)
GuiBanner::GuiBanner( const char *tplfilepath )
{
memory = NULL;
tplfilesize = 0;
width = 0;
height = 0;
FILE *tplfp = fopen(tplfilepath,"rb");
FILE *tplfp = fopen( tplfilepath, "rb" );
if(tplfp !=NULL) {
if ( tplfp != NULL )
{
unsigned short heighttemp = 0;
unsigned short widthtemp = 0;
unsigned short heighttemp = 0;
unsigned short widthtemp = 0;
fseek(tplfp , 0x14, SEEK_SET);
fread((void*)&heighttemp,1,2,tplfp);
fread((void*)&widthtemp,1,2,tplfp);
fseek (tplfp , 0 , SEEK_END);
tplfilesize = ftell (tplfp);
rewind (tplfp);
memory = memalign(32, tplfilesize);
if(!memory) {
fclose(tplfp);
fseek( tplfp , 0x14, SEEK_SET );
fread( ( void* )&heighttemp, 1, 2, tplfp );
fread( ( void* )&widthtemp, 1, 2, tplfp );
fseek ( tplfp , 0 , SEEK_END );
tplfilesize = ftell ( tplfp );
rewind ( tplfp );
memory = memalign( 32, tplfilesize );
if ( !memory )
{
fclose( tplfp );
return;
}
fread(memory, 1, tplfilesize, tplfp);
fclose(tplfp);
fread( memory, 1, tplfilesize, tplfp );
fclose( tplfp );
TPLFile tplfile;
int ret;
ret = TPL_OpenTPLFromMemory(&tplfile, memory, tplfilesize);
if(ret < 0) {
free(memory);
ret = TPL_OpenTPLFromMemory( &tplfile, memory, tplfilesize );
if ( ret < 0 )
{
free( memory );
memory = NULL;
return;
}
ret = TPL_GetTexture(&tplfile,0,&texObj);
if(ret < 0) {
free(memory);
ret = TPL_GetTexture( &tplfile, 0, &texObj );
if ( ret < 0 )
{
free( memory );
memory = NULL;
return;
}
TPL_CloseTPLFile(&tplfile);
TPL_CloseTPLFile( &tplfile );
width = widthtemp;
height = heighttemp;
widescreen = 0;
filecheck = true;
width = widthtemp;
height = heighttemp;
widescreen = 0;
filecheck = true;
} else {
filecheck = false;
fclose(tplfp);
}
else
{
filecheck = false;
fclose( tplfp );
}
}
GuiBanner::GuiBanner(void *mem, u32 len, int w, int h)
GuiBanner::GuiBanner( void *mem, u32 len, int w, int h )
{
if(!mem || !len)
if ( !mem || !len )
return;
memory = mem;
tplfilesize = len;
@ -75,40 +81,43 @@ GuiBanner::GuiBanner(void *mem, u32 len, int w, int h)
int ret;
ret = TPL_OpenTPLFromMemory(&tplfile, memory, tplfilesize);
if(ret < 0) {
free(memory);
ret = TPL_OpenTPLFromMemory( &tplfile, memory, tplfilesize );
if ( ret < 0 )
{
free( memory );
memory = NULL;
return;
}
ret = TPL_GetTexture(&tplfile,0,&texObj);
if(ret < 0) {
free(memory);
ret = TPL_GetTexture( &tplfile, 0, &texObj );
if ( ret < 0 )
{
free( memory );
memory = NULL;
return;
}
TPL_CloseTPLFile(&tplfile);
TPL_CloseTPLFile( &tplfile );
filecheck = true;
}
GuiBanner::~GuiBanner()
{
if(memory != NULL) {
free(memory);
if ( memory != NULL )
{
free( memory );
memory = NULL;
}
}
void GuiBanner::Draw()
{
LOCK(this);
if(!filecheck ||!this->IsVisible())
return;
LOCK( this );
if ( !filecheck || !this->IsVisible() )
return;
float currScale = this->GetScale();
float currScale = this->GetScale();
Menu_DrawTPLImg(this->GetLeft(), this->GetTop(), 0, width, height, &texObj, imageangle, widescreen ? currScale*0.80 : currScale, currScale, this->GetAlpha(), xx1,yy1,xx2,yy2,xx3,yy3,xx4,yy4);
Menu_DrawTPLImg( this->GetLeft(), this->GetTop(), 0, width, height, &texObj, imageangle, widescreen ? currScale*0.80 : currScale, currScale, this->GetAlpha(), xx1, yy1, xx2, yy2, xx3, yy3, xx4, yy4 );
this->UpdateEffects();
this->UpdateEffects();
}

View File

@ -12,24 +12,24 @@
class GuiBanner : public GuiImage
{
public:
//!Constructor
//!\param tplfilepath Path of the tpl file
GuiBanner(const char *tplfilepath);
//!Constructor
//!\param mem Memory of the loaded tpl
//!\param len Filesize of the tpl
//!\param w Width of the tpl
//!\param h Height of the tpl
GuiBanner(void *mem, u32 len, int w, int h);
//!Destructor
~GuiBanner();
void Draw();
protected:
void * memory;
bool filecheck;
u32 tplfilesize;
GXTexObj texObj;
public:
//!Constructor
//!\param tplfilepath Path of the tpl file
GuiBanner( const char *tplfilepath );
//!Constructor
//!\param mem Memory of the loaded tpl
//!\param len Filesize of the tpl
//!\param w Width of the tpl
//!\param h Height of the tpl
GuiBanner( void *mem, u32 len, int w, int h );
//!Destructor
~GuiBanner();
void Draw();
protected:
void * memory;
bool filecheck;
u32 tplfilesize;
GXTexObj texObj;
};
#endif /* _GUIBANNER_H_ */

View File

@ -28,51 +28,52 @@
#include "../ramdisk/ramdisk.h"
#include "../listfiles.h"
u16 be16(const u8 *p)
u16 be16( const u8 *p )
{
return (p[0] << 8) | p[1];
return ( p[0] << 8 ) | p[1];
}
u32 be32(const u8 *p)
u32 be32( const u8 *p )
{
return (p[0] << 24) | (p[1] << 16) | (p[2] << 8) | p[3];
return ( p[0] << 24 ) | ( p[1] << 16 ) | ( p[2] << 8 ) | p[3];
}
u64 be64(const u8 *p)
u64 be64( const u8 *p )
{
return ((u64)be32(p) << 32) | be32(p + 4);
return ( ( u64 )be32( p ) << 32 ) | be32( p + 4 );
}
u64 be34(const u8 *p)
u64 be34( const u8 *p )
{
return 4 * (u64)be32(p);
return 4 * ( u64 )be32( p );
}
void wbe16(u8 *p, u16 x)
void wbe16( u8 *p, u16 x )
{
p[0] = x >> 8;
p[1] = x;
p[0] = x >> 8;
p[1] = x;
}
void wbe32(u8 *p, u32 x)
void wbe32( u8 *p, u32 x )
{
wbe16(p, x >> 16);
wbe16(p + 2, x);
wbe16( p, x >> 16 );
wbe16( p + 2, x );
}
void wbe64(u8 *p, u64 x)
void wbe64( u8 *p, u64 x )
{
wbe32(p, x >> 32);
wbe32(p + 4, x);
wbe32( p, x >> 32 );
wbe32( p + 4, x );
}
void md5(u8 *data, u32 len, u8 *hash)
void md5( u8 *data, u32 len, u8 *hash )
{
MD5(hash, data, len);
MD5( hash, data, len );
}
typedef struct {
typedef struct
{
u8 zeroes[0x40];
u32 imet; // "IMET"
u8 zero_six_zero_three[8]; // fixed, unknown purpose
@ -89,441 +90,474 @@ typedef struct {
u8 crypto[0x10];
} imet_data_t;
typedef struct {
u32 imd5_tag; // 0x494D4435 "IMD5";
u32 size; // size of the rest of part B, starting from next field.
u8 zeroes[8];
u8 md5[16];
u32 payload_tag; // 0x4C5A3737 "LZ77" if this is lz77
u32 payload_data;
typedef struct
{
u32 imd5_tag; // 0x494D4435 "IMD5";
u32 size; // size of the rest of part B, starting from next field.
u8 zeroes[8];
u8 md5[16];
u32 payload_tag; // 0x4C5A3737 "LZ77" if this is lz77
u32 payload_data;
} imd5_header_t;
typedef struct
{
u16 type;
u16 name_offset;
u32 data_offset; // == absolut offset från U.8- headerns början
u32 size; // last included file num for directories
u16 type;
u16 name_offset;
u32 data_offset; // == absolut offset från U.8- headerns början
u32 size; // last included file num for directories
} U8_node;
typedef struct
{
u32 tag; // 0x55AA382D "U.8-"
u32 rootnode_offset; // offset to root_node, always 0x20.
u32 header_size; // size of header from root_node to end of string table.
u32 data_offset; // offset to data -- this is rootnode_offset + header_size, aligned to 0x40.
u8 zeroes[16];
u32 tag; // 0x55AA382D "U.8-"
u32 rootnode_offset; // offset to root_node, always 0x20.
u32 header_size; // size of header from root_node to end of string table.
u32 data_offset; // offset to data -- this is rootnode_offset + header_size, aligned to 0x40.
u8 zeroes[16];
} U8_archive_header;
static int write_file(void* data, size_t size, char* name)
static int write_file( void* data, size_t size, char* name )
{
size_t written=0;
FILE *out;
out = fopen(name, "wb");
if(out)
{
written = fwrite(data, 1, size, out);
fclose(out);
}
return (written == size) ? 1 : -1;
size_t written = 0;
FILE *out;
out = fopen( name, "wb" );
if ( out )
{
written = fwrite( data, 1, size, out );
fclose( out );
}
return ( written == size ) ? 1 : -1;
}
u8* decompress_lz77(u8 *data, size_t data_size, size_t* decompressed_size)
u8* decompress_lz77( u8 *data, size_t data_size, size_t* decompressed_size )
{
u8 *data_end;
u8 *decompressed_data;
size_t unpacked_size;
u8 *in_ptr;
u8 *out_ptr;
u8 *out_end;
u8 *data_end;
u8 *decompressed_data;
size_t unpacked_size;
u8 *in_ptr;
u8 *out_ptr;
u8 *out_end;
in_ptr = data;
data_end = data + data_size;
in_ptr = data;
data_end = data + data_size;
// Assume this for now and grow when needed
unpacked_size = data_size;
// Assume this for now and grow when needed
unpacked_size = data_size;
decompressed_data = malloc(unpacked_size);
out_end = decompressed_data + unpacked_size;
decompressed_data = malloc( unpacked_size );
out_end = decompressed_data + unpacked_size;
out_ptr = decompressed_data;
out_ptr = decompressed_data;
while (in_ptr < data_end) {
int bit;
u8 bitmask = *in_ptr;
while ( in_ptr < data_end )
{
int bit;
u8 bitmask = *in_ptr;
in_ptr++;
for (bit = 0x80; bit != 0; bit >>= 1) {
if (bitmask & bit) {
// Next section is compressed
u8 rep_length;
u16 rep_offset;
in_ptr++;
for ( bit = 0x80; bit != 0; bit >>= 1 )
{
if ( bitmask & bit )
{
// Next section is compressed
u8 rep_length;
u16 rep_offset;
rep_length = (*in_ptr >> 4) + 3;
rep_offset = *in_ptr & 0x0f;
in_ptr++;
rep_offset = *in_ptr | (rep_offset << 8);
in_ptr++;
if (out_ptr-decompressed_data < rep_offset) {
return NULL;
}
rep_length = ( *in_ptr >> 4 ) + 3;
rep_offset = *in_ptr & 0x0f;
in_ptr++;
rep_offset = *in_ptr | ( rep_offset << 8 );
in_ptr++;
if ( out_ptr - decompressed_data < rep_offset )
{
return NULL;
}
for ( ; rep_length > 0; rep_length--) {
*out_ptr = out_ptr[-rep_offset-1];
out_ptr++;
if (out_ptr >= out_end) {
// Need to grow buffer
decompressed_data = realloc(decompressed_data, unpacked_size*2);
out_ptr = decompressed_data + unpacked_size;
unpacked_size *= 2;
out_end = decompressed_data + unpacked_size;
}
for ( ; rep_length > 0; rep_length-- )
{
*out_ptr = out_ptr[-rep_offset-1];
out_ptr++;
if ( out_ptr >= out_end )
{
// Need to grow buffer
decompressed_data = realloc( decompressed_data, unpacked_size * 2 );
out_ptr = decompressed_data + unpacked_size;
unpacked_size *= 2;
out_end = decompressed_data + unpacked_size;
}
}
}
else
{
// Just copy byte
*out_ptr = *in_ptr;
out_ptr++;
if ( out_ptr >= out_end )
{
// Need to grow buffer
decompressed_data = realloc( decompressed_data, unpacked_size * 2 );
out_ptr = decompressed_data + unpacked_size;
unpacked_size *= 2;
out_end = decompressed_data + unpacked_size;
}
in_ptr++;
}
}
} else {
// Just copy byte
*out_ptr = *in_ptr;
out_ptr++;
if (out_ptr >= out_end) {
// Need to grow buffer
decompressed_data = realloc(decompressed_data, unpacked_size*2);
out_ptr = decompressed_data + unpacked_size;
unpacked_size *= 2;
out_end = decompressed_data + unpacked_size;
}
in_ptr++;
}
}
}
}
*decompressed_size = (out_ptr - decompressed_data);
return decompressed_data;
*decompressed_size = ( out_ptr - decompressed_data );
return decompressed_data;
}
static int write_imd5_lz77(u8* data, size_t size, char* outname)
static int write_imd5_lz77( u8* data, size_t size, char* outname )
{
imd5_header_t* header = (imd5_header_t*) data;
u32 tag;
u32 size_in_imd5;
imd5_header_t* header = ( imd5_header_t* ) data;
u32 tag;
u32 size_in_imd5;
u8 md5_calc[16];
u8 *decompressed_data;
size_t decompressed_size;
u8 *decompressed_data;
size_t decompressed_size;
tag = be32((u8*) &header->imd5_tag);
if (tag != 0x494D4435) {
return -4;
}
tag = be32( ( u8* ) & header->imd5_tag );
if ( tag != 0x494D4435 )
{
return -4;
}
md5(data+32, size-32, md5_calc);
if (memcmp(&header->md5, md5_calc, 0x10)) {
return -5;
}
md5( data + 32, size - 32, md5_calc );
if ( memcmp( &header->md5, md5_calc, 0x10 ) )
{
return -5;
}
size_in_imd5 = be32((u8*) &header->size);
if (size_in_imd5 != size - 32) {
return -6;
}
size_in_imd5 = be32( ( u8* ) & header->size );
if ( size_in_imd5 != size - 32 )
{
return -6;
}
tag = be32((u8*) &header->payload_tag);
if (tag == 0x4C5A3737) {
// "LZ77" - uncompress
decompressed_data = decompress_lz77(data + sizeof(imd5_header_t), size - sizeof(imd5_header_t), &decompressed_size);
if(decompressed_data == NULL)
return -7;
write_file(decompressed_data, decompressed_size, outname);
//printf(", uncompressed %d bytes, md5 ok", decompressed_size);
tag = be32( ( u8* ) & header->payload_tag );
if ( tag == 0x4C5A3737 )
{
// "LZ77" - uncompress
decompressed_data = decompress_lz77( data + sizeof( imd5_header_t ), size - sizeof( imd5_header_t ), &decompressed_size );
if ( decompressed_data == NULL )
return -7;
write_file( decompressed_data, decompressed_size, outname );
//printf(", uncompressed %d bytes, md5 ok", decompressed_size);
free(decompressed_data);
} else {
write_file(&header->payload_tag, size-32, outname);
//printf(", md5 ok");
}
return 0;
free( decompressed_data );
}
else
{
write_file( &header->payload_tag, size - 32, outname );
//printf(", md5 ok");
}
return 0;
}
static int do_U8_archive(FILE *fp)
static int do_U8_archive( FILE *fp )
{
U8_archive_header header;
U8_node root_node;
u32 tag;
u32 num_nodes;
U8_node* nodes;
u8* string_table;
size_t rest_size;
unsigned int i;
u32 data_offset;
u32 current_offset;
u16 dir_stack[16];
int dir_index = 0;
U8_archive_header header;
U8_node root_node;
u32 tag;
u32 num_nodes;
U8_node* nodes;
u8* string_table;
size_t rest_size;
unsigned int i;
u32 data_offset;
u32 current_offset;
u16 dir_stack[16];
int dir_index = 0;
fread(&header, 1, sizeof header, fp);
tag = be32((u8*) &header.tag);
if (tag != 0x55AA382D) {
return -1;
}
fread( &header, 1, sizeof header, fp );
tag = be32( ( u8* ) & header.tag );
if ( tag != 0x55AA382D )
{
return -1;
}
fread(&root_node, 1, sizeof(root_node), fp);
num_nodes = be32((u8*) &root_node.size) - 1;
//printf("Number of files: %d\n", num_nodes);
fread( &root_node, 1, sizeof( root_node ), fp );
num_nodes = be32( ( u8* ) & root_node.size ) - 1;
//printf("Number of files: %d\n", num_nodes);
nodes = malloc(sizeof(U8_node) * (num_nodes));
fread(nodes, 1, num_nodes * sizeof(U8_node), fp);
nodes = malloc( sizeof( U8_node ) * ( num_nodes ) );
fread( nodes, 1, num_nodes * sizeof( U8_node ), fp );
data_offset = be32((u8*) &header.data_offset);
rest_size = data_offset - sizeof(header) - (num_nodes+1)*sizeof(U8_node);
data_offset = be32( ( u8* ) & header.data_offset );
rest_size = data_offset - sizeof( header ) - ( num_nodes + 1 ) * sizeof( U8_node );
string_table = malloc(rest_size);
fread(string_table, 1, rest_size, fp);
string_table = malloc( rest_size );
fread( string_table, 1, rest_size, fp );
current_offset = data_offset;
for (i = 0; i < num_nodes; i++) {
U8_node* node = &nodes[i];
u16 type = be16((u8*)&node->type);
u16 name_offset = be16((u8*)&node->name_offset);
u32 my_data_offset = be32((u8*)&node->data_offset);
u32 size = be32((u8*)&node->size);
char* name = (char*) &string_table[name_offset];
u8* file_data;
for ( i = 0; i < num_nodes; i++ )
{
U8_node* node = &nodes[i];
u16 type = be16( ( u8* ) & node->type );
u16 name_offset = be16( ( u8* ) & node->name_offset );
u32 my_data_offset = be32( ( u8* ) & node->data_offset );
u32 size = be32( ( u8* ) & node->size );
char* name = ( char* ) & string_table[name_offset];
u8* file_data;
if (type == 0x0100) {
// Directory
mkdir(name, 0777);
chdir(name);
dir_stack[++dir_index] = size;
//printf("%*s%s/\n", dir_index, "", name);
} else {
// Normal file
u8 padding[32];
if (type != 0x0000) {
free(string_table);
return -2;
}
if (current_offset < my_data_offset) {
int diff = my_data_offset - current_offset;
if (diff > 32) {
free(string_table);
return -3;
if ( type == 0x0100 )
{
// Directory
mkdir( name, 0777 );
chdir( name );
dir_stack[++dir_index] = size;
//printf("%*s%s/\n", dir_index, "", name);
}
fread(padding, 1, diff, fp);
current_offset += diff;
}
else
{
// Normal file
u8 padding[32];
file_data = malloc(size);
fread(file_data, 1, size, fp);
//printf("%*s %s (%d bytes", dir_index, "", name, size);
int result;
result = write_imd5_lz77(file_data, size, name);
if(result < 0)
{free(string_table);
return result;
}
//printf(")\n");
current_offset += size;
if ( type != 0x0000 )
{
free( string_table );
return -2;
}
if ( current_offset < my_data_offset )
{
int diff = my_data_offset - current_offset;
if ( diff > 32 )
{
free( string_table );
return -3;
}
fread( padding, 1, diff, fp );
current_offset += diff;
}
file_data = malloc( size );
fread( file_data, 1, size, fp );
//printf("%*s %s (%d bytes", dir_index, "", name, size);
int result;
result = write_imd5_lz77( file_data, size, name );
if ( result < 0 )
{
free( string_table );
return result;
}
//printf(")\n");
current_offset += size;
}
while ( dir_stack[dir_index] == i + 2 && dir_index > 0 )
{
chdir( ".." );
dir_index--;
}
}
free( string_table );
return 0;
}
static void do_imet_header( FILE *fp )
{
imet_data_t header;
fread( &header, 1, sizeof header, fp );
write_file( &header, sizeof( header ), "header.imet" );
}
void do_U8_archivebanner( FILE *fp )
{
U8_archive_header header;
U8_node root_node;
u32 tag;
u32 num_nodes;
U8_node* nodes;
u8* string_table;
size_t rest_size;
unsigned int i;
u32 data_offset;
u16 dir_stack[16];
int dir_index = 0;
fread( &header, 1, sizeof header, fp );
tag = be32( ( u8* ) & header.tag );
if ( tag != 0x55AA382D )
{
//printf("No U8 tag");
exit( 0 );
}
while (dir_stack[dir_index] == i+2 && dir_index > 0) {
chdir("..");
dir_index--;
fread( &root_node, 1, sizeof( root_node ), fp );
num_nodes = be32( ( u8* ) & root_node.size ) - 1;
printf( "Number of files: %d\n", num_nodes );
nodes = malloc( sizeof( U8_node ) * ( num_nodes ) );
fread( nodes, 1, num_nodes * sizeof( U8_node ), fp );
data_offset = be32( ( u8* ) & header.data_offset );
rest_size = data_offset - sizeof( header ) - ( num_nodes + 1 ) * sizeof( U8_node );
string_table = malloc( rest_size );
fread( string_table, 1, rest_size, fp );
for ( i = 0; i < num_nodes; i++ )
{
U8_node* node = &nodes[i];
u16 type = be16( ( u8* ) & node->type );
u16 name_offset = be16( ( u8* ) & node->name_offset );
u32 my_data_offset = be32( ( u8* ) & node->data_offset );
u32 size = be32( ( u8* ) & node->size );
char* name = ( char* ) & string_table[name_offset];
u8* file_data;
if ( type == 0x0100 )
{
// Directory
mkdir( name, 0777 );
chdir( name );
dir_stack[++dir_index] = size;
//printf("%*s%s/\n", dir_index, "", name);
}
else
{
// Normal file
if ( type != 0x0000 )
{
printf( "Unknown type" );
exit( 0 );
}
fseek( fp, my_data_offset, SEEK_SET );
file_data = malloc( size );
fread( file_data, 1, size, fp );
write_file( file_data, size, name );
free( file_data );
//printf("%*s %s (%d bytes)\n", dir_index, "", name, size);
}
while ( dir_stack[dir_index] == i + 2 && dir_index > 0 )
{
chdir( ".." );
dir_index--;
}
}
}
free(string_table);
return 0;
free( string_table );
}
static void do_imet_header(FILE *fp)
{
imet_data_t header;
fread(&header, 1, sizeof header, fp);
write_file(&header, sizeof(header), "header.imet");
}
void do_U8_archivebanner(FILE *fp)
{
U8_archive_header header;
U8_node root_node;
u32 tag;
u32 num_nodes;
U8_node* nodes;
u8* string_table;
size_t rest_size;
unsigned int i;
u32 data_offset;
u16 dir_stack[16];
int dir_index = 0;
fread(&header, 1, sizeof header, fp);
tag = be32((u8*) &header.tag);
if (tag != 0x55AA382D) {
//printf("No U8 tag");
exit(0);
}
fread(&root_node, 1, sizeof(root_node), fp);
num_nodes = be32((u8*) &root_node.size) - 1;
printf("Number of files: %d\n", num_nodes);
nodes = malloc(sizeof(U8_node) * (num_nodes));
fread(nodes, 1, num_nodes * sizeof(U8_node), fp);
data_offset = be32((u8*) &header.data_offset);
rest_size = data_offset - sizeof(header) - (num_nodes+1)*sizeof(U8_node);
string_table = malloc(rest_size);
fread(string_table, 1, rest_size, fp);
for (i = 0; i < num_nodes; i++) {
U8_node* node = &nodes[i];
u16 type = be16((u8*)&node->type);
u16 name_offset = be16((u8*)&node->name_offset);
u32 my_data_offset = be32((u8*)&node->data_offset);
u32 size = be32((u8*)&node->size);
char* name = (char*) &string_table[name_offset];
u8* file_data;
if (type == 0x0100) {
// Directory
mkdir(name, 0777);
chdir(name);
dir_stack[++dir_index] = size;
//printf("%*s%s/\n", dir_index, "", name);
} else {
// Normal file
if (type != 0x0000) {
printf("Unknown type");
exit(0);
}
fseek(fp, my_data_offset, SEEK_SET);
file_data = malloc(size);
fread(file_data, 1, size, fp);
write_file(file_data, size, name);
free(file_data);
//printf("%*s %s (%d bytes)\n", dir_index, "", name, size);
}
while (dir_stack[dir_index] == i+2 && dir_index > 0) {
chdir("..");
dir_index--;
}
}
free(string_table);
}
int extractbnrfile(const char * filepath, const char * destpath)
int extractbnrfile( const char * filepath, const char * destpath )
{
int ret = -1;
FILE *fp = fopen(filepath, "rb");
if(fp)
{
subfoldercreate(destpath);
chdir(destpath);
FILE *fp = fopen( filepath, "rb" );
if ( fp )
{
subfoldercreate( destpath );
chdir( destpath );
do_imet_header(fp);
ret = do_U8_archive(fp);
do_imet_header( fp );
ret = do_U8_archive( fp );
fclose(fp);
}
return ret;
fclose( fp );
}
return ret;
}
int unpackBin(const char * filename,const char * outdir)
int unpackBin( const char * filename, const char * outdir )
{
FILE *fp = fopen(filename,"rb");;
if(fp)
{
subfoldercreate(outdir);
chdir(outdir);
FILE *fp = fopen( filename, "rb" );;
if ( fp )
{
subfoldercreate( outdir );
chdir( outdir );
do_U8_archivebanner(fp);
fclose(fp);
return 1;
}
return 0;
do_U8_archivebanner( fp );
fclose( fp );
return 1;
}
return 0;
}
#define TMP_PATH(s) "BANNER:/dump"s
//#define TMP_PATH(s) "SD:/dump"s
int unpackBanner(const u8 *gameid, int what, const char *outdir)
int unpackBanner( const u8 *gameid, int what, const char *outdir )
{
char path[256];
if(!ramdiskMount("BANNER", NULL)) return -1;
char path[256];
if ( !ramdiskMount( "BANNER", NULL ) ) return -1;
subfoldercreate(TMP_PATH("/"));
s32 ret = dump_banner(gameid, TMP_PATH("/opening.bnr"));
if (ret != 1)
{
ret = -1;
goto error2;
}
subfoldercreate( TMP_PATH( "/" ) );
s32 ret = dump_banner( gameid, TMP_PATH( "/opening.bnr" ) );
if ( ret != 1 )
{
ret = -1;
goto error2;
}
ret = extractbnrfile(TMP_PATH("/opening.bnr"), TMP_PATH("/"));
if (ret != 0)
{
ret = -1;
goto error2;
}
ret = extractbnrfile( TMP_PATH( "/opening.bnr" ), TMP_PATH( "/" ) );
if ( ret != 0 )
{
ret = -1;
goto error2;
}
if(what & UNPACK_BANNER_BIN)
{
snprintf(path, sizeof(path),"%sbanner/", outdir);
ret = unpackBin(TMP_PATH("/meta/banner.bin"), path);
if (ret != 1)
{
ret = -1;
goto error2;
}
}
if(what & UNPACK_ICON_BIN)
{
snprintf(path, sizeof(path),"%sicon/", outdir);
ret = unpackBin(TMP_PATH("/meta/icon.bin"), path);
if (ret != 1)
{
ret = -1;
goto error2;
}
}
if(what & UNPACK_SOUND_BIN)
{
snprintf(path, sizeof(path),"%ssound.bin", outdir);
FILE *fp = fopen(TMP_PATH("/meta/sound.bin"), "rb");
if(fp)
{
size_t size;
u8 *data;
fseek(fp, 0, SEEK_END);
size = ftell(fp);
if(!size)
{
ret = -1;
goto error;
}
fseek(fp, 0, SEEK_SET);
data = (u8 *)malloc(size);
if(!data)
{
ret = -1;
goto error;
}
if(fread(data, 1, size, fp) != size)
{
ret = -1;
goto error;
}
ret = write_file(data, size, path);
}
error: fclose(fp);
}
ramdiskUnmount("BANNER");
if ( what & UNPACK_BANNER_BIN )
{
snprintf( path, sizeof( path ), "%sbanner/", outdir );
ret = unpackBin( TMP_PATH( "/meta/banner.bin" ), path );
if ( ret != 1 )
{
ret = -1;
goto error2;
}
}
if ( what & UNPACK_ICON_BIN )
{
snprintf( path, sizeof( path ), "%sicon/", outdir );
ret = unpackBin( TMP_PATH( "/meta/icon.bin" ), path );
if ( ret != 1 )
{
ret = -1;
goto error2;
}
}
if ( what & UNPACK_SOUND_BIN )
{
snprintf( path, sizeof( path ), "%ssound.bin", outdir );
FILE *fp = fopen( TMP_PATH( "/meta/sound.bin" ), "rb" );
if ( fp )
{
size_t size;
u8 *data;
fseek( fp, 0, SEEK_END );
size = ftell( fp );
if ( !size )
{
ret = -1;
goto error;
}
fseek( fp, 0, SEEK_SET );
data = ( u8 * )malloc( size );
if ( !data )
{
ret = -1;
goto error;
}
if ( fread( data, 1, size, fp ) != size )
{
ret = -1;
goto error;
}
ret = write_file( data, size, path );
}
error: fclose( fp );
}
ramdiskUnmount( "BANNER" );
error2:
if(ret < 0)
return ret;
return 1;
if ( ret < 0 )
return ret;
return 1;
}

View File

@ -13,32 +13,32 @@ extern "C"
{
#endif
/***********************************************************
* Error description:
* 0 Successfully extracted
* -1 No U8 tag
* -2 Unknown type
* -3 Archive inconsistency, too much padding
* -4 No IMD5 tag
* -5 MD5 mismatch
* -6 Size mismatch
* -7 Inconsistency in LZ77 encoding
************************************************************/
/***********************************************************
* Error description:
* 0 Successfully extracted
* -1 No U8 tag
* -2 Unknown type
* -3 Archive inconsistency, too much padding
* -4 No IMD5 tag
* -5 MD5 mismatch
* -6 Size mismatch
* -7 Inconsistency in LZ77 encoding
************************************************************/
//! Extract opening.bnr from filepath to destpath
//! Files extracted: banner.bin icon.bin and sound.bin
int extractbnrfile(const char * filepath, const char * destpath);
int unpackBin(const char * filename,const char * outdir);
#define UNPACK_BANNER_BIN 1 /* extract banner.bin to outdir/banner/ */
#define UNPACK_ICON_BIN 2 /* extract icon.bin to outdir/icon/ */
#define UNPACK_SOUND_BIN 4 /* copies sound.bin to outdir/sound.bin */
int extractbnrfile( const char * filepath, const char * destpath );
int unpackBin( const char * filename, const char * outdir );
#define UNPACK_BANNER_BIN 1 /* extract banner.bin to outdir/banner/ */
#define UNPACK_ICON_BIN 2 /* extract icon.bin to outdir/icon/ */
#define UNPACK_SOUND_BIN 4 /* copies sound.bin to outdir/sound.bin */
#define UNPACK_ALL (UNPACK_SOUND_BIN | UNPACK_ICON_BIN | UNPACK_BANNER_BIN)
int unpackBanner(const u8 * gameid, int what, const char *outdir);
int unpackBanner( const u8 * gameid, int what, const char *outdir );
//! Extract the lz77 compressed banner, icon and sound .bin
u8* decompress_lz77(u8 *data, size_t data_size, size_t* decompressed_size);
u8* decompress_lz77( u8 *data, size_t data_size, size_t* decompressed_size );
u16 be16(const u8 *p);
u32 be32(const u8 *p);
u16 be16( const u8 *p );
u32 be32( const u8 *p );
#ifdef __cplusplus
}

View File

@ -13,197 +13,197 @@
struct IMD5Header
{
u32 fcc;
u32 filesize;
u8 zeroes[8];
u8 crypto[16];
} __attribute__((packed));
u32 fcc;
u32 filesize;
u8 zeroes[8];
u8 crypto[16];
} __attribute__( ( packed ) );
struct IMETHeader
{
u8 zeroes[64];
u32 fcc;
u8 unk[8];
u32 iconSize;
u32 bannerSize;
u32 soundSize;
u32 flag1;
u8 names[7][84];
u8 zeroes_2[0x348];
u8 crypto[16];
} __attribute__((packed));
u8 zeroes[64];
u32 fcc;
u8 unk[8];
u32 iconSize;
u32 bannerSize;
u32 soundSize;
u32 flag1;
u8 names[7][84];
u8 zeroes_2[0x348];
u8 crypto[16];
} __attribute__( ( packed ) );
struct U8Header
{
u32 fcc;
u32 rootNodeOffset;
u32 headerSize;
u32 dataOffset;
u8 zeroes[16];
} __attribute__((packed));
u32 fcc;
u32 rootNodeOffset;
u32 headerSize;
u32 dataOffset;
u8 zeroes[16];
} __attribute__( ( packed ) );
struct U8Entry
{
struct
{
u32 fileType : 8;
u32 nameOffset : 24;
};
u32 fileOffset;
union
{
u32 fileLength;
u32 numEntries;
};
} __attribute__((packed));
struct
{
u32 fileType : 8;
u32 nameOffset : 24;
};
u32 fileOffset;
union
{
u32 fileLength;
u32 numEntries;
};
} __attribute__( ( packed ) );
struct LZ77Info
{
u16 length : 4;
u16 offset : 12;
} __attribute__((packed));
u16 length : 4;
u16 offset : 12;
} __attribute__( ( packed ) );
static char *u8Filename(const U8Entry *fst, int i)
static char *u8Filename( const U8Entry *fst, int i )
{
return (char *)(fst + fst[0].numEntries) + fst[i].nameOffset;
return ( char * )( fst + fst[0].numEntries ) + fst[i].nameOffset;
}
inline u32 le32(u32 i)
inline u32 le32( u32 i )
{
return ((i & 0xFF) << 24) | ((i & 0xFF00) << 8) | ((i & 0xFF0000) >> 8) | ((i & 0xFF000000) >> 24);
return ( ( i & 0xFF ) << 24 ) | ( ( i & 0xFF00 ) << 8 ) | ( ( i & 0xFF0000 ) >> 8 ) | ( ( i & 0xFF000000 ) >> 24 );
}
inline u16 le16(u16 i)
inline u16 le16( u16 i )
{
return ((i & 0xFF) << 8) | ((i & 0xFF00) >> 8);
return ( ( i & 0xFF ) << 8 ) | ( ( i & 0xFF00 ) >> 8 );
}
static u8 *uncompressLZ77(const u8 *inBuf, u32 inLength, u32 &size)
static u8 *uncompressLZ77( const u8 *inBuf, u32 inLength, u32 &size )
{
u8 *buffer = NULL;
if (inLength <= 0x8 || *((const u32 *)inBuf) != 0x4C5A3737 /*"LZ77"*/ || inBuf[4] != 0x10)
return NULL;
u32 uncSize = le32(((const u32 *)inBuf)[1] << 8);
u8 *buffer = NULL;
if ( inLength <= 0x8 || *( ( const u32 * )inBuf ) != 0x4C5A3737 /*"LZ77"*/ || inBuf[4] != 0x10 )
return NULL;
u32 uncSize = le32( ( ( const u32 * )inBuf )[1] << 8 );
const u8 *inBufEnd = inBuf + inLength;
inBuf += 8;
buffer = new(std::nothrow) u8[uncSize];
if (!buffer)
return buffer;
const u8 *inBufEnd = inBuf + inLength;
inBuf += 8;
buffer = new( std::nothrow ) u8[uncSize];
if ( !buffer )
return buffer;
u8 *bufCur = buffer;
u8 *bufEnd = buffer + uncSize;
u8 *bufCur = buffer;
u8 *bufEnd = buffer + uncSize;
while (bufCur < bufEnd && inBuf < inBufEnd)
{
u8 flags = *inBuf;
++inBuf;
for (int i = 0; i < 8 && bufCur < bufEnd && inBuf < inBufEnd; ++i)
{
if ((flags & 0x80) != 0)
{
const LZ77Info &info = *(const LZ77Info *)inBuf;
inBuf += sizeof (LZ77Info);
int length = info.length + 3;
if (bufCur - info.offset - 1 < buffer || bufCur + length > bufEnd)
return buffer;
memcpy(bufCur, bufCur - info.offset - 1, length);
bufCur += length;
}
else
{
*bufCur = *inBuf;
++inBuf;
++bufCur;
}
flags <<= 1;
}
}
size = uncSize;
return buffer;
while ( bufCur < bufEnd && inBuf < inBufEnd )
{
u8 flags = *inBuf;
++inBuf;
for ( int i = 0; i < 8 && bufCur < bufEnd && inBuf < inBufEnd; ++i )
{
if ( ( flags & 0x80 ) != 0 )
{
const LZ77Info &info = *( const LZ77Info * )inBuf;
inBuf += sizeof ( LZ77Info );
int length = info.length + 3;
if ( bufCur - info.offset - 1 < buffer || bufCur + length > bufEnd )
return buffer;
memcpy( bufCur, bufCur - info.offset - 1, length );
bufCur += length;
}
else
{
*bufCur = *inBuf;
++inBuf;
++bufCur;
}
flags <<= 1;
}
}
size = uncSize;
return buffer;
}
const u8 *LoadBannerSound(const u8 *discid, u32 *size)
const u8 *LoadBannerSound( const u8 *discid, u32 *size )
{
if(!discid)
if ( !discid )
return NULL;
Disc_SetUSB(NULL);
wbfs_disc_t *disc = WBFS_OpenDisc((u8 *) discid);
if(!disc)
{
// WindowPrompt(tr("Can't find disc"), 0, tr("OK"));
Disc_SetUSB( NULL );
wbfs_disc_t *disc = WBFS_OpenDisc( ( u8 * ) discid );
if ( !disc )
{
// WindowPrompt(tr("Can't find disc"), 0, tr("OK"));
return NULL;
}
wiidisc_t *wdisc = wd_open_disc((int (*)(void *, u32, u32, void *))wbfs_disc_read, disc);
if(!wdisc)
{
//WindowPrompt(tr("Could not open Disc"), 0, tr("OK"));
}
wiidisc_t *wdisc = wd_open_disc( ( int ( * )( void *, u32, u32, void * ) )wbfs_disc_read, disc );
if ( !wdisc )
{
//WindowPrompt(tr("Could not open Disc"), 0, tr("OK"));
return NULL;
}
u8 * opening_bnr = wd_extract_file(wdisc, ALL_PARTITIONS, (char *) "opening.bnr");
if(!opening_bnr)
{
//WindowPrompt(tr("ERROR"), tr("Failed to extract opening.bnr"), tr("OK"));
}
u8 * opening_bnr = wd_extract_file( wdisc, ALL_PARTITIONS, ( char * ) "opening.bnr" );
if ( !opening_bnr )
{
//WindowPrompt(tr("ERROR"), tr("Failed to extract opening.bnr"), tr("OK"));
return NULL;
}
}
wd_close_disc(wdisc);
WBFS_CloseDisc(disc);
wd_close_disc( wdisc );
WBFS_CloseDisc( disc );
const U8Entry *fst;
const U8Entry *fst;
const IMETHeader *imetHdr = (IMETHeader *)opening_bnr;
if ( imetHdr->fcc != 0x494D4554 /*"IMET"*/ )
{
// WindowPrompt(tr("IMET Header wrong."), 0, tr("OK"));
free(opening_bnr);
const IMETHeader *imetHdr = ( IMETHeader * )opening_bnr;
if ( imetHdr->fcc != 0x494D4554 /*"IMET"*/ )
{
// WindowPrompt(tr("IMET Header wrong."), 0, tr("OK"));
free( opening_bnr );
return NULL;
}
const U8Header *bnrArcHdr = (U8Header *)(imetHdr + 1);
}
const U8Header *bnrArcHdr = ( U8Header * )( imetHdr + 1 );
fst = (const U8Entry *)( ((const u8 *)bnrArcHdr) + bnrArcHdr->rootNodeOffset);
u32 i;
for (i = 1; i < fst[0].numEntries; ++i)
if (fst[i].fileType == 0 && strcasecmp(u8Filename(fst, i), "sound.bin") == 0)
break;
if (i >= fst[0].numEntries)
{
/* Not all games have a sound.bin and this message is annoying **/
//WindowPrompt(tr("sound.bin not found."), 0, tr("OK"));
free(opening_bnr);
fst = ( const U8Entry * )( ( ( const u8 * )bnrArcHdr ) + bnrArcHdr->rootNodeOffset );
u32 i;
for ( i = 1; i < fst[0].numEntries; ++i )
if ( fst[i].fileType == 0 && strcasecmp( u8Filename( fst, i ), "sound.bin" ) == 0 )
break;
if ( i >= fst[0].numEntries )
{
/* Not all games have a sound.bin and this message is annoying **/
//WindowPrompt(tr("sound.bin not found."), 0, tr("OK"));
free( opening_bnr );
return NULL;
}
const u8 *sound_bin = ((const u8 *)bnrArcHdr) + fst[i].fileOffset;
if ( ((IMD5Header *)sound_bin)->fcc != 0x494D4435 /*"IMD5"*/ )
{
// WindowPrompt(tr("IMD5 Header not right."), 0, tr("OK"));
free(opening_bnr);
}
const u8 *sound_bin = ( ( const u8 * )bnrArcHdr ) + fst[i].fileOffset;
if ( ( ( IMD5Header * )sound_bin )->fcc != 0x494D4435 /*"IMD5"*/ )
{
// WindowPrompt(tr("IMD5 Header not right."), 0, tr("OK"));
free( opening_bnr );
return NULL;
}
const u8 *soundChunk = sound_bin + sizeof (IMD5Header);;
u32 soundChunkSize = fst[i].fileLength - sizeof (IMD5Header);
}
const u8 *soundChunk = sound_bin + sizeof ( IMD5Header );;
u32 soundChunkSize = fst[i].fileLength - sizeof ( IMD5Header );
if ( *((u32*)soundChunk) == 0x4C5A3737 /*"LZ77"*/ )
{
u32 uncSize = NULL;
u8 * uncompressed_data = uncompressLZ77(soundChunk, soundChunkSize, uncSize);
if (!uncompressed_data)
{
// WindowPrompt(tr("Can't decompress LZ77"), 0, tr("OK"));
free(opening_bnr);
return NULL;
}
if(size) *size=uncSize;
free(opening_bnr);
return uncompressed_data;
}
u8 *out = new(std::nothrow) u8[soundChunkSize];
if(out)
{
memcpy(out, soundChunk, soundChunkSize);
if(size) *size=soundChunkSize;
}
free(opening_bnr);
return out;
if ( *( ( u32* )soundChunk ) == 0x4C5A3737 /*"LZ77"*/ )
{
u32 uncSize = NULL;
u8 * uncompressed_data = uncompressLZ77( soundChunk, soundChunkSize, uncSize );
if ( !uncompressed_data )
{
// WindowPrompt(tr("Can't decompress LZ77"), 0, tr("OK"));
free( opening_bnr );
return NULL;
}
if ( size ) *size = uncSize;
free( opening_bnr );
return uncompressed_data;
}
u8 *out = new( std::nothrow ) u8[soundChunkSize];
if ( out )
{
memcpy( out, soundChunk, soundChunkSize );
if ( size ) *size = soundChunkSize;
}
free( opening_bnr );
return out;
}

View File

@ -1,6 +1,6 @@
#ifndef BANNERSOUND_H
#define BANNERSOUND_H
const u8 *LoadBannerSound(const u8 *discid, u32 *size);
const u8 *LoadBannerSound( const u8 *discid, u32 *size );
#endif /* BANNERSOUND_H */

View File

@ -23,143 +23,160 @@ extern GuiWindow * mainWindow;
/****************************************************************************
* CheatMenu
***************************************************************************/
int CheatMenu(const char * gameID) {
int choice = 0;
bool exit = false;
int ret = 1;
int CheatMenu( const char * gameID )
{
int choice = 0;
bool exit = false;
int ret = 1;
// because destroy GuiSound must wait while sound playing is finished, we use a global sound
if(!btnClick2) btnClick2=new GuiSound(button_click2_pcm, button_click2_pcm_size, Settings.sfxvolume);
// GuiSound btnClick(button_click2_pcm, button_click2_pcm_size, Settings.sfxvolume);
// because destroy GuiSound must wait while sound playing is finished, we use a global sound
if ( !btnClick2 ) btnClick2 = new GuiSound( button_click2_pcm, button_click2_pcm_size, Settings.sfxvolume );
// GuiSound btnClick(button_click2_pcm, button_click2_pcm_size, Settings.sfxvolume);
char imgPath[100];
snprintf(imgPath, sizeof(imgPath), "%sbutton_dialogue_box.png", CFG.theme_path);
GuiImageData btnOutline(imgPath, button_dialogue_box_png);
snprintf(imgPath, sizeof(imgPath), "%ssettings_background.png", CFG.theme_path);
GuiImageData settingsbg(imgPath, settings_background_png);
GuiImage settingsbackground(&settingsbg);
char imgPath[100];
snprintf( imgPath, sizeof( imgPath ), "%sbutton_dialogue_box.png", CFG.theme_path );
GuiImageData btnOutline( imgPath, button_dialogue_box_png );
snprintf( imgPath, sizeof( imgPath ), "%ssettings_background.png", CFG.theme_path );
GuiImageData settingsbg( imgPath, settings_background_png );
GuiImage settingsbackground( &settingsbg );
GuiTrigger trigA;
trigA.SetSimpleTrigger(-1, WPAD_BUTTON_A | WPAD_CLASSIC_BUTTON_A, PAD_BUTTON_A);
GuiTrigger trigB;
trigB.SetButtonOnlyTrigger(-1, WPAD_BUTTON_B | WPAD_CLASSIC_BUTTON_B, PAD_BUTTON_B);
GuiTrigger trigA;
trigA.SetSimpleTrigger( -1, WPAD_BUTTON_A | WPAD_CLASSIC_BUTTON_A, PAD_BUTTON_A );
GuiTrigger trigB;
trigB.SetButtonOnlyTrigger( -1, WPAD_BUTTON_B | WPAD_CLASSIC_BUTTON_B, PAD_BUTTON_B );
GuiText backBtnTxt(tr("Back") , 22, THEME.prompttext);
backBtnTxt.SetMaxWidth(btnOutline.GetWidth()-30);
GuiImage backBtnImg(&btnOutline);
GuiButton backBtn(&backBtnImg,&backBtnImg, 2, 3, -140, 400, &trigA, NULL, btnClick2,1);
backBtn.SetLabel(&backBtnTxt);
backBtn.SetTrigger(&trigB);
GuiText backBtnTxt( tr( "Back" ) , 22, THEME.prompttext );
backBtnTxt.SetMaxWidth( btnOutline.GetWidth() - 30 );
GuiImage backBtnImg( &btnOutline );
GuiButton backBtn( &backBtnImg, &backBtnImg, 2, 3, -140, 400, &trigA, NULL, btnClick2, 1 );
backBtn.SetLabel( &backBtnTxt );
backBtn.SetTrigger( &trigB );
GuiText createBtnTxt(tr("Create") , 22, THEME.prompttext);
createBtnTxt.SetMaxWidth(btnOutline.GetWidth()-30);
GuiImage createBtnImg(&btnOutline);
GuiButton createBtn(&createBtnImg,&createBtnImg, 2, 3, 160, 400, &trigA, NULL, btnClick2,1);
createBtn.SetLabel(&createBtnTxt);
GuiText createBtnTxt( tr( "Create" ) , 22, THEME.prompttext );
createBtnTxt.SetMaxWidth( btnOutline.GetWidth() - 30 );
GuiImage createBtnImg( &btnOutline );
GuiButton createBtn( &createBtnImg, &createBtnImg, 2, 3, 160, 400, &trigA, NULL, btnClick2, 1 );
createBtn.SetLabel( &createBtnTxt );
char txtfilename[55];
snprintf(txtfilename,sizeof(txtfilename),"%s%s.txt",Settings.TxtCheatcodespath,gameID);
char txtfilename[55];
snprintf( txtfilename, sizeof( txtfilename ), "%s%s.txt", Settings.TxtCheatcodespath, gameID );
GCTCheats c;
int check = c.openTxtfile(txtfilename);
GCTCheats c;
int check = c.openTxtfile( txtfilename );
int download =0;
int download = 0;
switch (check) {
case -1:
WindowPrompt(tr("Error"),tr("Cheatfile is blank"),tr("OK"));
break;
case 0:
download = WindowPrompt(tr("Error"),tr("No Cheatfile found"),tr("Download Now"),tr("Cancel"));
if (download==1)
{
download = CodeDownload(gameID);
if(download < 0 || c.openTxtfile(txtfilename) != 1)
break;
}
else
break;
case 1:
int cntcheats = c.getCnt();
customOptionList cheatslst(cntcheats);
GuiCustomOptionBrowser chtBrowser(400, 280, &cheatslst, CFG.theme_path, "bg_options_settings.png", bg_options_settings_png, 1, 90);
chtBrowser.SetPosition(0, 90);
chtBrowser.SetAlignment(ALIGN_CENTRE, ALIGN_TOP);
chtBrowser.SetClickable(true);
switch ( check )
{
case -1:
WindowPrompt( tr( "Error" ), tr( "Cheatfile is blank" ), tr( "OK" ) );
break;
case 0:
download = WindowPrompt( tr( "Error" ), tr( "No Cheatfile found" ), tr( "Download Now" ), tr( "Cancel" ) );
if ( download == 1 )
{
download = CodeDownload( gameID );
if ( download < 0 || c.openTxtfile( txtfilename ) != 1 )
break;
}
else
break;
case 1:
int cntcheats = c.getCnt();
customOptionList cheatslst( cntcheats );
GuiCustomOptionBrowser chtBrowser( 400, 280, &cheatslst, CFG.theme_path, "bg_options_settings.png", bg_options_settings_png, 1, 90 );
chtBrowser.SetPosition( 0, 90 );
chtBrowser.SetAlignment( ALIGN_CENTRE, ALIGN_TOP );
chtBrowser.SetClickable( true );
GuiText titleTxt(c.getGameName().c_str(), 28, (GXColor) {0, 0, 0, 255});
titleTxt.SetAlignment(ALIGN_CENTRE, ALIGN_TOP);
titleTxt.SetMaxWidth(350, SCROLL_HORIZONTAL);
titleTxt.SetPosition(12,40);
GuiText titleTxt( c.getGameName().c_str(), 28, ( GXColor ) {0, 0, 0, 255} );
titleTxt.SetAlignment( ALIGN_CENTRE, ALIGN_TOP );
titleTxt.SetMaxWidth( 350, SCROLL_HORIZONTAL );
titleTxt.SetPosition( 12, 40 );
for (int i = 0; i <= cntcheats; i++) {
cheatslst.SetValue(i, "%s",c.getCheatName(i).c_str());
cheatslst.SetName(i, "OFF");
}
for ( int i = 0; i <= cntcheats; i++ )
{
cheatslst.SetValue( i, "%s", c.getCheatName( i ).c_str() );
cheatslst.SetName( i, "OFF" );
}
HaltGui();
GuiWindow w(screenwidth, screenheight);
w.Append(&settingsbackground);
w.Append(&titleTxt);
w.Append(&backBtn);
w.Append(&createBtn);
w.Append(&chtBrowser);
mainWindow->SetState(STATE_DISABLED);
mainWindow->ChangeFocus(&w);
mainWindow->Append(&w);
ResumeGui();
HaltGui();
GuiWindow w( screenwidth, screenheight );
w.Append( &settingsbackground );
w.Append( &titleTxt );
w.Append( &backBtn );
w.Append( &createBtn );
w.Append( &chtBrowser );
mainWindow->SetState( STATE_DISABLED );
mainWindow->ChangeFocus( &w );
mainWindow->Append( &w );
ResumeGui();
while (!exit) {
VIDEO_WaitVSync ();
while ( !exit )
{
VIDEO_WaitVSync ();
ret = chtBrowser.GetClickedOption();
if (ret != -1) {
const char *strCheck = cheatslst.GetName(ret);
if (strncmp(strCheck,"ON",2) == 0) {
cheatslst.SetName(ret,"%s","OFF");
} else if (strncmp(strCheck,"OFF",3) == 0) {
cheatslst.SetName(ret,"%s","ON");
}
}
ret = chtBrowser.GetClickedOption();
if ( ret != -1 )
{
const char *strCheck = cheatslst.GetName( ret );
if ( strncmp( strCheck, "ON", 2 ) == 0 )
{
cheatslst.SetName( ret, "%s", "OFF" );
}
else if ( strncmp( strCheck, "OFF", 3 ) == 0 )
{
cheatslst.SetName( ret, "%s", "ON" );
}
}
if (createBtn.GetState() == STATE_CLICKED) {
createBtn.ResetState();
if (cntcheats > 0) {
int selectednrs[30];
int x = 0;
for (int i = 0; i <= cntcheats; i++) {
const char *strCheck = cheatslst.GetName(i);
if (strncmp(strCheck,"ON",2) == 0) {
selectednrs[x] = i;
x++;
}
}
if (x == 0) {
WindowPrompt(tr("Error"),tr("No cheats were selected"),tr("OK"));
} else {
subfoldercreate(Settings.Cheatcodespath);
string chtpath = Settings.Cheatcodespath;
string gctfname = chtpath + c.getGameID() + ".gct";
c.createGCT(selectednrs,x,gctfname.c_str());
WindowPrompt(tr("GCT File created"),NULL,tr("OK"));
exit = true;
break;
}
} else WindowPrompt(tr("Error"),tr("Could not create GCT file"),tr("OK"));
}
if ( createBtn.GetState() == STATE_CLICKED )
{
createBtn.ResetState();
if ( cntcheats > 0 )
{
int selectednrs[30];
int x = 0;
for ( int i = 0; i <= cntcheats; i++ )
{
const char *strCheck = cheatslst.GetName( i );
if ( strncmp( strCheck, "ON", 2 ) == 0 )
{
selectednrs[x] = i;
x++;
}
}
if ( x == 0 )
{
WindowPrompt( tr( "Error" ), tr( "No cheats were selected" ), tr( "OK" ) );
}
else
{
subfoldercreate( Settings.Cheatcodespath );
string chtpath = Settings.Cheatcodespath;
string gctfname = chtpath + c.getGameID() + ".gct";
c.createGCT( selectednrs, x, gctfname.c_str() );
WindowPrompt( tr( "GCT File created" ), NULL, tr( "OK" ) );
exit = true;
break;
}
}
else WindowPrompt( tr( "Error" ), tr( "Could not create GCT file" ), tr( "OK" ) );
}
if (backBtn.GetState() == STATE_CLICKED) {
backBtn.ResetState();
exit = true;
break;
}
}
HaltGui();
mainWindow->SetState(STATE_DEFAULT);
mainWindow->Remove(&w);
ResumeGui();
break;
}
if ( backBtn.GetState() == STATE_CLICKED )
{
backBtn.ResetState();
exit = true;
break;
}
}
HaltGui();
mainWindow->SetState( STATE_DEFAULT );
mainWindow->Remove( &w );
ResumeGui();
break;
}
return choice;
return choice;
}

View File

@ -8,6 +8,6 @@
#ifndef _CHEATMENU_H_
#define _CHEATMENU_H_
int CheatMenu(const char * gameID);
int CheatMenu( const char * gameID );
#endif

View File

@ -12,96 +12,116 @@
#define ERRORRANGE "Error: CheatNr out of range"
GCTCheats::GCTCheats(void) {
GCTCheats::GCTCheats( void )
{
iCntCheats = 0;
}
GCTCheats::~GCTCheats(void) {
GCTCheats::~GCTCheats( void )
{
string sGameID ="";
string sGameID = "";
string sGameTitle = "";
/*string sCheatName[MAXCHEATS];
string sCheats[MAXCHEATS];
string sCheatComment[MAXCHEATS];*/
}
int GCTCheats::getCnt() {
int GCTCheats::getCnt()
{
return iCntCheats;
}
string GCTCheats::getGameName(void) {
string GCTCheats::getGameName( void )
{
return sGameTitle;
}
string GCTCheats::getGameID(void) {
string GCTCheats::getGameID( void )
{
return sGameID;
}
string GCTCheats::getCheat(int nr) {
if (nr <= (iCntCheats-1)) {
string GCTCheats::getCheat( int nr )
{
if ( nr <= ( iCntCheats - 1 ) )
{
return sCheats[nr];
} else {
}
else
{
return ERRORRANGE;
}
}
string GCTCheats::getCheatName(int nr) {
if (nr <= (iCntCheats-1)) {
string GCTCheats::getCheatName( int nr )
{
if ( nr <= ( iCntCheats - 1 ) )
{
return sCheatName[nr];
} else {
}
else
{
return ERRORRANGE;
}
}
string GCTCheats::getCheatComment(int nr) {
if (nr <= (iCntCheats-1)) {
string GCTCheats::getCheatComment( int nr )
{
if ( nr <= ( iCntCheats - 1 ) )
{
return sCheatComment[nr];
} else {
}
else
{
return ERRORRANGE;
}
}
int GCTCheats::createGCT(int nr,const char * filename) {
int GCTCheats::createGCT( int nr, const char * filename )
{
if (nr == 0)
return 0;
if ( nr == 0 )
return 0;
ofstream filestr;
filestr.open(filename);
filestr.open( filename );
if (filestr.fail())
if ( filestr.fail() )
return 0;
//Header and Footer
char header[] = { 0x00, 0xd0, 0xc0, 0xde, 0x00, 0xd0, 0xc0, 0xde};
char footer[] = { 0xF0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
string buf = getCheat(nr);
filestr.write(header,sizeof(header));
string buf = getCheat( nr );
filestr.write( header, sizeof( header ) );
int x = 0;
long int li;
int len = buf.size();
while (x < len) {
string temp = buf.substr(x,2);
li = strtol(temp.c_str(),NULL,16);
while ( x < len )
{
string temp = buf.substr( x, 2 );
li = strtol( temp.c_str(), NULL, 16 );
temp = li;
filestr.write(temp.c_str(),1);
x +=2;
filestr.write( temp.c_str(), 1 );
x += 2;
}
filestr.write(footer,sizeof(footer));
filestr.write( footer, sizeof( footer ) );
filestr.close();
return 1;
}
int GCTCheats::createGCT(const char * chtbuffer,const char * filename) {
int GCTCheats::createGCT( const char * chtbuffer, const char * filename )
{
ofstream filestr;
filestr.open(filename);
filestr.open( filename );
if (filestr.fail())
if ( filestr.fail() )
return 0;
//Header and Footer
@ -109,146 +129,162 @@ int GCTCheats::createGCT(const char * chtbuffer,const char * filename) {
char footer[] = { 0xF0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
string buf = chtbuffer;
filestr.write(header,sizeof(header));
filestr.write( header, sizeof( header ) );
int x = 0;
long int li;
int len = buf.size();
while (x < len) {
string temp = buf.substr(x,2);
li = strtol(temp.c_str(),NULL,16);
while ( x < len )
{
string temp = buf.substr( x, 2 );
li = strtol( temp.c_str(), NULL, 16 );
temp = li;
filestr.write(temp.c_str(),1);
x +=2;
filestr.write( temp.c_str(), 1 );
x += 2;
}
filestr.write(footer,sizeof(footer));
filestr.write( footer, sizeof( footer ) );
filestr.close();
return 1;
}
int GCTCheats::createGCT(int nr[],int cnt,const char * filename) {
int GCTCheats::createGCT( int nr[], int cnt, const char * filename )
{
if (cnt == 0)
return 0;
if ( cnt == 0 )
return 0;
ofstream filestr;
filestr.open(filename);
filestr.open( filename );
if (filestr.fail())
if ( filestr.fail() )
return 0;
//Header and Footer
char header[] = { 0x00, 0xd0, 0xc0, 0xde, 0x00, 0xd0, 0xc0, 0xde};
char footer[] = { 0xF0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
filestr.write(header,sizeof(header));
filestr.write( header, sizeof( header ) );
int c = 0;
while (c != cnt) {
while ( c != cnt )
{
int actnr = nr[c];
string buf = getCheat(actnr);
string buf = getCheat( actnr );
long int li;
int len = buf.size();
int x = 0;
while (x < len) {
string temp = buf.substr(x,2);
li = strtol(temp.c_str(),NULL,16);
while ( x < len )
{
string temp = buf.substr( x, 2 );
li = strtol( temp.c_str(), NULL, 16 );
temp = li;
filestr.write(temp.c_str(),1);
x +=2;
filestr.write( temp.c_str(), 1 );
x += 2;
}
c++;
}
filestr.write(footer,sizeof(footer));
filestr.write( footer, sizeof( footer ) );
filestr.close();
return 1;
}
int GCTCheats::openTxtfile(const char * filename) {
int GCTCheats::openTxtfile( const char * filename )
{
ifstream filestr;
int i = 0;
string str;
filestr.open(filename);
filestr.open( filename );
if (filestr.fail())
if ( filestr.fail() )
return 0;
filestr.seekg(0,ios_base::end);
filestr.seekg( 0, ios_base::end );
int size = filestr.tellg();
if (size <= 0) return -1;
filestr.seekg(0,ios_base::beg);
if ( size <= 0 ) return -1;
filestr.seekg( 0, ios_base::beg );
getline(filestr,sGameID);
if (sGameID[sGameID.length() - 1] == '\r')
sGameID.erase(sGameID.length() - 1);
getline( filestr, sGameID );
if ( sGameID[sGameID.length() - 1] == '\r' )
sGameID.erase( sGameID.length() - 1 );
getline(filestr,sGameTitle);
if (sGameTitle[sGameTitle.length() - 1] == '\r')
sGameTitle.erase(sGameTitle.length() - 1);
getline( filestr, sGameTitle );
if ( sGameTitle[sGameTitle.length() - 1] == '\r' )
sGameTitle.erase( sGameTitle.length() - 1 );
getline(filestr,sCheatName[i]); // skip first line if file uses CRLF
if (!sGameTitle[sGameTitle.length() - 1] == '\r')
filestr.seekg(0,ios_base::beg);
getline( filestr, sCheatName[i] ); // skip first line if file uses CRLF
if ( !sGameTitle[sGameTitle.length() - 1] == '\r' )
filestr.seekg( 0, ios_base::beg );
while (!filestr.eof()) {
getline(filestr,sCheatName[i]); // '\n' delimiter by default
if (sCheatName[i][sCheatName[i].length() - 1] == '\r')
sCheatName[i].erase(sCheatName[i].length() - 1);
while ( !filestr.eof() )
{
getline( filestr, sCheatName[i] ); // '\n' delimiter by default
if ( sCheatName[i][sCheatName[i].length() - 1] == '\r' )
sCheatName[i].erase( sCheatName[i].length() - 1 );
string cheatdata;
bool emptyline = false;
do {
getline(filestr,str);
if (str[str.length() - 1] == '\r')
str.erase(str.length() - 1);
do
{
getline( filestr, str );
if ( str[str.length() - 1] == '\r' )
str.erase( str.length() - 1 );
if (str == "" || str[0] == '\r' || str[0] == '\n') {
if ( str == "" || str[0] == '\r' || str[0] == '\n' )
{
emptyline = true;
break;
}
if (IsCode(str)) {
// remove any garbage (comment) after code
while (str.size() > 17) {
str.erase(str.length() - 1);
}
cheatdata.append(str);
size_t found=cheatdata.find(' ');
cheatdata.replace(found,1,"");
} else {
if ( IsCode( str ) )
{
// remove any garbage (comment) after code
while ( str.size() > 17 )
{
str.erase( str.length() - 1 );
}
cheatdata.append( str );
size_t found = cheatdata.find( ' ' );
cheatdata.replace( found, 1, "" );
}
else
{
//printf("%i",str.size());
sCheatComment[i] = str;
}
if (filestr.eof()) break;
if ( filestr.eof() ) break;
} while (!emptyline);
}
while ( !emptyline );
sCheats[i] = cheatdata;
i++;
if (i == MAXCHEATS) break;
i++;
if ( i == MAXCHEATS ) break;
}
iCntCheats = i;
filestr.close();
return 1;
}
bool GCTCheats::IsCode(const std::string& str) {
if (str[8] == ' ' && str.size() >= 17) {
// accept strings longer than 17 in case there is a comment on the same line as the code
char part1[9];
char part2[9];
snprintf(part1,sizeof(part1),"%c%c%c%c%c%c%c%c",str[0],str[1],str[2],str[3],str[4],str[5],str[6],str[7]);
snprintf(part2,sizeof(part2),"%c%c%c%c%c%c%c%c",str[9],str[10],str[11],str[12],str[13],str[14],str[15],str[16]);
if ((strtok(part1,"0123456789ABCDEFabcdef") == NULL) && (strtok(part2,"0123456789ABCDEFabcdef") == NULL)) {
return true;
}
}
return false;
bool GCTCheats::IsCode( const std::string& str )
{
if ( str[8] == ' ' && str.size() >= 17 )
{
// accept strings longer than 17 in case there is a comment on the same line as the code
char part1[9];
char part2[9];
snprintf( part1, sizeof( part1 ), "%c%c%c%c%c%c%c%c", str[0], str[1], str[2], str[3], str[4], str[5], str[6], str[7] );
snprintf( part2, sizeof( part2 ), "%c%c%c%c%c%c%c%c", str[9], str[10], str[11], str[12], str[13], str[14], str[15], str[16] );
if ( ( strtok( part1, "0123456789ABCDEFabcdef" ) == NULL ) && ( strtok( part2, "0123456789ABCDEFabcdef" ) == NULL ) )
{
return true;
}
}
return false;
}

View File

@ -14,61 +14,62 @@
using namespace std;
//!Handles Ocarina TXT Cheatfiles
class GCTCheats {
private:
string sGameID;
string sGameTitle;
string sCheatName[MAXCHEATS];
string sCheats[MAXCHEATS];
string sCheatComment[MAXCHEATS];
int iCntCheats;
class GCTCheats
{
private:
string sGameID;
string sGameTitle;
string sCheatName[MAXCHEATS];
string sCheats[MAXCHEATS];
string sCheatComment[MAXCHEATS];
int iCntCheats;
public:
//!Constructor
GCTCheats(void);
//!Destructor
~GCTCheats(void);
//!Open txt file with cheats
//!\param filename name of TXT file
//!\return error code
int openTxtfile(const char * filename);
//!Creates GCT file for one cheat
//!\param nr selected Cheat Numbers
//!\param filename name of GCT file
//!\return error code
int createGCT(int nr,const char * filename);
//!Creates GCT file from a buffer
//!\param chtbuffer buffer that holds the cheat data
//!\param filename name of GCT file
//!\return error code
int createGCT(const char * chtbuffer,const char * filename);
//!Creates GCT file
//!\param nr[] array of selected Cheat Numbers
//!\param cnt size of array
//!\param filename name of GCT file
//!\return error code
int createGCT(int nr[],int cnt,const char * filename);
//!Gets Count cheats
//!\return Count cheats
int getCnt();
//!Gets Game Name
//!\return Game Name
string getGameName(void);
//!Gets GameID
//!\return GameID
string getGameID(void);
//!Gets cheat data
//!\return cheat data
string getCheat(int nr);
//!Gets Cheat Name
//!\return Cheat Name
string getCheatName(int nr);
//!Gets Cheat Comment
//!\return Cheat Comment
string getCheatComment(int nr);
//!Check if string is a code
//!\return true/false
bool IsCode(const std::string& s);
public:
//!Constructor
GCTCheats( void );
//!Destructor
~GCTCheats( void );
//!Open txt file with cheats
//!\param filename name of TXT file
//!\return error code
int openTxtfile( const char * filename );
//!Creates GCT file for one cheat
//!\param nr selected Cheat Numbers
//!\param filename name of GCT file
//!\return error code
int createGCT( int nr, const char * filename );
//!Creates GCT file from a buffer
//!\param chtbuffer buffer that holds the cheat data
//!\param filename name of GCT file
//!\return error code
int createGCT( const char * chtbuffer, const char * filename );
//!Creates GCT file
//!\param nr[] array of selected Cheat Numbers
//!\param cnt size of array
//!\param filename name of GCT file
//!\return error code
int createGCT( int nr[], int cnt, const char * filename );
//!Gets Count cheats
//!\return Count cheats
int getCnt();
//!Gets Game Name
//!\return Game Name
string getGameName( void );
//!Gets GameID
//!\return GameID
string getGameID( void );
//!Gets cheat data
//!\return cheat data
string getCheat( int nr );
//!Gets Cheat Name
//!\return Cheat Name
string getCheatName( int nr );
//!Gets Cheat Comment
//!\return Cheat Comment
string getCheatComment( int nr );
//!Check if string is a code
//!\return true/false
bool IsCode( const std::string& s );
};
#endif /* _GCT_H */

View File

@ -44,198 +44,219 @@ sec_t fat_wbfs_sec = 0;
int fs_ntfs_mount = 0;
sec_t fs_ntfs_sec = 0;
int USBDevice_Init() {
int USBDevice_Init()
{
#ifdef DEBUG_FAT
gprintf("\nUSBDevice_Init()");
gprintf( "\nUSBDevice_Init()" );
#endif
//closing all open Files write back the cache and then shutdown em!
fatUnmount("USB:/");
//closing all open Files write back the cache and then shutdown em!
fatUnmount( "USB:/" );
//right now mounts first FAT-partition
//try first mount with cIOS
//try first mount with cIOS
// if (!fatMount("USB", &__io_wiiums, 0, CACHE, SECTORS)) {
// //try now mount with libogc
if (!fatMount("USB", &__io_usbstorage2, 0, CACHE, SECTORS)) {
// //try now mount with libogc
if ( !fatMount( "USB", &__io_usbstorage2, 0, CACHE, SECTORS ) )
{
#ifdef DEBUG_FAT
gprintf(":-1");
gprintf( ":-1" );
#endif
return -1;
}
// }
return -1;
}
// }
fat_usb_mount = 1;
fat_usb_sec = _FAT_startSector;
fat_usb_mount = 1;
fat_usb_sec = _FAT_startSector;
#ifdef DEBUG_FAT
gprintf(":0");
gprintf( ":0" );
#endif
return 0;
return 0;
}
void USBDevice_deInit() {
void USBDevice_deInit()
{
#ifdef DEBUG_FAT
gprintf("\nUSBDevice_deInit()");
gprintf( "\nUSBDevice_deInit()" );
#endif
//closing all open Files write back the cache and then shutdown em!
fatUnmount("USB:/");
fatUnmount( "USB:/" );
fat_usb_mount = 0;
fat_usb_sec = 0;
fat_usb_mount = 0;
fat_usb_sec = 0;
}
int WBFSDevice_Init(u32 sector) {
int WBFSDevice_Init( u32 sector )
{
//closing all open Files write back the cache and then shutdown em!
fatUnmount("WBFS:/");
fatUnmount( "WBFS:/" );
//right now mounts first FAT-partition
//try first mount with cIOS
//try first mount with cIOS
// if (!fatMount("WBFS", &__io_wiiums, 0, CACHE, SECTORS)) {
//try now mount with libogc
if (!fatMount("WBFS", &__io_usbstorage2, 0, CACHE, SECTORS)) {
return -1;
}
// }
//try now mount with libogc
if ( !fatMount( "WBFS", &__io_usbstorage2, 0, CACHE, SECTORS ) )
{
return -1;
}
// }
fat_wbfs_mount = 1;
fat_wbfs_sec = _FAT_startSector;
if (sector && fat_wbfs_sec != sector) {
// This is an error situation...actually, but is ignored in Config loader also
// Should ask Oggzee about it...
}
return 0;
fat_wbfs_mount = 1;
fat_wbfs_sec = _FAT_startSector;
if ( sector && fat_wbfs_sec != sector )
{
// This is an error situation...actually, but is ignored in Config loader also
// Should ask Oggzee about it...
}
return 0;
}
void WBFSDevice_deInit() {
void WBFSDevice_deInit()
{
//closing all open Files write back the cache and then shutdown em!
fatUnmount("WBFS:/");
fatUnmount( "WBFS:/" );
fat_wbfs_mount = 0;
fat_wbfs_sec = 0;
fat_wbfs_mount = 0;
fat_wbfs_sec = 0;
}
int isInserted(const char *path) {
if (!strncmp(path, "USB:", 4))
int isInserted( const char *path )
{
if ( !strncmp( path, "USB:", 4 ) )
return 1;
return __io_sdhc.isInserted() || __io_wiisd.isInserted();
}
int SDCard_Init() {
int SDCard_Init()
{
#ifdef DEBUG_FAT
gprintf("\nSDCard_Init()");
gprintf( "\nSDCard_Init()" );
#endif
//closing all open Files write back the cache and then shutdown em!
fatUnmount("SD:/");
fatUnmount( "SD:/" );
//right now mounts first FAT-partition
if (fatMount("SD", &__io_wiisd, 0, CACHE, SECTORS)) {
fat_sd_mount = MOUNT_SD;
fat_sd_sec = _FAT_startSector;
if ( fatMount( "SD", &__io_wiisd, 0, CACHE, SECTORS ) )
{
fat_sd_mount = MOUNT_SD;
fat_sd_sec = _FAT_startSector;
#ifdef DEBUG_FAT
gprintf(":1");
gprintf( ":1" );
#endif
return 1;
}
else if (fatMount("SD", &__io_sdhc, 0, CACHE, SDHC_SECTOR_SIZE)) {
fat_sd_mount = MOUNT_SDHC;
fat_sd_sec = _FAT_startSector;
return 1;
}
else if ( fatMount( "SD", &__io_sdhc, 0, CACHE, SDHC_SECTOR_SIZE ) )
{
fat_sd_mount = MOUNT_SDHC;
fat_sd_sec = _FAT_startSector;
#ifdef DEBUG_FAT
gprintf(":1");
gprintf( ":1" );
#endif
return 1;
}
return 1;
}
#ifdef DEBUG_FAT
gprintf(":-1");
gprintf( ":-1" );
#endif
return -1;
return -1;
}
void SDCard_deInit() {
void SDCard_deInit()
{
#ifdef DEBUG_FAT
gprintf("\nSDCard_deInit()");
gprintf( "\nSDCard_deInit()" );
#endif
//closing all open Files write back the cache and then shutdown em!
fatUnmount("SD:/");
fatUnmount( "SD:/" );
fat_sd_mount = MOUNT_NONE;
fat_sd_sec = 0;
fat_sd_mount = MOUNT_NONE;
fat_sd_sec = 0;
}
void ntfsInit();
s32 MountNTFS(u32 sector)
s32 MountNTFS( u32 sector )
{
s32 ret;
s32 ret;
if (fs_ntfs_mount) return 0;
//printf("mounting NTFS\n");
//Wpad_WaitButtons();
_FAT_mem_init();
if ( fs_ntfs_mount ) return 0;
//printf("mounting NTFS\n");
//Wpad_WaitButtons();
_FAT_mem_init();
ntfsInit(); // Call ntfs init here, to prevent locale resets
ntfsInit(); // Call ntfs init here, to prevent locale resets
// ntfsInit resets locale settings
// which breaks unicode in console
// so we change it back to C-UTF-8
setlocale(LC_CTYPE, "C-UTF-8");
setlocale(LC_MESSAGES, "C-UTF-8");
// ntfsInit resets locale settings
// which breaks unicode in console
// so we change it back to C-UTF-8
setlocale( LC_CTYPE, "C-UTF-8" );
setlocale( LC_MESSAGES, "C-UTF-8" );
if (wbfsDev == WBFS_DEVICE_USB) {
/* Initialize WBFS interface */
// if (!__io_wiiums.startup()) {
ret = __io_usbstorage2.startup();
if (!ret) {
return -1;
}
// }
/* Mount device */
// if (!ntfsMount("NTFS", &__io_wiiums, sector, CACHE, SECTORS, NTFS_SHOW_HIDDEN_FILES | NTFS_RECOVER)) {
ret = ntfsMount("NTFS", &__io_usbstorage2, sector, CACHE, SECTORS, NTFS_SHOW_HIDDEN_FILES | NTFS_READ_ONLY | NTFS_RECOVER);
if (!ret) {
return -2;
}
// }
} else if (wbfsDev == WBFS_DEVICE_SDHC) {
if (sdhc_mode_sd == 0) {
ret = ntfsMount("NTFS", &__io_sdhc, 0, CACHE, SECTORS, NTFS_SHOW_HIDDEN_FILES | NTFS_READ_ONLY | NTFS_RECOVER);
} else {
ret = ntfsMount("NTFS", &__io_sdhc, 0, CACHE, SECTORS_SD, NTFS_SHOW_HIDDEN_FILES | NTFS_READ_ONLY | NTFS_RECOVER);
}
if (!ret) {
return -5;
}
}
if ( wbfsDev == WBFS_DEVICE_USB )
{
/* Initialize WBFS interface */
// if (!__io_wiiums.startup()) {
ret = __io_usbstorage2.startup();
if ( !ret )
{
return -1;
}
// }
/* Mount device */
// if (!ntfsMount("NTFS", &__io_wiiums, sector, CACHE, SECTORS, NTFS_SHOW_HIDDEN_FILES | NTFS_RECOVER)) {
ret = ntfsMount( "NTFS", &__io_usbstorage2, sector, CACHE, SECTORS, NTFS_SHOW_HIDDEN_FILES | NTFS_READ_ONLY | NTFS_RECOVER );
if ( !ret )
{
return -2;
}
// }
}
else if ( wbfsDev == WBFS_DEVICE_SDHC )
{
if ( sdhc_mode_sd == 0 )
{
ret = ntfsMount( "NTFS", &__io_sdhc, 0, CACHE, SECTORS, NTFS_SHOW_HIDDEN_FILES | NTFS_READ_ONLY | NTFS_RECOVER );
}
else
{
ret = ntfsMount( "NTFS", &__io_sdhc, 0, CACHE, SECTORS_SD, NTFS_SHOW_HIDDEN_FILES | NTFS_READ_ONLY | NTFS_RECOVER );
}
if ( !ret )
{
return -5;
}
}
fs_ntfs_mount = 1;
fs_ntfs_sec = sector; //_FAT_startSector;
fs_ntfs_mount = 1;
fs_ntfs_sec = sector; //_FAT_startSector;
return 0;
return 0;
}
s32 UnmountNTFS(void)
s32 UnmountNTFS( void )
{
/* Unmount device */
ntfsUnmount("NTFS:/", true);
/* Unmount device */
ntfsUnmount( "NTFS:/", true );
fs_ntfs_mount = 0;
fs_ntfs_sec = 0;
fs_ntfs_mount = 0;
fs_ntfs_sec = 0;
return 0;
return 0;
}
void _FAT_mem_init()
{
}
void* _FAT_mem_allocate(size_t size)
void* _FAT_mem_allocate( size_t size )
{
return malloc(size);
return malloc( size );
}
void* _FAT_mem_align(size_t size)
void* _FAT_mem_align( size_t size )
{
return memalign(32, size);
return memalign( 32, size );
}
void _FAT_mem_free(void *mem)
void _FAT_mem_free( void *mem )
{
free(mem);
free( mem );
}

View File

@ -2,33 +2,34 @@
#define _FATMOUNTER_H_
#ifdef __cplusplus
extern "C" {
extern "C"
{
#endif
extern int fat_sd_mount;
extern sec_t fat_sd_sec;
extern int fat_usb_mount;
extern sec_t fat_usb_sec;
extern int fat_wbfs_mount;
extern sec_t fat_wbfs_sec;
extern int fat_sd_mount;
extern sec_t fat_sd_sec;
extern int fat_usb_mount;
extern sec_t fat_usb_sec;
extern int fat_wbfs_mount;
extern sec_t fat_wbfs_sec;
int USBDevice_Init();
void USBDevice_deInit();
int WBFSDevice_Init(u32 sector);
int WBFSDevice_Init( u32 sector );
void WBFSDevice_deInit();
int isInserted(const char *path);
int isInserted( const char *path );
int SDCard_Init();
void SDCard_deInit();
s32 MountNTFS(u32 sector);
s32 UnmountNTFS(void);
s32 MountNTFS( u32 sector );
s32 UnmountNTFS( void );
extern int fat_usb_mount;
extern sec_t fat_usb_sec;
extern int fat_wbfs_mount;
extern sec_t fat_wbfs_sec;
extern int fs_ntfs_mount;
extern sec_t fs_ntfs_sec;
extern int fat_usb_mount;
extern sec_t fat_usb_sec;
extern int fat_wbfs_mount;
extern sec_t fat_wbfs_sec;
extern int fs_ntfs_mount;
extern sec_t fs_ntfs_sec;
#ifdef __cplusplus
}

View File

@ -11,23 +11,23 @@
#include <gccore.h>
extern const u8 font_ttf[];
extern const u32 font_ttf_size;
extern const u8 font_ttf[];
extern const u32 font_ttf_size;
extern const u8 clock_ttf[];
extern const u32 clock_ttf_size;
extern const u8 clock_ttf[];
extern const u32 clock_ttf_size;
extern const u8 closebutton_png[];
extern const u32 closebutton_png_size;
extern const u8 closebutton_png[];
extern const u32 closebutton_png_size;
extern const u8 gxlogo_png[];
extern const u32 gxlogo_png_size;
extern const u8 gxlogo_png[];
extern const u32 gxlogo_png_size;
extern const u8 sdcard_png[];
extern const u32 sdcard_png_size;
extern const u8 sdcard_png[];
extern const u32 sdcard_png_size;
extern const u8 sdcard_over_png[];
extern const u32 sdcard_over_png_size;
extern const u8 sdcard_over_png[];
extern const u32 sdcard_over_png_size;
extern const u8 Wifi_btn_png[];
extern const u32 Wifi_btn_png_size;
@ -35,50 +35,50 @@ extern const u32 Wifi_btn_png_size;
extern const u8 Channel_btn_png[];
extern const u32 Channel_btn_png_size;
extern const u8 wiimote_png[];
extern const u32 wiimote_png_size;
extern const u8 wiimote_png[];
extern const u32 wiimote_png_size;
extern const u8 bg_music_ogg[];
extern const u32 bg_music_ogg_size;
extern const u8 bg_music_ogg[];
extern const u32 bg_music_ogg_size;
extern const u8 credits_music_ogg[];
extern const u32 credits_music_ogg_size;
extern const u8 credits_music_ogg[];
extern const u32 credits_music_ogg_size;
extern const u8 gameinfo1_png[];
extern const u32 gameinfo1_png_size;
extern const u8 gameinfo1_png[];
extern const u32 gameinfo1_png_size;
extern const u8 gameinfo2_png[];
extern const u32 gameinfo2_png_size;
extern const u8 gameinfo2_png[];
extern const u32 gameinfo2_png_size;
extern const u8 gameinfo1a_png[];
extern const u32 gameinfo1a_png_size;
extern const u8 gameinfo1a_png[];
extern const u32 gameinfo1a_png_size;
extern const u8 gameinfo2a_png[];
extern const u32 gameinfo2a_png_size;
extern const u8 gameinfo2a_png[];
extern const u32 gameinfo2a_png_size;
extern const u8 menuin_ogg[];
extern const u32 menuin_ogg_size;
extern const u8 menuin_ogg[];
extern const u32 menuin_ogg_size;
extern const u8 menuout_ogg[];
extern const u32 menuout_ogg_size;
extern const u8 menuout_ogg[];
extern const u32 menuout_ogg_size;
extern const u8 success_ogg[];
extern const u32 success_ogg_size;
extern const u8 success_ogg[];
extern const u32 success_ogg_size;
extern const u8 credits_button_png[];
extern const u32 credits_button_png_size;
extern const u8 credits_button_png[];
extern const u32 credits_button_png_size;
extern const u8 credits_button_over_png[];
extern const u32 credits_button_over_png_size;
extern const u8 credits_button_over_png[];
extern const u32 credits_button_over_png_size;
extern const u8 button_over_pcm[];
extern const u32 button_over_pcm_size;
extern const u8 button_over_pcm[];
extern const u32 button_over_pcm_size;
extern const u8 button_click_pcm[];
extern const u32 button_click_pcm_size;
extern const u8 button_click_pcm[];
extern const u32 button_click_pcm_size;
extern const u8 button_click2_pcm[];
extern const u32 button_click2_pcm_size;
extern const u8 button_click2_pcm[];
extern const u32 button_click2_pcm_size;
extern const u8 tooltip_left_png[];
extern const u32 tooltip_left_png_size;
@ -95,11 +95,11 @@ extern const u32 startgame_arrow_left_png_size;
extern const u8 startgame_arrow_right_png[];
extern const u32 startgame_arrow_right_png_size;
extern const u8 credits_bg_png[];
extern const u32 credits_bg_png_size;
extern const u8 credits_bg_png[];
extern const u32 credits_bg_png_size;
extern const u8 little_star_png[];
extern const u32 little_star_png_size;
extern const u8 little_star_png[];
extern const u32 little_star_png_size;
extern const u8 background_png[];
extern const u32 background_png_size;
@ -116,29 +116,29 @@ extern const u32 settings_background_png_size;
extern const u8 bg_browser_png[];
extern const u32 bg_browser_png_size;
extern const u8 icon_archives_png[];
extern const u32 icon_archives_png_size;
extern const u8 icon_archives_png[];
extern const u32 icon_archives_png_size;
//extern const u8 icon_default_png[];
//extern const u32 icon_default_png_size;
//extern const u8 icon_default_png[];
//extern const u32 icon_default_png_size;
extern const u8 icon_folder_png[];
extern const u32 icon_folder_png_size;
extern const u8 icon_folder_png[];
extern const u32 icon_folder_png_size;
/*
extern const u8 icon_gfx_png[];
extern const u32 icon_gfx_png_size;
extern const u8 icon_gfx_png[];
extern const u32 icon_gfx_png_size;
extern const u8 icon_pls_png[];
extern const u32 icon_pls_png_size;
extern const u8 icon_pls_png[];
extern const u32 icon_pls_png_size;
extern const u8 icon_sfx_png[];
extern const u32 icon_sfx_png_size;
extern const u8 icon_sfx_png[];
extern const u32 icon_sfx_png_size;
extern const u8 icon_txt_png[];
extern const u32 icon_txt_png_size;
extern const u8 icon_txt_png[];
extern const u32 icon_txt_png_size;
extern const u8 icon_xml_png[];
extern const u32 icon_xml_png_size;
extern const u8 icon_xml_png[];
extern const u32 icon_xml_png_size;
*/
extern const u8 bg_browser_selection_png[];
extern const u32 bg_browser_selection_png_size;
@ -170,380 +170,380 @@ extern const u32 button_install_png_size;
extern const u8 button_install_over_png[];
extern const u32 button_install_over_png_size;
extern const u8 dialogue_box_startgame_png[];
extern const u32 dialogue_box_startgame_png_size;
extern const u8 dialogue_box_startgame_png[];
extern const u32 dialogue_box_startgame_png_size;
extern const u8 wdialogue_box_startgame_png[];
extern const u32 wdialogue_box_startgame_png_size;
extern const u8 wdialogue_box_startgame_png[];
extern const u32 wdialogue_box_startgame_png_size;
extern const u8 button_dialogue_box_startgame_png[];
extern const u32 button_dialogue_box_startgame_size;
extern const u8 button_dialogue_box_startgame_png[];
extern const u32 button_dialogue_box_startgame_size;
extern const u8 button_dialogue_box_png[];
extern const u32 button_dialogue_box_size;
extern const u8 button_dialogue_box_png[];
extern const u32 button_dialogue_box_size;
extern const u8 keyboard_textbox_png[];
extern const u32 keyboard_textbox_png_size;
extern const u8 keyboard_textbox_png[];
extern const u32 keyboard_textbox_png_size;
extern const u8 keyboard_key_png[];
extern const u32 keyboard_key_png_size;
extern const u8 keyboard_key_png[];
extern const u32 keyboard_key_png_size;
extern const u8 keyboard_key_over_png[];
extern const u32 keyboard_key_over_png_size;
extern const u8 keyboard_key_over_png[];
extern const u32 keyboard_key_over_png_size;
extern const u8 keyboard_mediumkey_over_png[];
extern const u32 keyboard_mediumkey_over_png_size;
extern const u8 keyboard_mediumkey_over_png[];
extern const u32 keyboard_mediumkey_over_png_size;
extern const u8 keyboard_largekey_over_png[];
extern const u32 keyboard_largekey_over_png_size;
extern const u8 keyboard_largekey_over_png[];
extern const u32 keyboard_largekey_over_png_size;
extern const u8 keyboard_backspace_over_png[];
extern const u32 keyboard_backspace_over_png_size;
extern const u8 keyboard_backspace_over_png[];
extern const u32 keyboard_backspace_over_png_size;
extern const u8 keyboard_clear_over_png[];
extern const u32 keyboard_clear_over_png_size;
extern const u8 keyboard_clear_over_png[];
extern const u32 keyboard_clear_over_png_size;
extern const u8 menu_button_png[];
extern const u32 menu_button_size;
extern const u8 menu_button_png[];
extern const u32 menu_button_size;
extern const u8 menu_button_over_png[];
extern const u32 menu_button_over_size;
extern const u8 menu_button_over_png[];
extern const u32 menu_button_over_size;
extern const u8 settings_button_png[];
extern const u32 settings_button_size;
extern const u8 settings_button_png[];
extern const u32 settings_button_size;
extern const u8 settings_button_over_png[];
extern const u32 settings_button_over_size;
extern const u8 settings_button_over_png[];
extern const u32 settings_button_over_size;
extern const u8 settings_menu_button_png[];
extern const u32 settings_menu_button_size;
extern const u8 settings_menu_button_png[];
extern const u32 settings_menu_button_size;
extern const u8 wiimote_poweroff_png[];
extern const u32 wiimote_poweroff_png_size;
extern const u8 wiimote_poweroff_png[];
extern const u32 wiimote_poweroff_png_size;
extern const u8 dialogue_box_png[];
extern const u32 dialogue_box_png_size;
extern const u8 dialogue_box_png[];
extern const u32 dialogue_box_png_size;
extern const u8 theme_box_png[];
extern const u32 theme_box_png_size;
extern const u8 theme_box_png[];
extern const u32 theme_box_png_size;
extern const u8 wiimote_poweroff_over_png[];
extern const u32 wiimote_poweroff_over_png_size;
extern const u8 wiimote_poweroff_over_png[];
extern const u32 wiimote_poweroff_over_png_size;
extern const u8 bg_options_png[];
extern const u32 bg_options_png_size;
extern const u8 bg_options_png[];
extern const u32 bg_options_png_size;
extern const u8 bg_options_entry_png[];
extern const u32 bg_options_entry_png_size;
extern const u8 bg_options_entry_png[];
extern const u32 bg_options_entry_png_size;
extern const u8 scrollbar_png[];
extern const u32 scrollbar_png_size;
extern const u8 scrollbar_png[];
extern const u32 scrollbar_png_size;
extern const u8 scrollbar_arrowup_png[];
extern const u32 scrollbar_arrowup_png_size;
extern const u8 scrollbar_arrowup_png[];
extern const u32 scrollbar_arrowup_png_size;
extern const u8 scrollbar_arrowup_over_png[];
extern const u32 scrollbar_arrowup_over_png_size;
extern const u8 scrollbar_arrowup_over_png[];
extern const u32 scrollbar_arrowup_over_png_size;
extern const u8 scrollbar_arrowdown_png[];
extern const u32 scrollbar_arrowdown_png_size;
extern const u8 scrollbar_arrowdown_png[];
extern const u32 scrollbar_arrowdown_png_size;
extern const u8 scrollbar_arrowdown_over_png[];
extern const u32 scrollbar_arrowdown_over_png_size;
extern const u8 scrollbar_arrowdown_over_png[];
extern const u32 scrollbar_arrowdown_over_png_size;
extern const u8 scrollbar_box_png[];
extern const u32 scrollbar_box_png_size;
extern const u8 scrollbar_box_png[];
extern const u32 scrollbar_box_png_size;
extern const u8 scrollbar_box_over_png[];
extern const u32 scrollbar_box_over_png_size;
extern const u8 scrollbar_box_over_png[];
extern const u32 scrollbar_box_over_png_size;
extern const u8 progressbar_png[];
extern const u32 progressbar_png_size;
extern const u8 progressbar_png[];
extern const u32 progressbar_png_size;
extern const u8 progressbar_empty_png[];
extern const u32 progressbar_empty_png_size;
extern const u8 progressbar_empty_png[];
extern const u32 progressbar_empty_png_size;
extern const u8 progressbar_outline_png[];
extern const u32 progressbar_outline_png_size;
extern const u8 progressbar_outline_png[];
extern const u32 progressbar_outline_png_size;
extern const u8 player1_point_png[];
extern const u32 player1_point_png_size;
extern const u8 player1_point_png[];
extern const u32 player1_point_png_size;
extern const u8 player2_point_png[];
extern const u32 player2_point_png_size;
extern const u8 player2_point_png[];
extern const u32 player2_point_png_size;
extern const u8 player3_point_png[];
extern const u32 player3_point_png_size;
extern const u8 player3_point_png[];
extern const u32 player3_point_png_size;
extern const u8 player4_point_png[];
extern const u32 player4_point_png_size;
extern const u8 player4_point_png[];
extern const u32 player4_point_png_size;
extern const u8 rplayer1_point_png[];
extern const u32 rplayer1_point_png_size;
extern const u8 rplayer1_point_png[];
extern const u32 rplayer1_point_png_size;
extern const u8 rplayer2_point_png[];
extern const u32 rplayer2_point_png_size;
extern const u8 rplayer2_point_png[];
extern const u32 rplayer2_point_png_size;
extern const u8 rplayer3_point_png[];
extern const u32 rplayer3_point_png_size;
extern const u8 rplayer3_point_png[];
extern const u32 rplayer3_point_png_size;
extern const u8 rplayer4_point_png[];
extern const u32 rplayer4_point_png_size;
extern const u8 rplayer4_point_png[];
extern const u32 rplayer4_point_png_size;
extern const u8 battery_png[];
extern const u32 battery_png_size;
extern const u8 battery_png[];
extern const u32 battery_png_size;
extern const u8 battery_bar_png[];
extern const u32 battery_bar_png_size;
extern const u8 battery_bar_png[];
extern const u32 battery_bar_png_size;
extern const u8 battery_white_png[];
extern const u32 battery_white_png_size;
extern const u8 battery_white_png[];
extern const u32 battery_white_png_size;
extern const u8 battery_bar_white_png[];
extern const u32 battery_bar_white_png_size;
extern const u8 battery_bar_white_png[];
extern const u32 battery_bar_white_png_size;
extern const u8 battery_red_png[];
extern const u32 battery_red_png_size;
extern const u8 battery_red_png[];
extern const u32 battery_red_png_size;
extern const u8 battery_bar_red_png[];
extern const u32 battery_bar_red_png_size;
extern const u8 battery_bar_red_png[];
extern const u32 battery_bar_red_png_size;
extern const u8 arrow_next_png[];
extern const u32 arrow_next_png_size;
extern const u8 arrow_next_png[];
extern const u32 arrow_next_png_size;
extern const u8 arrow_previous_png[];
extern const u32 arrow_previous_png_size;
extern const u8 arrow_previous_png[];
extern const u32 arrow_previous_png_size;
extern const u8 mp3_pause_png[];
extern const u32 mp3_pause_png_size;
extern const u8 mp3_pause_png[];
extern const u32 mp3_pause_png_size;
extern const u8 exit_top_png[];
extern const u32 exit_top_png_size;
extern const u8 exit_top_png[];
extern const u32 exit_top_png_size;
extern const u8 exit_top_over_png[];
extern const u32 exit_top_over_png_size;
extern const u8 exit_top_over_png[];
extern const u32 exit_top_over_png_size;
extern const u8 exit_bottom_png[];
extern const u32 exit_bottom_png_size;
extern const u8 exit_bottom_png[];
extern const u32 exit_bottom_png_size;
extern const u8 exit_bottom_over_png[];
extern const u32 exit_bottom_over_png_size;
extern const u8 exit_bottom_over_png[];
extern const u32 exit_bottom_over_png_size;
extern const u8 exit_button_png[];
extern const u32 exit_button_png_size;
extern const u8 exit_button_png[];
extern const u32 exit_button_png_size;
extern const u8 mp3_stop_png[];
extern const u32 mp3_stop_png_size;
extern const u8 mp3_stop_png[];
extern const u32 mp3_stop_png_size;
extern const u8 favorite_png[];
extern const u32 favorite_png_size;
extern const u8 favorite_png[];
extern const u32 favorite_png_size;
extern const u8 not_favorite_png[];
extern const u32 not_favorite_png_size;
extern const u8 not_favorite_png[];
extern const u32 not_favorite_png_size;
extern const u8 favIcon_png[];
extern const u32 favIcon_png_size;
extern const u8 favIcon_png[];
extern const u32 favIcon_png_size;
extern const u8 searchIcon_png[];
extern const u32 searchIcon_png_size;
extern const u8 searchIcon_png[];
extern const u32 searchIcon_png_size;
extern const u8 abcIcon_png[];
extern const u32 abcIcon_png_size;
extern const u8 abcIcon_png[];
extern const u32 abcIcon_png_size;
extern const u8 rankIcon_png[];
extern const u32 rankIcon_png_size;
extern const u8 rankIcon_png[];
extern const u32 rankIcon_png_size;
extern const u8 playCountIcon_png[];
extern const u32 playCountIcon_png_size;
extern const u8 playCountIcon_png[];
extern const u32 playCountIcon_png_size;
extern const u8 arrangeList_png[];
extern const u32 arrangeList_png_size;
extern const u8 arrangeList_png[];
extern const u32 arrangeList_png_size;
extern const u8 arrangeGrid_png[];
extern const u32 arrangeGrid_png_size;
extern const u8 arrangeGrid_png[];
extern const u32 arrangeGrid_png_size;
extern const u8 arrangeCarousel_png[];
extern const u32 arrangeCarousel_png_size;
extern const u8 arrangeCarousel_png[];
extern const u32 arrangeCarousel_png_size;
extern const u8 settings_title_png[];
extern const u32 settings_title_png_size;
extern const u8 settings_title_png[];
extern const u32 settings_title_png_size;
extern const u8 settings_title_over_png[];
extern const u32 settings_title_over_png_size;
extern const u8 settings_title_over_png[];
extern const u32 settings_title_over_png_size;
extern const u8 pageindicator_png[];
extern const u32 pageindicator_png_size;
extern const u8 pageindicator_png[];
extern const u32 pageindicator_png_size;
extern const u8 Wiimote1_png[];
extern const u32 Wiimote1_png_size;
extern const u8 Wiimote1_png[];
extern const u32 Wiimote1_png_size;
extern const u8 Wiimote2_png[];
extern const u32 Wiimote2_png_size;
extern const u8 Wiimote2_png[];
extern const u32 Wiimote2_png_size;
extern const u8 Wiimote4_png[];
extern const u32 Wiimote4_png_size;
extern const u8 Wiimote4_png[];
extern const u32 Wiimote4_png_size;
extern const u8 wifi1_png[];
extern const u32 wifi1_png_size;
extern const u8 wifi1_png[];
extern const u32 wifi1_png_size;
extern const u8 wifi2_png[];
extern const u32 wifi2png_size;
extern const u8 wifi2_png[];
extern const u32 wifi2png_size;
extern const u8 wifi3_png[];
extern const u32 wifi3_png_size;
extern const u8 wifi3_png[];
extern const u32 wifi3_png_size;
extern const u8 wifi4_png[];
extern const u32 wifi4_png_size;
extern const u8 wifi4_png[];
extern const u32 wifi4_png_size;
//extern const u8 wifi6_png[];
//extern const u32 wifi6_png_size;
//extern const u8 wifi6_png[];
//extern const u32 wifi6_png_size;
extern const u8 wifi8_png[];
extern const u32 wifi8_png_size;
extern const u8 wifi8_png[];
extern const u32 wifi8_png_size;
extern const u8 wifi12_png[];
extern const u32 wifi12_png_size;
extern const u8 wifi12_png[];
extern const u32 wifi12_png_size;
extern const u8 wifi16_png[];
extern const u32 wifi16_png_size;
extern const u8 wifi16_png[];
extern const u32 wifi16_png_size;
extern const u8 wifi32_png[];
extern const u32 wifi32_png_size;
extern const u8 wifi32_png[];
extern const u32 wifi32_png_size;
extern const u8 norating_png[];
extern const u32 norating_png_size;
extern const u8 norating_png[];
extern const u32 norating_png_size;
extern const u8 guitar_png[];
extern const u32 guitar_png_size;
extern const u8 guitarR_png[];
extern const u32 guitarR_png_size;
extern const u8 guitar_png[];
extern const u32 guitar_png_size;
extern const u8 guitarR_png[];
extern const u32 guitarR_png_size;
extern const u8 microphone_png[];
extern const u32 microphone_png_size;
extern const u8 microphoneR_png[];
extern const u32 microphoneR_png_size;
extern const u8 microphone_png[];
extern const u32 microphone_png_size;
extern const u8 microphoneR_png[];
extern const u32 microphoneR_png_size;
extern const u8 gcncontroller_png[];
extern const u32 gcncontroller_png_size;
extern const u8 gcncontrollerR_png[];
extern const u32 gcncontrollerR_png_size;
extern const u8 gcncontroller_png[];
extern const u32 gcncontroller_png_size;
extern const u8 gcncontrollerR_png[];
extern const u32 gcncontrollerR_png_size;
extern const u8 classiccontroller_png[];
extern const u32 classiccontroller_png_size;
extern const u8 classiccontrollerR_png[];
extern const u32 classiccontrollerR_png_size;
extern const u8 classiccontroller_png[];
extern const u32 classiccontroller_png_size;
extern const u8 classiccontrollerR_png[];
extern const u32 classiccontrollerR_png_size;
extern const u8 nunchuk_png[];
extern const u32 nunchuk_png_size;
extern const u8 nunchukR_png[];
extern const u32 nunchukR_png_size;
extern const u8 nunchuk_png[];
extern const u32 nunchuk_png_size;
extern const u8 nunchukR_png[];
extern const u32 nunchukR_png_size;
extern const u8 dancepadR_png[];
extern const u32 dancepadR_size;
extern const u8 dancepad_png[];
extern const u32 dancepad_png_size;
extern const u8 dancepadR_png[];
extern const u32 dancepadR_size;
extern const u8 dancepad_png[];
extern const u32 dancepad_png_size;
extern const u8 balanceboard_png[];
extern const u32 balanceboard_png_size;
extern const u8 balanceboardR_png[];
extern const u32 balanceboardR_png_size;
extern const u8 balanceboard_png[];
extern const u32 balanceboard_png_size;
extern const u8 balanceboardR_png[];
extern const u32 balanceboardR_png_size;
extern const u8 drums_png[];
extern const u32 drums_png_size;
extern const u8 drumsR_png[];
extern const u32 drumsR_png_size;
extern const u8 drums_png[];
extern const u32 drums_png_size;
extern const u8 drumsR_png[];
extern const u32 drumsR_png_size;
extern const u8 motionplus_png[];
extern const u32 motionplus_png_size;
extern const u8 motionplusR_png[];
extern const u32 motionplusR_png_size;
extern const u8 motionplus_png[];
extern const u32 motionplus_png_size;
extern const u8 motionplusR_png[];
extern const u32 motionplusR_png_size;
extern const u8 wheel_png[];
extern const u32 wheel_png_size;
extern const u8 wheelR_png[];
extern const u32 wheelR_png_size;
extern const u8 wheel_png[];
extern const u32 wheel_png_size;
extern const u8 wheelR_png[];
extern const u32 wheelR_png_size;
extern const u8 zapper_png[];
extern const u32 zapper_png_size;
extern const u8 zapperR_png[];
extern const u32 zapperR_png_size;
extern const u8 zapper_png[];
extern const u32 zapper_png_size;
extern const u8 zapperR_png[];
extern const u32 zapperR_png_size;
extern const u8 wiispeak_png[];
extern const u32 wiispeak_png_size;
extern const u8 wiispeakR_png[];
extern const u32 wiispeakR_png_size;
extern const u8 wiispeak_png[];
extern const u32 wiispeak_png_size;
extern const u8 wiispeakR_png[];
extern const u32 wiispeakR_png_size;
extern const u8 nintendods_png[];
extern const u32 nintendods_png_size;
extern const u8 nintendodsR_png[];
extern const u32 nintendodsR_png_size;
extern const u8 nintendods_png[];
extern const u32 nintendods_png_size;
extern const u8 nintendodsR_png[];
extern const u32 nintendodsR_png_size;
/*
extern const u8 vitalitysensor_png[];
extern const u32 vitalitysensor_png_size;
extern const u8 vitalitysensor_png[];
extern const u32 vitalitysensorR_png_size;
extern const u8 vitalitysensor_png[];
extern const u32 vitalitysensor_png_size;
extern const u8 vitalitysensor_png[];
extern const u32 vitalitysensorR_png_size;
*/
extern const u8 esrb_ec_png[];
extern const u32 esrb_ec_png_size;
extern const u8 esrb_ec_png[];
extern const u32 esrb_ec_png_size;
extern const u8 esrb_e_png[];
extern const u32 esrb_e_png_size;
extern const u8 esrb_e_png[];
extern const u32 esrb_e_png_size;
extern const u8 esrb_eten_png[];
extern const u32 esrb_eten_png_size;
extern const u8 esrb_eten_png[];
extern const u32 esrb_eten_png_size;
extern const u8 esrb_t_png[];
extern const u32 esrb_t_png_size;
extern const u8 esrb_t_png[];
extern const u32 esrb_t_png_size;
extern const u8 esrb_m_png[];
extern const u32 esrb_m_png_size;
extern const u8 esrb_m_png[];
extern const u32 esrb_m_png_size;
extern const u8 esrb_ao_png[];
extern const u32 esrb_ao_png_size;
extern const u8 esrb_ao_png[];
extern const u32 esrb_ao_png_size;
extern const u8 cero_a_png[];
extern const u32 cero_a_png_size;
extern const u8 cero_a_png[];
extern const u32 cero_a_png_size;
extern const u8 cero_b_png[];
extern const u32 cero_b_png_size;
extern const u8 cero_b_png[];
extern const u32 cero_b_png_size;
extern const u8 cero_c_png[];
extern const u32 cero_c_png_size;
extern const u8 cero_c_png[];
extern const u32 cero_c_png_size;
extern const u8 cero_d_png[];
extern const u32 cero_d_png_size;
extern const u8 cero_d_png[];
extern const u32 cero_d_png_size;
extern const u8 cero_z_png[];
extern const u32 cero_z_png_size;
extern const u8 cero_z_png[];
extern const u32 cero_z_png_size;
extern const u8 pegi_3_png[];
extern const u32 pegi_3_png_size;
extern const u8 pegi_3_png[];
extern const u32 pegi_3_png_size;
extern const u8 pegi_7_png[];
extern const u32 pegi_7_png_size;
extern const u8 pegi_7_png[];
extern const u32 pegi_7_png_size;
extern const u8 pegi_12_png[];
extern const u32 pegi_12_png_size;
extern const u8 pegi_12_png[];
extern const u32 pegi_12_png_size;
extern const u8 pegi_16_png[];
extern const u32 pegi_16_png_size;
extern const u8 pegi_16_png[];
extern const u32 pegi_16_png_size;
extern const u8 pegi_18_png[];
extern const u32 pegi_18_png_size;
extern const u8 pegi_18_png[];
extern const u32 pegi_18_png_size;
extern const u8 usbport_png[];
extern const u32 usbport_png_size;
extern const u8 usbport_png[];
extern const u32 usbport_png_size;
extern const u8 dvd_png[];
extern const u32 dvd_png_size;
extern const u8 dvd_png[];
extern const u32 dvd_png_size;
extern const u8 new_png[];
extern const u32 new_png_size;
extern const u32 new_png_size;
extern const u8 lock_png[];
extern const u32 lock_png_size;
extern const u8 lock_png[];
extern const u32 lock_png_size;
extern const u8 unlock_png[];
extern const u32 unlock_png_size;
extern const u8 unlock_png[];
extern const u32 unlock_png_size;
#endif

View File

@ -12,67 +12,67 @@ bool textVideoInit = false;
//using the gprintf from crediar because it is smaller than mine
void gprintf( const char *str, ... )
{
if (!(geckoinit))return;
if ( !( geckoinit ) )return;
char astr[4096];
char astr[4096];
va_list ap;
va_start(ap,str);
va_list ap;
va_start( ap, str );
vsprintf( astr, str, ap );
vsprintf( astr, str, ap );
va_end(ap);
va_end( ap );
usb_sendbuffer( 1, astr, strlen(astr) );
//usb_sendbuffer_safe( 1, astr, strlen(astr) );
usb_sendbuffer( 1, astr, strlen( astr ) );
//usb_sendbuffer_safe( 1, astr, strlen(astr) );
}
bool InitGecko()
{
u32 geckoattached = usb_isgeckoalive(EXI_CHANNEL_1);
if (geckoattached)
{
usb_flush(EXI_CHANNEL_1);
CON_EnableGecko( 1, true );
return true;
}
else return false;
u32 geckoattached = usb_isgeckoalive( EXI_CHANNEL_1 );
if ( geckoattached )
{
usb_flush( EXI_CHANNEL_1 );
CON_EnableGecko( 1, true );
return true;
}
else return false;
}
char ascii(char s)
char ascii( char s )
{
if(s < 0x20)
return '.';
if(s > 0x7E)
return '.';
if ( s < 0x20 )
return '.';
if ( s > 0x7E )
return '.';
return s;
}
void hexdump(void *d, int len)
void hexdump( void *d, int len )
{
u8 *data;
int i, off;
data = (u8*)d;
data = ( u8* )d;
gprintf("\n 0 1 2 3 4 5 6 7 8 9 A B C D E F 0123456789ABCDEF");
gprintf("\n==== =============================================== ================\n");
gprintf( "\n 0 1 2 3 4 5 6 7 8 9 A B C D E F 0123456789ABCDEF" );
gprintf( "\n==== =============================================== ================\n" );
for (off=0; off<len; off += 16)
for ( off = 0; off < len; off += 16 )
{
gprintf("%04x ",off);
for(i=0; i<16; i++)
if((i+off)>=len)
gprintf(" ");
else
gprintf("%02x ",data[off+i]);
gprintf( "%04x ", off );
for ( i = 0; i < 16; i++ )
if ( ( i + off ) >= len )
gprintf( " " );
else
gprintf( "%02x ", data[off+i] );
gprintf(" ");
for(i=0; i<16; i++)
if((i+off)>=len)
gprintf(" ");
else
gprintf("%c",ascii(data[off+i]));
gprintf("\n");
gprintf( " " );
for ( i = 0; i < 16; i++ )
if ( ( i + off ) >= len )
gprintf( " " );
else
gprintf( "%c", ascii( data[off+i] ) );
gprintf( "\n" );
}
}

View File

@ -4,20 +4,21 @@
#define _GECKO_H_
#ifdef __cplusplus
extern "C" {
extern "C"
{
#endif
char ascii(char s);
char ascii( char s );
#ifndef NO_DEBUG
//use this just like printf();
void gprintf(const char *str, ...);
bool InitGecko();
void hexdump(void *d, int len);
//use this just like printf();
void gprintf( const char *str, ... );
bool InitGecko();
void hexdump( void *d, int len );
#else
#define gprintf(...)
#define InitGecko() false
#define hexdump( x, y )
#define gprintf(...)
#define InitGecko() false
#define hexdump( x, y )
#endif /* NO_DEBUG */

View File

@ -14,62 +14,62 @@
#include "fatmounter.h"
#include "sys.h"
extern const u8 app_booter_dol[];
extern const u8 app_booter_dol[];
extern const u32 app_booter_dol_size;
static u8 *homebrewbuffer = (u8 *) 0x92000000;
static u8 *homebrewbuffer = ( u8 * ) 0x92000000;
static int homebrewsize = 0;
static std::vector<std::string> Arguments;
void AddBootArgument(const char * argv)
void AddBootArgument( const char * argv )
{
std::string arg(argv);
Arguments.push_back(arg);
std::string arg( argv );
Arguments.push_back( arg );
}
int CopyHomebrewMemory(u8 *temp, u32 pos, u32 len)
int CopyHomebrewMemory( u8 *temp, u32 pos, u32 len )
{
homebrewsize += len;
memcpy((homebrewbuffer)+pos, temp, len);
memcpy( ( homebrewbuffer ) + pos, temp, len );
return 1;
}
void FreeHomebrewBuffer()
{
homebrewbuffer = (u8 *)0x92000000;
homebrewbuffer = ( u8 * )0x92000000;
homebrewsize = 0;
}
static int SetupARGV(struct __argv * args)
static int SetupARGV( struct __argv * args )
{
if(!args)
if ( !args )
return -1;
bzero(args, sizeof(struct __argv));
bzero( args, sizeof( struct __argv ) );
args->argvMagic = ARGV_MAGIC;
u32 stringlength = 1;
/** Append Arguments **/
for(u32 i = 0; i < Arguments.size(); i++)
for ( u32 i = 0; i < Arguments.size(); i++ )
{
stringlength += Arguments[i].size()+1;
stringlength += Arguments[i].size() + 1;
}
args->length = stringlength;
args->commandLine = (char*) malloc(args->length);
if (!args->commandLine)
args->commandLine = ( char* ) malloc( args->length );
if ( !args->commandLine )
return -1;
u32 argc = 0;
u32 position = 0;
/** Append Arguments **/
for(u32 i = 0; i < Arguments.size(); i++)
for ( u32 i = 0; i < Arguments.size(); i++ )
{
strcpy(&args->commandLine[position], Arguments[i].c_str());
position += Arguments[i].size()+1;
strcpy( &args->commandLine[position], Arguments[i].c_str() );
position += Arguments[i].size() + 1;
argc++;
}
@ -86,7 +86,7 @@ static int SetupARGV(struct __argv * args)
int BootHomebrew()
{
if(homebrewsize <= 0)
if ( homebrewsize <= 0 )
Sys_BackToLoader();
SDCard_deInit();
@ -94,43 +94,43 @@ int BootHomebrew()
USBStorage2_Deinit();
struct __argv args;
SetupARGV(&args);
SetupARGV( &args );
u32 cpu_isr;
entrypoint entry = (entrypoint) load_dol(app_booter_dol, &args);
entrypoint entry = ( entrypoint ) load_dol( app_booter_dol, &args );
if (!entry)
if ( !entry )
Sys_BackToLoader();
VIDEO_SetBlack(true);
VIDEO_SetBlack( true );
VIDEO_Flush();
VIDEO_WaitVSync();
SYS_ResetSystem(SYS_SHUTDOWN, 0, 0);
_CPU_ISR_Disable (cpu_isr);
SYS_ResetSystem( SYS_SHUTDOWN, 0, 0 );
_CPU_ISR_Disable ( cpu_isr );
__exception_closeall();
entry();
_CPU_ISR_Restore (cpu_isr);
_CPU_ISR_Restore ( cpu_isr );
return 0;
}
int BootHomebrew(const char * filepath)
int BootHomebrew( const char * filepath )
{
FILE * file = fopen(filepath, "rb");
if(!file)
FILE * file = fopen( filepath, "rb" );
if ( !file )
Sys_BackToLoader();
fseek(file, 0, SEEK_END);
fseek( file, 0, SEEK_END );
int size = ftell(file);
rewind(file);
int size = ftell( file );
rewind( file );
homebrewsize = fread(homebrewbuffer, 1, size, file);
fclose(file);
homebrewsize = fread( homebrewbuffer, 1, size, file );
fclose( file );
AddBootArgument(filepath);
AddBootArgument( filepath );
return BootHomebrew();
}
@ -155,11 +155,11 @@ int BootHomebrew(const char * filepath)
void *innetbuffer = NULL;
static u8 *homebrewbuffer =( u8 * )0x92000000;
static u8 *homebrewbuffer = ( u8 * )0x92000000;
u32 homebrewsize = 0;
static std::vector<std::string> Arguments;
extern const u8 app_booter_dol[];
extern const u8 app_booter_dol[];
int AllocHomebrewMemory( u32 filesize )
{
@ -167,7 +167,7 @@ int AllocHomebrewMemory( u32 filesize )
innetbuffer = malloc( filesize );
if ( !innetbuffer )
return -1;
return -1;
homebrewsize = filesize;
return 1;
@ -182,7 +182,7 @@ void AddBootArgument( const char * argv )
int CopyHomebrewMemory( u8 *temp, u32 pos, u32 len )
{
homebrewsize += len;
memcpy(( homebrewbuffer ) + pos, temp, len );
memcpy( ( homebrewbuffer ) + pos, temp, len );
return 1;
}
@ -194,8 +194,8 @@ void FreeHomebrewBuffer()
if ( innetbuffer )
{
free( innetbuffer );
innetbuffer = NULL;
free( innetbuffer );
innetbuffer = NULL;
}
Arguments.clear();
@ -204,7 +204,7 @@ void FreeHomebrewBuffer()
static int SetupARGV( struct __argv * args )
{
if ( !args )
return -1;
return -1;
bzero( args, sizeof( struct __argv ) );
args->argvMagic = ARGV_MAGIC;
@ -214,14 +214,14 @@ static int SetupARGV( struct __argv * args )
/** Append Arguments **/
for ( u32 i = 0; i < Arguments.size(); i++ )
{
stringlength += Arguments[i].size() + 1;
stringlength += Arguments[i].size() + 1;
}
args->length = stringlength;
args->commandLine = ( char* ) malloc( args->length );
if ( !args->commandLine )
return -1;
return -1;
u32 argc = 0;
u32 position = 0;
@ -229,9 +229,9 @@ static int SetupARGV( struct __argv * args )
/** Append Arguments **/
for ( u32 i = 0; i < Arguments.size(); i++ )
{
strcpy( &args->commandLine[position], Arguments[i].c_str() );
position += Arguments[i].size() + 1;
argc++;
strcpy( &args->commandLine[position], Arguments[i].c_str() );
position += Arguments[i].size() + 1;
argc++;
}
args->argc = argc;
@ -248,19 +248,19 @@ static int SetupARGV( struct __argv * args )
static int RunAppbooter()
{
if ( homebrewsize == 0 )
return -1;
return -1;
struct __argv args;
SetupARGV( &args );
u32 cpu_isr;
entrypoint entry = ( entrypoint ) load_dol(( void* ) app_booter_dol, &args );
entrypoint entry = ( entrypoint ) load_dol( ( void* ) app_booter_dol, &args );
if ( !entry )
{
FreeHomebrewBuffer();
return -1;
FreeHomebrewBuffer();
return -1;
}
u64 currentStub = getStubDest();
@ -268,13 +268,13 @@ static int RunAppbooter()
if ( Set_Stub_Split( 0x00010001, "UNEO" ) < 0 )
{
if ( Set_Stub_Split( 0x00010001, "ULNR" ) < 0 )
{
if ( !currentStub )
currentStub = 0x100000002ULL;
if ( Set_Stub_Split( 0x00010001, "ULNR" ) < 0 )
{
if ( !currentStub )
currentStub = 0x100000002ULL;
Set_Stub( currentStub );
}
Set_Stub( currentStub );
}
}
SDCard_deInit();
@ -301,7 +301,7 @@ int BootHomebrew( char * filepath )
FILE *file = fopen( filepath, "rb" );
if ( !file )
Sys_BackToLoader();
Sys_BackToLoader();
fseek( file, 0, SEEK_END );
filesize = ftell( file );
@ -311,21 +311,21 @@ int BootHomebrew( char * filepath )
if ( fread( buffer, 1, filesize, file ) != filesize )
{
fclose( file );
free( buffer );
SDCard_deInit();
USBDevice_deInit();
Sys_BackToLoader();
fclose( file );
free( buffer );
SDCard_deInit();
USBDevice_deInit();
Sys_BackToLoader();
}
fclose( file );
CopyHomebrewMemory(( u8* ) buffer, 0, filesize );
CopyHomebrewMemory( ( u8* ) buffer, 0, filesize );
if ( buffer )
{
free( buffer );
buffer = NULL;
free( buffer );
buffer = NULL;
}
AddBootArgument( filepath );
@ -338,13 +338,13 @@ int BootHomebrewFromMem()
if ( !innetbuffer )
{
gprintf( "!innetbuffer\n" );
SDCard_deInit();
USBDevice_deInit();
Sys_BackToLoader();
gprintf( "!innetbuffer\n" );
SDCard_deInit();
USBDevice_deInit();
Sys_BackToLoader();
}
CopyHomebrewMemory(( u8* ) innetbuffer, 0, homebrewsize );
CopyHomebrewMemory( ( u8* ) innetbuffer, 0, homebrewsize );
free( innetbuffer );
return RunAppbooter();

View File

@ -3,11 +3,11 @@
//int BootHomebrew();
int BootHomebrewFromMem();
int BootHomebrew( char * filepath);
int CopyHomebrewMemory(u8 *temp, u32 pos, u32 len);
void AddBootArgument(const char * arg);
int BootHomebrew( char * filepath );
int CopyHomebrewMemory( u8 *temp, u32 pos, u32 len );
void AddBootArgument( const char * arg );
void FreeHomebrewBuffer();
int LoadHomebrew(const char * filepath);
int LoadHomebrew( const char * filepath );
int AllocHomebrewMemory( u32 filesize );
extern void *innetbuffer;
extern u32 homebrewsize;

File diff suppressed because it is too large Load Diff

View File

@ -10,7 +10,7 @@
#ifndef _HOMEBREWBROWSE_H_
#define _HOMEBREWBROWSE_H_
int roundup(float number);
int roundup( float number );
int MenuHomebrewBrowse();
#endif

View File

@ -9,108 +9,128 @@
#include "HomebrewFiles.h"
HomebrewFiles::HomebrewFiles(const char * path) {
HomebrewFiles::HomebrewFiles( const char * path )
{
filecount = 0;
FileInfo = (FileInfos *) malloc(sizeof(FileInfos));
if (!FileInfo) {
FileInfo = ( FileInfos * ) malloc( sizeof( FileInfos ) );
if ( !FileInfo )
{
return;
}
memset(&FileInfo[filecount], 0, sizeof(FileInfos));
memset( &FileInfo[filecount], 0, sizeof( FileInfos ) );
this->LoadPath(path);
this->LoadPath( path );
this->SortList();
}
HomebrewFiles::~HomebrewFiles() {
if (FileInfo) {
free(FileInfo);
HomebrewFiles::~HomebrewFiles()
{
if ( FileInfo )
{
free( FileInfo );
FileInfo = NULL;
}
}
bool HomebrewFiles::LoadPath(const char * folderpath) {
bool HomebrewFiles::LoadPath( const char * folderpath )
{
struct stat st;
DIR_ITER *dir = NULL;
char filename[1024];
dir = diropen(folderpath);
if (dir == NULL) {
dir = diropen( folderpath );
if ( dir == NULL )
{
return false;
}
while (dirnext(dir,filename,&st) == 0) {
if ((st.st_mode & S_IFDIR) != 0) {
if (strcmp(filename,".") != 0 && strcmp(filename,"..") != 0) {
while ( dirnext( dir, filename, &st ) == 0 )
{
if ( ( st.st_mode & S_IFDIR ) != 0 )
{
if ( strcmp( filename, "." ) != 0 && strcmp( filename, ".." ) != 0 )
{
char currentname[200];
snprintf(currentname, sizeof(currentname), "%s%s/", folderpath, filename);
this->LoadPath(currentname);
snprintf( currentname, sizeof( currentname ), "%s%s/", folderpath, filename );
this->LoadPath( currentname );
}
} else {
}
else
{
char temp[5];
for (int i = 0; i < 5; i++) {
temp[i] = filename[strlen(filename)-4+i];
for ( int i = 0; i < 5; i++ )
{
temp[i] = filename[strlen( filename )-4+i];
}
if ((strncasecmp(temp, ".dol", 4) == 0 || strncasecmp(temp, ".elf", 4) == 0)
&& filecount < MAXHOMEBREWS && filename[0]!='.') {
if ( ( strncasecmp( temp, ".dol", 4 ) == 0 || strncasecmp( temp, ".elf", 4 ) == 0 )
&& filecount < MAXHOMEBREWS && filename[0] != '.' )
{
FileInfo = (FileInfos *) realloc(FileInfo, (filecount+1)*sizeof(FileInfos));
FileInfo = ( FileInfos * ) realloc( FileInfo, ( filecount + 1 ) * sizeof( FileInfos ) );
if (!FileInfo) {
free(FileInfo);
if ( !FileInfo )
{
free( FileInfo );
FileInfo = NULL;
filecount = 0;
dirclose(dir);
dirclose( dir );
return false;
}
memset(&(FileInfo[filecount]), 0, sizeof(FileInfo));
memset( &( FileInfo[filecount] ), 0, sizeof( FileInfo ) );
strlcpy(FileInfo[filecount].FilePath, folderpath, sizeof(FileInfo[filecount].FilePath));
strlcpy(FileInfo[filecount].FileName, filename, sizeof(FileInfo[filecount].FileName));
strlcpy( FileInfo[filecount].FilePath, folderpath, sizeof( FileInfo[filecount].FilePath ) );
strlcpy( FileInfo[filecount].FileName, filename, sizeof( FileInfo[filecount].FileName ) );
FileInfo[filecount].FileSize = st.st_size;
filecount++;
}
}
}
dirclose(dir);
dirclose( dir );
return true;
}
char * HomebrewFiles::GetFilename(int ind) {
if (ind > filecount)
char * HomebrewFiles::GetFilename( int ind )
{
if ( ind > filecount )
return NULL;
else
return FileInfo[ind].FileName;
}
char * HomebrewFiles::GetFilepath(int ind) {
if (ind > filecount)
char * HomebrewFiles::GetFilepath( int ind )
{
if ( ind > filecount )
return NULL;
else
return FileInfo[ind].FilePath;
}
unsigned int HomebrewFiles::GetFilesize(int ind) {
if (ind > filecount || !filecount || !FileInfo)
unsigned int HomebrewFiles::GetFilesize( int ind )
{
if ( ind > filecount || !filecount || !FileInfo )
return NULL;
else
return FileInfo[ind].FileSize;
}
int HomebrewFiles::GetFilecount() {
int HomebrewFiles::GetFilecount()
{
return filecount;
}
static int ListCompare(const void *a, const void *b) {
FileInfos *ab = (FileInfos*) a;
FileInfos *bb = (FileInfos*) b;
static int ListCompare( const void *a, const void *b )
{
FileInfos *ab = ( FileInfos* ) a;
FileInfos *bb = ( FileInfos* ) b;
return stricmp((char *) ab->FilePath, (char *) bb->FilePath);
return stricmp( ( char * ) ab->FilePath, ( char * ) bb->FilePath );
}
void HomebrewFiles::SortList() {
qsort(FileInfo, filecount, sizeof(FileInfos), ListCompare);
void HomebrewFiles::SortList()
{
qsort( FileInfo, filecount, sizeof( FileInfos ), ListCompare );
}

View File

@ -7,38 +7,40 @@
#define MAXHOMEBREWS 500
typedef struct {
typedef struct
{
char FileName[100];
char FilePath[150];
unsigned int FileSize;
} FileInfos;
class HomebrewFiles {
public:
//!Constructor
//!\param path Path where to check for homebrew files
HomebrewFiles(const char * path);
//!Destructor
~HomebrewFiles();
//! Load the dol/elf list of a path
//!\param path Path where to check for homebrew files
bool LoadPath(const char * path);
//! Get the a filename of the list
//!\param list index
char * GetFilename(int index);
//! Get the a filepath of the list
//!\param list index
char * GetFilepath(int index);
//! Get the a filesize of the list
//!\param list index
unsigned int GetFilesize(int index);
//! Get the filecount of the whole list
int GetFilecount();
//! Sort list by filepath
void SortList();
protected:
int filecount;
FileInfos *FileInfo;
class HomebrewFiles
{
public:
//!Constructor
//!\param path Path where to check for homebrew files
HomebrewFiles( const char * path );
//!Destructor
~HomebrewFiles();
//! Load the dol/elf list of a path
//!\param path Path where to check for homebrew files
bool LoadPath( const char * path );
//! Get the a filename of the list
//!\param list index
char * GetFilename( int index );
//! Get the a filepath of the list
//!\param list index
char * GetFilepath( int index );
//! Get the a filesize of the list
//!\param list index
unsigned int GetFilesize( int index );
//! Get the filecount of the whole list
int GetFilecount();
//! Sort list by filepath
void SortList();
protected:
int filecount;
FileInfos *FileInfo;
};
#endif

View File

@ -11,58 +11,58 @@
#define ENTRIE_SIZE 8192
int HomebrewXML::LoadHomebrewXMLData(const char* filename)
int HomebrewXML::LoadHomebrewXMLData( const char* filename )
{
mxml_node_t *nodedataHB = NULL;
mxml_node_t *nodetreeHB = NULL;
/* Load XML file */
FILE *filexml;
filexml = fopen(filename, "rb");
if (!filexml)
filexml = fopen( filename, "rb" );
if ( !filexml )
return -1;
nodetreeHB = mxmlLoadFile(NULL, filexml, MXML_OPAQUE_CALLBACK);
fclose(filexml);
nodetreeHB = mxmlLoadFile( NULL, filexml, MXML_OPAQUE_CALLBACK );
fclose( filexml );
if (nodetreeHB == NULL)
if ( nodetreeHB == NULL )
return -2;
nodedataHB = mxmlFindElement(nodetreeHB, nodetreeHB, "app", NULL, NULL, MXML_DESCEND);
if (nodedataHB == NULL)
nodedataHB = mxmlFindElement( nodetreeHB, nodetreeHB, "app", NULL, NULL, MXML_DESCEND );
if ( nodedataHB == NULL )
return -5;
char * Entrie = new char[ENTRIE_SIZE];
GetTextFromNode(nodedataHB, nodedataHB, (char*) "name", NULL, NULL, MXML_DESCEND, Entrie, ENTRIE_SIZE);
GetTextFromNode( nodedataHB, nodedataHB, ( char* ) "name", NULL, NULL, MXML_DESCEND, Entrie, ENTRIE_SIZE );
Name = Entrie;
GetTextFromNode(nodedataHB, nodedataHB, (char*) "coder", NULL, NULL, MXML_DESCEND, Entrie, ENTRIE_SIZE);
GetTextFromNode( nodedataHB, nodedataHB, ( char* ) "coder", NULL, NULL, MXML_DESCEND, Entrie, ENTRIE_SIZE );
Coder = Entrie;
GetTextFromNode(nodedataHB, nodedataHB, (char*) "version", NULL, NULL, MXML_DESCEND, Entrie, ENTRIE_SIZE);
GetTextFromNode( nodedataHB, nodedataHB, ( char* ) "version", NULL, NULL, MXML_DESCEND, Entrie, ENTRIE_SIZE );
Version = Entrie;
GetTextFromNode(nodedataHB, nodedataHB, (char*) "short_description", NULL, NULL, MXML_DESCEND, Entrie, ENTRIE_SIZE);
GetTextFromNode( nodedataHB, nodedataHB, ( char* ) "short_description", NULL, NULL, MXML_DESCEND, Entrie, ENTRIE_SIZE );
ShortDescription = Entrie;
GetTextFromNode(nodedataHB, nodedataHB, (char*) "long_description", NULL, NULL, MXML_DESCEND, Entrie, ENTRIE_SIZE);
GetTextFromNode( nodedataHB, nodedataHB, ( char* ) "long_description", NULL, NULL, MXML_DESCEND, Entrie, ENTRIE_SIZE );
LongDescription = Entrie;
GetTextFromNode(nodedataHB, nodedataHB, (char*) "release_date", NULL, NULL, MXML_DESCEND, Entrie, ENTRIE_SIZE);
GetTextFromNode( nodedataHB, nodedataHB, ( char* ) "release_date", NULL, NULL, MXML_DESCEND, Entrie, ENTRIE_SIZE );
int len = (strlen(Entrie)-6); //length of the date string without the 200000 at the end
if (len == 8)
snprintf(Entrie, ENTRIE_SIZE, "%c%c/%c%c/%c%c%c%c", Entrie[4],Entrie[5],Entrie[6],Entrie[7],Entrie[0],Entrie[1],Entrie[2],Entrie[3]);
else if (len == 6)
snprintf(Entrie, ENTRIE_SIZE, "%c%c/%c%c%c%c", Entrie[4],Entrie[5],Entrie[0],Entrie[1],Entrie[2],Entrie[3]);
int len = ( strlen( Entrie ) - 6 ); //length of the date string without the 200000 at the end
if ( len == 8 )
snprintf( Entrie, ENTRIE_SIZE, "%c%c/%c%c/%c%c%c%c", Entrie[4], Entrie[5], Entrie[6], Entrie[7], Entrie[0], Entrie[1], Entrie[2], Entrie[3] );
else if ( len == 6 )
snprintf( Entrie, ENTRIE_SIZE, "%c%c/%c%c%c%c", Entrie[4], Entrie[5], Entrie[0], Entrie[1], Entrie[2], Entrie[3] );
else
snprintf(Entrie, ENTRIE_SIZE, "%s", Entrie);
snprintf( Entrie, ENTRIE_SIZE, "%s", Entrie );
Releasedate = Entrie;
free(nodedataHB);
free(nodetreeHB);
free( nodedataHB );
free( nodetreeHB );
delete [] Entrie;

View File

@ -16,7 +16,7 @@ class HomebrewXML
//!Destructor
~HomebrewXML() { };
//!\param filename Filepath of the XML file
int LoadHomebrewXMLData(const char* filename);
int LoadHomebrewXMLData( const char* filename );
//! Get name
const char * GetName() { return Name.c_str(); };
//! Get coder
@ -30,7 +30,7 @@ class HomebrewXML
//! Get longdescription
const char * GetLongDescription() { return LongDescription.c_str(); };
//! Set Name
void SetName(char * newName) { Name = newName; };
void SetName( char * newName ) { Name = newName; };
protected:
std::string Name;
std::string Coder;

View File

@ -8,7 +8,8 @@
#include "dolloader.h"
typedef struct _dolheader {
typedef struct _dolheader
{
u32 text_pos[7];
u32 data_pos[11];
u32 text_start[7];
@ -20,31 +21,36 @@ typedef struct _dolheader {
u32 entry_point;
} dolheader;
u32 load_dol(const void *dolstart, struct __argv *argv) {
u32 load_dol( const void *dolstart, struct __argv *argv )
{
u32 i;
dolheader *dolfile;
if (dolstart) {
dolfile = (dolheader *) dolstart;
for (i = 0; i < 7; i++) {
if ((!dolfile->text_size[i]) || (dolfile->text_start[i] < 0x100)) continue;
ICInvalidateRange ((void *) dolfile->text_start[i],dolfile->text_size[i]);
memcpy((void *) dolfile->text_start[i],dolstart+dolfile->text_pos[i],dolfile->text_size[i]);
if ( dolstart )
{
dolfile = ( dolheader * ) dolstart;
for ( i = 0; i < 7; i++ )
{
if ( ( !dolfile->text_size[i] ) || ( dolfile->text_start[i] < 0x100 ) ) continue;
ICInvalidateRange ( ( void * ) dolfile->text_start[i], dolfile->text_size[i] );
memcpy( ( void * ) dolfile->text_start[i], dolstart + dolfile->text_pos[i], dolfile->text_size[i] );
}
for (i = 0; i < 11; i++) {
if ((!dolfile->data_size[i]) || (dolfile->data_start[i] < 0x100)) continue;
memcpy((void *) dolfile->data_start[i],dolstart+dolfile->data_pos[i],dolfile->data_size[i]);
DCFlushRangeNoSync ((void *) dolfile->data_start[i],dolfile->data_size[i]);
for ( i = 0; i < 11; i++ )
{
if ( ( !dolfile->data_size[i] ) || ( dolfile->data_start[i] < 0x100 ) ) continue;
memcpy( ( void * ) dolfile->data_start[i], dolstart + dolfile->data_pos[i], dolfile->data_size[i] );
DCFlushRangeNoSync ( ( void * ) dolfile->data_start[i], dolfile->data_size[i] );
}
memset ((void *) dolfile->bss_start, 0, dolfile->bss_size);
DCFlushRange((void *) dolfile->bss_start, dolfile->bss_size);
memset ( ( void * ) dolfile->bss_start, 0, dolfile->bss_size );
DCFlushRange( ( void * ) dolfile->bss_start, dolfile->bss_size );
if (argv && argv->argvMagic == ARGV_MAGIC) {
void *new_argv = (void *)(dolfile->entry_point + 8);
memcpy(new_argv, argv, sizeof(*argv));
DCFlushRange(new_argv, sizeof(*argv));
if ( argv && argv->argvMagic == ARGV_MAGIC )
{
void *new_argv = ( void * )( dolfile->entry_point + 8 );
memcpy( new_argv, argv, sizeof( *argv ) );
DCFlushRange( new_argv, sizeof( *argv ) );
}
return dolfile->entry_point;

View File

@ -2,13 +2,14 @@
#define _DOLLOADER_H_
#ifdef __cplusplus
extern "C" {
extern "C"
{
#endif
extern void __exception_closeall();
typedef void (*entrypoint) (void);
extern void __exception_closeall();
typedef void ( *entrypoint ) ( void );
u32 load_dol(const void *dolstart, struct __argv *argv);
u32 load_dol( const void *dolstart, struct __argv *argv );
#ifdef __cplusplus

View File

@ -20,9 +20,9 @@
#include "input.h"
#include "libwiigui/gui.h"
int rumbleRequest[4] = {0,0,0,0};
int rumbleRequest[4] = {0, 0, 0, 0};
GuiTrigger userInput[4];
static int rumbleCount[4] = {0,0,0,0};
static int rumbleCount[4] = {0, 0, 0, 0};
/****************************************************************************
* UpdatePads
@ -34,22 +34,22 @@ void UpdatePads()
WPAD_ScanPads();
PAD_ScanPads();
for (int i=3; i >= 0; i--)
for ( int i = 3; i >= 0; i-- )
{
memcpy(&userInput[i].wpad, WPAD_Data(i), sizeof(WPADData));
memcpy( &userInput[i].wpad, WPAD_Data( i ), sizeof( WPADData ) );
userInput[i].chan = i;
userInput[i].pad.btns_d = PAD_ButtonsDown(i);
userInput[i].pad.btns_u = PAD_ButtonsUp(i);
userInput[i].pad.btns_h = PAD_ButtonsHeld(i);
userInput[i].pad.stickX = PAD_StickX(i);
userInput[i].pad.stickY = PAD_StickY(i);
userInput[i].pad.substickX = PAD_SubStickX(i);
userInput[i].pad.substickY = PAD_SubStickY(i);
userInput[i].pad.triggerL = PAD_TriggerL(i);
userInput[i].pad.triggerR = PAD_TriggerR(i);
userInput[i].pad.btns_d = PAD_ButtonsDown( i );
userInput[i].pad.btns_u = PAD_ButtonsUp( i );
userInput[i].pad.btns_h = PAD_ButtonsHeld( i );
userInput[i].pad.stickX = PAD_StickX( i );
userInput[i].pad.stickY = PAD_StickY( i );
userInput[i].pad.substickX = PAD_SubStickX( i );
userInput[i].pad.substickY = PAD_SubStickY( i );
userInput[i].pad.triggerL = PAD_TriggerL( i );
userInput[i].pad.triggerR = PAD_TriggerR( i );
if(Settings.rumble == RumbleOn)
DoRumble(i);
if ( Settings.rumble == RumbleOn )
DoRumble( i );
}
}
@ -60,26 +60,28 @@ void UpdatePads()
***************************************************************************/
void SetupPads()
{
PAD_Init();
WPAD_Init();
PAD_Init();
WPAD_Init();
// read wiimote accelerometer and IR data
WPAD_SetDataFormat(WPAD_CHAN_ALL,WPAD_FMT_BTNS_ACC_IR);
WPAD_SetVRes(WPAD_CHAN_ALL, screenwidth, screenheight);
// read wiimote accelerometer and IR data
WPAD_SetDataFormat( WPAD_CHAN_ALL, WPAD_FMT_BTNS_ACC_IR );
WPAD_SetVRes( WPAD_CHAN_ALL, screenwidth, screenheight );
for(int i=0; i < 4; i++)
{
userInput[i].chan = i;
}
for ( int i = 0; i < 4; i++ )
{
userInput[i].chan = i;
}
}
/****************************************************************************
* ShutoffRumble
***************************************************************************/
void ShutoffRumble() {
for (int i=0;i<4;i++) {
WPAD_Rumble(i, 0);
void ShutoffRumble()
{
for ( int i = 0; i < 4; i++ )
{
WPAD_Rumble( i, 0 );
rumbleCount[i] = 0;
}
}
@ -88,17 +90,23 @@ void ShutoffRumble() {
* DoRumble
***************************************************************************/
void DoRumble(int i) {
if (rumbleRequest[i] && rumbleCount[i] < 3) {
WPAD_Rumble(i, 1); // rumble on
void DoRumble( int i )
{
if ( rumbleRequest[i] && rumbleCount[i] < 3 )
{
WPAD_Rumble( i, 1 ); // rumble on
rumbleCount[i]++;
} else if (rumbleRequest[i]) {
}
else if ( rumbleRequest[i] )
{
rumbleCount[i] = 20;
rumbleRequest[i] = 0;
} else {
if (rumbleCount[i])
}
else
{
if ( rumbleCount[i] )
rumbleCount[i]--;
WPAD_Rumble(i, 0); // rumble off
WPAD_Rumble( i, 0 ); // rumble off
}
}
@ -108,43 +116,49 @@ void DoRumble(int i) {
* Get X/Y value from Wii Joystick (classic, nunchuk) input
***************************************************************************/
s8 WPAD_Stick(u8 chan, u8 right, int axis) {
s8 WPAD_Stick( u8 chan, u8 right, int axis )
{
float mag = 0.0;
float ang = 0.0;
WPADData *data = WPAD_Data(chan);
WPADData *data = WPAD_Data( chan );
switch (data->exp.type) {
case WPAD_EXP_NUNCHUK:
case WPAD_EXP_GUITARHERO3:
if (right == 0) {
mag = data->exp.nunchuk.js.mag;
ang = data->exp.nunchuk.js.ang;
}
break;
switch ( data->exp.type )
{
case WPAD_EXP_NUNCHUK:
case WPAD_EXP_GUITARHERO3:
if ( right == 0 )
{
mag = data->exp.nunchuk.js.mag;
ang = data->exp.nunchuk.js.ang;
}
break;
case WPAD_EXP_CLASSIC:
if (right == 0) {
mag = data->exp.classic.ljs.mag;
ang = data->exp.classic.ljs.ang;
} else {
mag = data->exp.classic.rjs.mag;
ang = data->exp.classic.rjs.ang;
}
break;
case WPAD_EXP_CLASSIC:
if ( right == 0 )
{
mag = data->exp.classic.ljs.mag;
ang = data->exp.classic.ljs.ang;
}
else
{
mag = data->exp.classic.rjs.mag;
ang = data->exp.classic.rjs.ang;
}
break;
default:
break;
default:
break;
}
/* calculate x/y value (angle need to be converted into radian) */
if (mag > 1.0) mag = 1.0;
else if (mag < -1.0) mag = -1.0;
if ( mag > 1.0 ) mag = 1.0;
else if ( mag < -1.0 ) mag = -1.0;
double val;
if (axis == 0) // x-axis
val = mag * sin((PI * ang)/180.0f);
if ( axis == 0 ) // x-axis
val = mag * sin( ( PI * ang ) / 180.0f );
else // y-axis
val = mag * cos((PI * ang)/180.0f);
val = mag * cos( ( PI * ang ) / 180.0f );
return (s8)(val * 128.0f);
return ( s8 )( val * 128.0f );
}

View File

@ -12,14 +12,14 @@
#include <gccore.h>
#include <wiiuse/wpad.h>
#define PI 3.14159265f
#define PADCAL 50
#define PI 3.14159265f
#define PADCAL 50
extern int rumbleRequest[4];
void SetupPads();
void UpdatePads();
void ShutoffRumble();
void DoRumble(int i);
void DoRumble( int i );
#endif

View File

@ -13,46 +13,53 @@
#include "network/networkops.h"
#include "network/http.h"
int updateLanguageFiles() {
int updateLanguageFiles()
{
char languageFiles[50][MAXLANGUAGEFILES];
//get all the files in the language path
int countfiles = GetAllDirFiles(Settings.languagefiles_path);
int countfiles = GetAllDirFiles( Settings.languagefiles_path );
//give up now if we didn't find any
if (!countfiles) return -2;
if ( !countfiles ) return -2;
//now from the files we got, get only the .lang files
for (int cnt = 0; cnt < countfiles; cnt++) {
for ( int cnt = 0; cnt < countfiles; cnt++ )
{
char filename[64];
strlcpy(filename, GetFileName(cnt),sizeof(filename));
if (strcasestr(filename,".lang")) {
strcpy(languageFiles[cnt],filename);
strlcpy( filename, GetFileName( cnt ), sizeof( filename ) );
if ( strcasestr( filename, ".lang" ) )
{
strcpy( languageFiles[cnt], filename );
}
}
subfoldercreate(Settings.languagefiles_path);
subfoldercreate( Settings.languagefiles_path );
//we assume that the network will already be init by another function
// ( that has gui eletents in it because this one doesn't)
int done = 0,j = 0;
if (IsNetworkInit()) {
int done = 0, j = 0;
if ( IsNetworkInit() )
{
//build the URL, save path, and download each file and save it
while (j<countfiles) {
while ( j < countfiles )
{
char savepath[150];
char codeurl[200];
snprintf(codeurl, sizeof(codeurl), "http://usbloader-gui.googlecode.com/svn/trunk/Languages/%s",languageFiles[j]);
snprintf(savepath, sizeof(savepath), "%s%s",Settings.languagefiles_path,languageFiles[j]);
snprintf( codeurl, sizeof( codeurl ), "http://usbloader-gui.googlecode.com/svn/trunk/Languages/%s", languageFiles[j] );
snprintf( savepath, sizeof( savepath ), "%s%s", Settings.languagefiles_path, languageFiles[j] );
struct block file = downloadfile(codeurl);
struct block file = downloadfile( codeurl );
if (file.data != NULL) {
if ( file.data != NULL )
{
FILE * pfile;
pfile = fopen(savepath, "wb");
if(pfile != NULL) {
fwrite(file.data,1,file.size,pfile);
fclose(pfile);
free(file.data);
pfile = fopen( savepath, "wb" );
if ( pfile != NULL )
{
fwrite( file.data, 1, file.size, pfile );
fclose( pfile );
free( file.data );
done++;
}
}

View File

@ -4,12 +4,13 @@
#include <gctypes.h>
#include "gettext.h"
typedef struct _MSG {
typedef struct _MSG
{
u32 id;
char* msgstr;
struct _MSG *next;
} MSG;
static MSG *baseMSG=0;
static MSG *baseMSG = 0;
#define HASHWORDBITS 32
@ -18,18 +19,21 @@ static MSG *baseMSG=0;
[see Aho/Sethi/Ullman, COMPILERS: Principles, Techniques and Tools,
1986, 1987 Bell Telephone Laboratories, Inc.] */
static inline u32
hash_string (const char *str_param) {
hash_string ( const char *str_param )
{
u32 hval, g;
const char *str = str_param;
/* Compute the hash value for the given string. */
hval = 0;
while (*str != '\0') {
while ( *str != '\0' )
{
hval <<= 4;
hval += (u8) *str++;
g = hval & ((u32) 0xf << (HASHWORDBITS - 4));
if (g != 0) {
hval ^= g >> (HASHWORDBITS - 8);
hval += ( u8 ) * str++;
g = hval & ( ( u32 ) 0xf << ( HASHWORDBITS - 4 ) );
if ( g != 0 )
{
hval ^= g >> ( HASHWORDBITS - 8 );
hval ^= g;
}
}
@ -38,88 +42,95 @@ hash_string (const char *str_param) {
/* Expand some escape sequences found in the argument string. */
static char *
expand_escape (const char *str) {
expand_escape ( const char *str )
{
char *retval, *rp;
const char *cp = str;
retval = (char *) malloc (strlen (str)+1);
if (retval==NULL) return NULL;
retval = ( char * ) malloc ( strlen ( str ) + 1 );
if ( retval == NULL ) return NULL;
rp = retval;
while (cp[0] != '\0' && cp[0] != '\\')
while ( cp[0] != '\0' && cp[0] != '\\' )
*rp++ = *cp++;
if (cp[0] == '\0')
if ( cp[0] == '\0' )
goto terminate;
do {
do
{
/* Here cp[0] == '\\'. */
switch (*++cp) {
case '\"': /* " */
*rp++ = '\"';
++cp;
break;
case 'a': /* alert */
*rp++ = '\a';
++cp;
break;
case 'b': /* backspace */
*rp++ = '\b';
++cp;
break;
case 'f': /* form feed */
*rp++ = '\f';
++cp;
break;
case 'n': /* new line */
*rp++ = '\n';
++cp;
break;
case 'r': /* carriage return */
*rp++ = '\r';
++cp;
break;
case 't': /* horizontal tab */
*rp++ = '\t';
++cp;
break;
case 'v': /* vertical tab */
*rp++ = '\v';
++cp;
break;
case '\\':
*rp = '\\';
++cp;
break;
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7': {
int ch = *cp++ - '0';
switch ( *++cp )
{
case '\"': /* " */
*rp++ = '\"';
++cp;
break;
case 'a': /* alert */
*rp++ = '\a';
++cp;
break;
case 'b': /* backspace */
*rp++ = '\b';
++cp;
break;
case 'f': /* form feed */
*rp++ = '\f';
++cp;
break;
case 'n': /* new line */
*rp++ = '\n';
++cp;
break;
case 'r': /* carriage return */
*rp++ = '\r';
++cp;
break;
case 't': /* horizontal tab */
*rp++ = '\t';
++cp;
break;
case 'v': /* vertical tab */
*rp++ = '\v';
++cp;
break;
case '\\':
*rp = '\\';
++cp;
break;
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
{
int ch = *cp++ - '0';
if (*cp >= '0' && *cp <= '7') {
ch *= 8;
ch += *cp++ - '0';
if (*cp >= '0' && *cp <= '7') {
if ( *cp >= '0' && *cp <= '7' )
{
ch *= 8;
ch += *cp++ - '0';
if ( *cp >= '0' && *cp <= '7' )
{
ch *= 8;
ch += *cp++ - '0';
}
}
*rp = ch;
}
*rp = ch;
}
break;
default:
*rp = '\\';
break;
break;
default:
*rp = '\\';
break;
}
while (cp[0] != '\0' && cp[0] != '\\')
while ( cp[0] != '\0' && cp[0] != '\\' )
*rp++ = *cp++;
} while (cp[0] != '\0');
}
while ( cp[0] != '\0' );
/* Terminate string. */
terminate:
@ -127,95 +138,112 @@ terminate:
return retval;
}
static MSG *findMSG(u32 id) {
static MSG *findMSG( u32 id )
{
MSG *msg;
for (msg=baseMSG; msg; msg=msg->next) {
if (msg->id == id)
for ( msg = baseMSG; msg; msg = msg->next )
{
if ( msg->id == id )
return msg;
}
return NULL;
}
static MSG *setMSG(const char *msgid, const char *msgstr) {
u32 id = hash_string(msgid);
MSG *msg = findMSG(id);
if (!msg) {
msg = (MSG *)malloc(sizeof(MSG));
msg->id = id;
static MSG *setMSG( const char *msgid, const char *msgstr )
{
u32 id = hash_string( msgid );
MSG *msg = findMSG( id );
if ( !msg )
{
msg = ( MSG * )malloc( sizeof( MSG ) );
msg->id = id;
msg->msgstr = NULL;
msg->next = baseMSG;
baseMSG = msg;
msg->next = baseMSG;
baseMSG = msg;
}
if (msg) {
if (msgstr) {
if (msg->msgstr) free(msg->msgstr);
if ( msg )
{
if ( msgstr )
{
if ( msg->msgstr ) free( msg->msgstr );
//msg->msgstr = strdup(msgstr);
msg->msgstr = expand_escape(msgstr);
msg->msgstr = expand_escape( msgstr );
}
return msg;
}
return NULL;
}
void gettextCleanUp(void) {
while (baseMSG) {
MSG *nextMsg =baseMSG->next;
free(baseMSG->msgstr);
free(baseMSG);
void gettextCleanUp( void )
{
while ( baseMSG )
{
MSG *nextMsg = baseMSG->next;
free( baseMSG->msgstr );
free( baseMSG );
baseMSG = nextMsg;
}
}
bool gettextLoadLanguage(const char* langFile) {
bool gettextLoadLanguage( const char* langFile )
{
FILE *f;
char line[200];
char *lastID=NULL;
char *lastID = NULL;
gettextCleanUp();
f = fopen(langFile, "r");
if (!f)
f = fopen( langFile, "r" );
if ( !f )
return false;
while (fgets(line, sizeof(line), f)) {
while ( fgets( line, sizeof( line ), f ) )
{
// lines starting with # are comments
if (line[0] == '#')
if ( line[0] == '#' )
continue;
else if (strncmp(line, "msgid \"", 7) == 0) {
else if ( strncmp( line, "msgid \"", 7 ) == 0 )
{
char *msgid, *end;
if (lastID) {
free(lastID);
lastID=NULL;
if ( lastID )
{
free( lastID );
lastID = NULL;
}
msgid = &line[7];
end = strrchr(msgid, '"');
if (end && end-msgid>1) {
end = strrchr( msgid, '"' );
if ( end && end - msgid > 1 )
{
*end = 0;
lastID = strdup(msgid);
lastID = strdup( msgid );
}
} else if (strncmp(line, "msgstr \"", 8) == 0) {
}
else if ( strncmp( line, "msgstr \"", 8 ) == 0 )
{
char *msgstr, *end;
if (lastID == NULL)
if ( lastID == NULL )
continue;
msgstr = &line[8];
end = strrchr(msgstr, '"');
if (end && end-msgstr>1) {
end = strrchr( msgstr, '"' );
if ( end && end - msgstr > 1 )
{
*end = 0;
setMSG(lastID, msgstr);
setMSG( lastID, msgstr );
}
free(lastID);
lastID=NULL;
free( lastID );
lastID = NULL;
}
}
fclose(f);
fclose( f );
return true;
}
const char *gettext(const char *msgid) {
MSG *msg = findMSG(hash_string(msgid));
if (msg && msg->msgstr) return msg->msgstr;
const char *gettext( const char *msgid )
{
MSG *msg = findMSG( hash_string( msgid ) );
if ( msg && msg->msgstr ) return msg->msgstr;
return msgid;
}

View File

@ -2,17 +2,18 @@
#define _GETTEXT_H_
#ifdef __cplusplus
extern "C" {
extern "C"
{
#endif
bool gettextLoadLanguage(const char* langFile);
void gettextCleanUp(void);
bool gettextLoadLanguage( const char* langFile );
void gettextCleanUp( void );
/*
* input msg = a text in ASCII
* output = the translated msg in utf-8
*/
const char *gettext(const char *msg);
const char *gettext( const char *msg );
#define tr(s) gettext(s)
#define trNOOP(s) (s)

View File

@ -34,24 +34,28 @@
/*-----------------------------------------------------------------
Functions to deal with little endian values stored in uint8_t arrays
-----------------------------------------------------------------*/
static inline uint16_t u8array_to_u16 (const uint8_t* item, int offset) {
return ( item[offset] | (item[offset + 1] << 8));
static inline uint16_t u8array_to_u16 ( const uint8_t* item, int offset )
{
return ( item[offset] | ( item[offset + 1] << 8 ) );
}
static inline uint32_t u8array_to_u32 (const uint8_t* item, int offset) {
return ( item[offset] | (item[offset + 1] << 8) | (item[offset + 2] << 16) | (item[offset + 3] << 24));
static inline uint32_t u8array_to_u32 ( const uint8_t* item, int offset )
{
return ( item[offset] | ( item[offset + 1] << 8 ) | ( item[offset + 2] << 16 ) | ( item[offset + 3] << 24 ) );
}
static inline void u16_to_u8array (uint8_t* item, int offset, uint16_t value) {
item[offset] = (uint8_t) value;
item[offset + 1] = (uint8_t)(value >> 8);
static inline void u16_to_u8array ( uint8_t* item, int offset, uint16_t value )
{
item[offset] = ( uint8_t ) value;
item[offset + 1] = ( uint8_t )( value >> 8 );
}
static inline void u32_to_u8array (uint8_t* item, int offset, uint32_t value) {
item[offset] = (uint8_t) value;
item[offset + 1] = (uint8_t)(value >> 8);
item[offset + 2] = (uint8_t)(value >> 16);
item[offset + 3] = (uint8_t)(value >> 24);
static inline void u32_to_u8array ( uint8_t* item, int offset, uint32_t value )
{
item[offset] = ( uint8_t ) value;
item[offset + 1] = ( uint8_t )( value >> 8 );
item[offset + 2] = ( uint8_t )( value >> 16 );
item[offset + 3] = ( uint8_t )( value >> 24 );
}
#endif // _BIT_OPS_H

View File

@ -42,20 +42,22 @@
#define PAGE_SECTORS 64
#define CACHE_PAGE_SIZE (BYTES_PER_READ * PAGE_SECTORS)
typedef struct {
sec_t sector;
unsigned int count;
unsigned int last_access;
bool dirty;
uint8_t* cache;
typedef struct
{
sec_t sector;
unsigned int count;
unsigned int last_access;
bool dirty;
uint8_t* cache;
} CACHE_ENTRY;
typedef struct {
const DISC_INTERFACE* disc;
sec_t endOfPartition;
unsigned int numberOfPages;
unsigned int sectorsPerPage;
CACHE_ENTRY* cacheEntries;
typedef struct
{
const DISC_INTERFACE* disc;
sec_t endOfPartition;
unsigned int numberOfPages;
unsigned int sectorsPerPage;
CACHE_ENTRY* cacheEntries;
} CACHE;
/*
@ -65,9 +67,9 @@ offset is the position to start reading from
size is the amount of data to read
Precondition: offset + size <= BYTES_PER_READ
*/
bool _FAT_cache_readPartialSector (CACHE* cache, void* buffer, sec_t sector, unsigned int offset, size_t size);
bool _FAT_cache_readPartialSector ( CACHE* cache, void* buffer, sec_t sector, unsigned int offset, size_t size );
bool _FAT_cache_readLittleEndianValue (CACHE* cache, uint32_t *value, sec_t sector, unsigned int offset, int num_bytes);
bool _FAT_cache_readLittleEndianValue ( CACHE* cache, uint32_t *value, sec_t sector, unsigned int offset, int num_bytes );
/*
Write data to a sector in the cache
@ -77,9 +79,9 @@ offset is the position to start writing to
size is the amount of data to write
Precondition: offset + size <= BYTES_PER_READ
*/
bool _FAT_cache_writePartialSector (CACHE* cache, const void* buffer, sec_t sector, unsigned int offset, size_t size);
bool _FAT_cache_writePartialSector ( CACHE* cache, const void* buffer, sec_t sector, unsigned int offset, size_t size );
bool _FAT_cache_writeLittleEndianValue (CACHE* cache, const uint32_t value, sec_t sector, unsigned int offset, int num_bytes);
bool _FAT_cache_writeLittleEndianValue ( CACHE* cache, const uint32_t value, sec_t sector, unsigned int offset, int num_bytes );
/*
Write data to a sector in the cache, zeroing the sector first
@ -89,42 +91,44 @@ offset is the position to start writing to
size is the amount of data to write
Precondition: offset + size <= BYTES_PER_READ
*/
bool _FAT_cache_eraseWritePartialSector (CACHE* cache, const void* buffer, sec_t sector, unsigned int offset, size_t size);
bool _FAT_cache_eraseWritePartialSector ( CACHE* cache, const void* buffer, sec_t sector, unsigned int offset, size_t size );
/*
Read several sectors from the cache
*/
bool _FAT_cache_readSectors (CACHE* cache, sec_t sector, sec_t numSectors, void* buffer);
bool _FAT_cache_readSectors ( CACHE* cache, sec_t sector, sec_t numSectors, void* buffer );
/*
Read a full sector from the cache
*/
static inline bool _FAT_cache_readSector (CACHE* cache, void* buffer, sec_t sector) {
return _FAT_cache_readPartialSector (cache, buffer, sector, 0, BYTES_PER_READ);
static inline bool _FAT_cache_readSector ( CACHE* cache, void* buffer, sec_t sector )
{
return _FAT_cache_readPartialSector ( cache, buffer, sector, 0, BYTES_PER_READ );
}
/*
Write a full sector to the cache
*/
static inline bool _FAT_cache_writeSector (CACHE* cache, const void* buffer, sec_t sector) {
return _FAT_cache_writePartialSector (cache, buffer, sector, 0, BYTES_PER_READ);
static inline bool _FAT_cache_writeSector ( CACHE* cache, const void* buffer, sec_t sector )
{
return _FAT_cache_writePartialSector ( cache, buffer, sector, 0, BYTES_PER_READ );
}
bool _FAT_cache_writeSectors (CACHE* cache, sec_t sector, sec_t numSectors, const void* buffer);
bool _FAT_cache_writeSectors ( CACHE* cache, sec_t sector, sec_t numSectors, const void* buffer );
/*
Write any dirty sectors back to disc and clear out the contents of the cache
*/
bool _FAT_cache_flush (CACHE* cache);
bool _FAT_cache_flush ( CACHE* cache );
/*
Clear out the contents of the cache without writing any dirty sectors first
*/
void _FAT_cache_invalidate (CACHE* cache);
void _FAT_cache_invalidate ( CACHE* cache );
CACHE* _FAT_cache_constructor (unsigned int numberOfPages, unsigned int sectorsPerPage, const DISC_INTERFACE* discInterface, sec_t endOfPartition);
CACHE* _FAT_cache_constructor ( unsigned int numberOfPages, unsigned int sectorsPerPage, const DISC_INTERFACE* discInterface, sec_t endOfPartition );
void _FAT_cache_destructor (CACHE* cache);
void _FAT_cache_destructor ( CACHE* cache );
#endif // _CACHE_H

File diff suppressed because it is too large Load Diff

View File

@ -36,8 +36,8 @@
#include "partition.h"
#define DIR_ENTRY_DATA_SIZE 0x20
#define MAX_LFN_LENGTH 256
#define MAX_FILENAME_LENGTH 768 // 256 UCS-2 characters encoded into UTF-8 can use up to 768 UTF-8 chars
#define MAX_LFN_LENGTH 256
#define MAX_FILENAME_LENGTH 768 // 256 UCS-2 characters encoded into UTF-8 can use up to 768 UTF-8 chars
#define MAX_ALIAS_LENGTH 13
#define LFN_ENTRY_LENGTH 13
#define ALIAS_ENTRY_LENGTH 11
@ -49,60 +49,66 @@
#define DIR_SEPARATOR '/'
// File attributes
#define ATTRIB_ARCH 0x20 // Archive
#define ATTRIB_DIR 0x10 // Directory
#define ATTRIB_LFN 0x0F // Long file name
#define ATTRIB_VOL 0x08 // Volume
#define ATTRIB_SYS 0x04 // System
#define ATTRIB_HID 0x02 // Hidden
#define ATTRIB_RO 0x01 // Read only
#define ATTRIB_ARCH 0x20 // Archive
#define ATTRIB_DIR 0x10 // Directory
#define ATTRIB_LFN 0x0F // Long file name
#define ATTRIB_VOL 0x08 // Volume
#define ATTRIB_SYS 0x04 // System
#define ATTRIB_HID 0x02 // Hidden
#define ATTRIB_RO 0x01 // Read only
typedef enum {FT_DIRECTORY, FT_FILE} FILE_TYPE;
typedef struct {
uint32_t cluster;
sec_t sector;
int32_t offset;
typedef struct
{
uint32_t cluster;
sec_t sector;
int32_t offset;
} DIR_ENTRY_POSITION;
typedef struct {
uint8_t entryData[DIR_ENTRY_DATA_SIZE];
DIR_ENTRY_POSITION dataStart; // Points to the start of the LFN entries of a file, or the alias for no LFN
DIR_ENTRY_POSITION dataEnd; // Always points to the file/directory's alias entry
char filename[MAX_FILENAME_LENGTH];
typedef struct
{
uint8_t entryData[DIR_ENTRY_DATA_SIZE];
DIR_ENTRY_POSITION dataStart; // Points to the start of the LFN entries of a file, or the alias for no LFN
DIR_ENTRY_POSITION dataEnd; // Always points to the file/directory's alias entry
char filename[MAX_FILENAME_LENGTH];
} DIR_ENTRY;
// Directory entry offsets
enum DIR_ENTRY_offset {
DIR_ENTRY_name = 0x00,
DIR_ENTRY_extension = 0x08,
DIR_ENTRY_attributes = 0x0B,
DIR_ENTRY_reserved = 0x0C,
DIR_ENTRY_cTime_ms = 0x0D,
DIR_ENTRY_cTime = 0x0E,
DIR_ENTRY_cDate = 0x10,
DIR_ENTRY_aDate = 0x12,
DIR_ENTRY_clusterHigh = 0x14,
DIR_ENTRY_mTime = 0x16,
DIR_ENTRY_mDate = 0x18,
DIR_ENTRY_cluster = 0x1A,
DIR_ENTRY_fileSize = 0x1C
enum DIR_ENTRY_offset
{
DIR_ENTRY_name = 0x00,
DIR_ENTRY_extension = 0x08,
DIR_ENTRY_attributes = 0x0B,
DIR_ENTRY_reserved = 0x0C,
DIR_ENTRY_cTime_ms = 0x0D,
DIR_ENTRY_cTime = 0x0E,
DIR_ENTRY_cDate = 0x10,
DIR_ENTRY_aDate = 0x12,
DIR_ENTRY_clusterHigh = 0x14,
DIR_ENTRY_mTime = 0x16,
DIR_ENTRY_mDate = 0x18,
DIR_ENTRY_cluster = 0x1A,
DIR_ENTRY_fileSize = 0x1C
};
/*
Returns true if the file specified by entry is a directory
*/
static inline bool _FAT_directory_isDirectory (DIR_ENTRY* entry) {
return ((entry->entryData[DIR_ENTRY_attributes] & ATTRIB_DIR) != 0);
static inline bool _FAT_directory_isDirectory ( DIR_ENTRY* entry )
{
return ( ( entry->entryData[DIR_ENTRY_attributes] & ATTRIB_DIR ) != 0 );
}
static inline bool _FAT_directory_isWritable (DIR_ENTRY* entry) {
return ((entry->entryData[DIR_ENTRY_attributes] & ATTRIB_RO) == 0);
static inline bool _FAT_directory_isWritable ( DIR_ENTRY* entry )
{
return ( ( entry->entryData[DIR_ENTRY_attributes] & ATTRIB_RO ) == 0 );
}
static inline bool _FAT_directory_isDot (DIR_ENTRY* entry) {
return ((entry->filename[0] == '.') && ((entry->filename[1] == '\0') ||
((entry->filename[1] == '.') && entry->filename[2] == '\0')));
static inline bool _FAT_directory_isDot ( DIR_ENTRY* entry )
{
return ( ( entry->filename[0] == '.' ) && ( ( entry->filename[1] == '\0' ) ||
( ( entry->filename[1] == '.' ) && entry->filename[2] == '\0' ) ) );
}
/*
@ -111,7 +117,7 @@ Places result in entry
entry will be destroyed even if no directory entry is found
Returns true on success, false on failure
*/
bool _FAT_directory_getFirstEntry (PARTITION* partition, DIR_ENTRY* entry, uint32_t dirCluster);
bool _FAT_directory_getFirstEntry ( PARTITION* partition, DIR_ENTRY* entry, uint32_t dirCluster );
/*
Reads the next directory entry after the one already pointed to by entry
@ -119,7 +125,7 @@ Places result in entry
entry will be destroyed even if no directory entry is found
Returns true on success, false on failure
*/
bool _FAT_directory_getNextEntry (PARTITION* partition, DIR_ENTRY* entry);
bool _FAT_directory_getNextEntry ( PARTITION* partition, DIR_ENTRY* entry );
/*
Gets the directory entry corrsponding to the supplied path
@ -130,20 +136,20 @@ pathEnd specifies the end of the path string, for cutting strings short if neede
after pathEND.
Returns true on success, false on failure
*/
bool _FAT_directory_entryFromPath (PARTITION* partition, DIR_ENTRY* entry, const char* path, const char* pathEnd);
bool _FAT_directory_entryFromPath ( PARTITION* partition, DIR_ENTRY* entry, const char* path, const char* pathEnd );
/*
Changes the current directory to the one specified by path
Returns true on success, false on failure
*/
bool _FAT_directory_chdir (PARTITION* partition, const char* path);
bool _FAT_directory_chdir ( PARTITION* partition, const char* path );
/*
Removes the directory entry specified by entry
Assumes that entry is valid
Returns true on success, false on failure
*/
bool _FAT_directory_removeEntry (PARTITION* partition, DIR_ENTRY* entry);
bool _FAT_directory_removeEntry ( PARTITION* partition, DIR_ENTRY* entry );
/*
Add a directory entry to the directory specified by dirCluster
@ -151,23 +157,23 @@ The fileData, dataStart and dataEnd elements of the DIR_ENTRY struct are
updated with the new directory entry position and alias.
Returns true on success, false on failure
*/
bool _FAT_directory_addEntry (PARTITION* partition, DIR_ENTRY* entry, uint32_t dirCluster);
bool _FAT_directory_addEntry ( PARTITION* partition, DIR_ENTRY* entry, uint32_t dirCluster );
/*
Get the start cluster of a file from it's entry data
*/
uint32_t _FAT_directory_entryGetCluster (PARTITION* partition, const uint8_t* entryData);
uint32_t _FAT_directory_entryGetCluster ( PARTITION* partition, const uint8_t* entryData );
/*
Fill in the file name and entry data of DIR_ENTRY* entry.
Assumes that the entry's dataStart and dataEnd are correct
Returns true on success, false on failure
*/
bool _FAT_directory_entryFromPosition (PARTITION* partition, DIR_ENTRY* entry);
bool _FAT_directory_entryFromPosition ( PARTITION* partition, DIR_ENTRY* entry );
/*
Fill in a stat struct based on a file entry
*/
void _FAT_directory_entryStat (PARTITION* partition, DIR_ENTRY* entry, struct stat *st);
void _FAT_directory_entryStat ( PARTITION* partition, DIR_ENTRY* entry, struct stat *st );
#endif // _DIRECTORY_H

View File

@ -35,9 +35,10 @@
A list of all default devices to try at startup,
terminated by a {NULL,NULL} entry.
*/
typedef struct {
const char* name;
const DISC_INTERFACE* (*getInterface)(void);
typedef struct
{
const char* name;
const DISC_INTERFACE* ( *getInterface )( void );
} INTERFACE_ID;
extern const INTERFACE_ID _FAT_disc_interfaces[];
@ -45,8 +46,9 @@ extern const INTERFACE_ID _FAT_disc_interfaces[];
Check if a disc is inserted
Return true if a disc is inserted and ready, false otherwise
*/
static inline bool _FAT_disc_isInserted (const DISC_INTERFACE* disc) {
return disc->isInserted();
static inline bool _FAT_disc_isInserted ( const DISC_INTERFACE* disc )
{
return disc->isInserted();
}
/*
@ -56,8 +58,9 @@ else it is at least 1
sector is 0 or greater
buffer is a pointer to the memory to fill
*/
static inline bool _FAT_disc_readSectors (const DISC_INTERFACE* disc, sec_t sector, sec_t numSectors, void* buffer) {
return disc->readSectors (sector, numSectors, buffer);
static inline bool _FAT_disc_readSectors ( const DISC_INTERFACE* disc, sec_t sector, sec_t numSectors, void* buffer )
{
return disc->readSectors ( sector, numSectors, buffer );
}
/*
@ -67,44 +70,50 @@ else it is at least 1
sector is 0 or greater
buffer is a pointer to the memory to read from
*/
static inline bool _FAT_disc_writeSectors (const DISC_INTERFACE* disc, sec_t sector, sec_t numSectors, const void* buffer) {
return disc->writeSectors (sector, numSectors, buffer);
static inline bool _FAT_disc_writeSectors ( const DISC_INTERFACE* disc, sec_t sector, sec_t numSectors, const void* buffer )
{
return disc->writeSectors ( sector, numSectors, buffer );
}
/*
Reset the card back to a ready state
*/
static inline bool _FAT_disc_clearStatus (const DISC_INTERFACE* disc) {
return disc->clearStatus();
static inline bool _FAT_disc_clearStatus ( const DISC_INTERFACE* disc )
{
return disc->clearStatus();
}
/*
Initialise the disc to a state ready for data reading or writing
*/
static inline bool _FAT_disc_startup (const DISC_INTERFACE* disc) {
return disc->startup();
static inline bool _FAT_disc_startup ( const DISC_INTERFACE* disc )
{
return disc->startup();
}
/*
Put the disc in a state ready for power down.
Complete any pending writes and disable the disc if necessary
*/
static inline bool _FAT_disc_shutdown (const DISC_INTERFACE* disc) {
return disc->shutdown();
static inline bool _FAT_disc_shutdown ( const DISC_INTERFACE* disc )
{
return disc->shutdown();
}
/*
Return a 32 bit value unique to each type of interface
*/
static inline uint32_t _FAT_disc_hostType (const DISC_INTERFACE* disc) {
return disc->ioType;
static inline uint32_t _FAT_disc_hostType ( const DISC_INTERFACE* disc )
{
return disc->ioType;
}
/*
Return a 32 bit value that specifies the capabilities of the disc
*/
static inline uint32_t _FAT_disc_features (const DISC_INTERFACE* disc) {
return disc->features;
static inline uint32_t _FAT_disc_features ( const DISC_INTERFACE* disc )
{
return disc->features;
}
#endif // _DISC_H

View File

@ -43,25 +43,30 @@ The list is terminated by a NULL/NULL entry.
#include "usbloader/usbstorage2.h"
#include <sdcard/gcsd.h>
static const DISC_INTERFACE* get_io_wiisd (void) {
return &__io_wiisd;
static const DISC_INTERFACE* get_io_wiisd ( void )
{
return &__io_wiisd;
}
static const DISC_INTERFACE* get_io_usbstorage (void) {
return &__io_usbstorage2;
static const DISC_INTERFACE* get_io_usbstorage ( void )
{
return &__io_usbstorage2;
}
static const DISC_INTERFACE* get_io_gcsda (void) {
return &__io_gcsda;
static const DISC_INTERFACE* get_io_gcsda ( void )
{
return &__io_gcsda;
}
static const DISC_INTERFACE* get_io_gcsdb (void) {
return &__io_gcsdb;
static const DISC_INTERFACE* get_io_gcsdb ( void )
{
return &__io_gcsdb;
}
const INTERFACE_ID _FAT_disc_interfaces[] = {
{"sd", get_io_wiisd},
{"usb", get_io_usbstorage},
{"carda", get_io_gcsda},
{"cardb", get_io_gcsdb},
{NULL, NULL}
const INTERFACE_ID _FAT_disc_interfaces[] =
{
{"sd", get_io_wiisd},
{"usb", get_io_usbstorage},
{"carda", get_io_gcsda},
{"cardb", get_io_gcsdb},
{NULL, NULL}
};

View File

@ -35,9 +35,10 @@
A list of all default devices to try at startup,
terminated by a {NULL,NULL} entry.
*/
typedef struct {
const char* name;
const DISC_INTERFACE* (*getInterface)(void);
typedef struct
{
const char* name;
const DISC_INTERFACE* ( *getInterface )( void );
} INTERFACE_ID;
extern const INTERFACE_ID _FAT_disc_interfaces[];
@ -45,8 +46,9 @@ extern const INTERFACE_ID _FAT_disc_interfaces[];
Check if a disc is inserted
Return true if a disc is inserted and ready, false otherwise
*/
static inline bool _FAT_disc_isInserted (const DISC_INTERFACE* disc) {
return disc->isInserted();
static inline bool _FAT_disc_isInserted ( const DISC_INTERFACE* disc )
{
return disc->isInserted();
}
/*
@ -56,8 +58,9 @@ else it is at least 1
sector is 0 or greater
buffer is a pointer to the memory to fill
*/
static inline bool _FAT_disc_readSectors (const DISC_INTERFACE* disc, sec_t sector, sec_t numSectors, void* buffer) {
return disc->readSectors (sector, numSectors, buffer);
static inline bool _FAT_disc_readSectors ( const DISC_INTERFACE* disc, sec_t sector, sec_t numSectors, void* buffer )
{
return disc->readSectors ( sector, numSectors, buffer );
}
/*
@ -67,44 +70,50 @@ else it is at least 1
sector is 0 or greater
buffer is a pointer to the memory to read from
*/
static inline bool _FAT_disc_writeSectors (const DISC_INTERFACE* disc, sec_t sector, sec_t numSectors, const void* buffer) {
return disc->writeSectors (sector, numSectors, buffer);
static inline bool _FAT_disc_writeSectors ( const DISC_INTERFACE* disc, sec_t sector, sec_t numSectors, const void* buffer )
{
return disc->writeSectors ( sector, numSectors, buffer );
}
/*
Reset the card back to a ready state
*/
static inline bool _FAT_disc_clearStatus (const DISC_INTERFACE* disc) {
return disc->clearStatus();
static inline bool _FAT_disc_clearStatus ( const DISC_INTERFACE* disc )
{
return disc->clearStatus();
}
/*
Initialise the disc to a state ready for data reading or writing
*/
static inline bool _FAT_disc_startup (const DISC_INTERFACE* disc) {
return disc->startup();
static inline bool _FAT_disc_startup ( const DISC_INTERFACE* disc )
{
return disc->startup();
}
/*
Put the disc in a state ready for power down.
Complete any pending writes and disable the disc if necessary
*/
static inline bool _FAT_disc_shutdown (const DISC_INTERFACE* disc) {
return disc->shutdown();
static inline bool _FAT_disc_shutdown ( const DISC_INTERFACE* disc )
{
return disc->shutdown();
}
/*
Return a 32 bit value unique to each type of interface
*/
static inline uint32_t _FAT_disc_hostType (const DISC_INTERFACE* disc) {
return disc->ioType;
static inline uint32_t _FAT_disc_hostType ( const DISC_INTERFACE* disc )
{
return disc->ioType;
}
/*
Return a 32 bit value that specifies the capabilities of the disc
*/
static inline uint32_t _FAT_disc_features (const DISC_INTERFACE* disc) {
return disc->features;
static inline uint32_t _FAT_disc_features ( const DISC_INTERFACE* disc )
{
return disc->features;
}
#endif // _DISC_H

View File

@ -1,6 +1,6 @@
/*
fat.h
Simple functionality for startup, mounting and unmounting of FAT-based devices.
fat.h
Simple functionality for startup, mounting and unmounting of FAT-based devices.
Copyright (c) 2006 Michael "Chishm" Chisholm
@ -31,47 +31,48 @@
#define _LIBFAT_H
#ifdef __cplusplus
extern "C" {
extern "C"
{
#endif
#include <stdint.h>
#include <ogc/disc_io.h>
/*
Initialise any inserted block-devices.
Add the fat device driver to the devoptab, making it available for standard file functions.
cacheSize: The number of pages to allocate for each inserted block-device
setAsDefaultDevice: if true, make this the default device driver for file operations
*/
extern bool fatInit (uint32_t cacheSize, bool setAsDefaultDevice);
/*
Initialise any inserted block-devices.
Add the fat device driver to the devoptab, making it available for standard file functions.
cacheSize: The number of pages to allocate for each inserted block-device
setAsDefaultDevice: if true, make this the default device driver for file operations
*/
extern bool fatInit ( uint32_t cacheSize, bool setAsDefaultDevice );
/*
Calls fatInit with setAsDefaultDevice = true and cacheSize optimised for the host system.
*/
extern bool fatInitDefault (void);
/*
Calls fatInit with setAsDefaultDevice = true and cacheSize optimised for the host system.
*/
extern bool fatInitDefault ( void );
/*
Mount the device pointed to by interface, and set up a devoptab entry for it as "name:".
You can then access the filesystem using "name:/".
This will mount the active partition or the first valid partition on the disc,
and will use a cache size optimized for the host system.
*/
extern bool fatMountSimple (const char* name, const DISC_INTERFACE* interface);
/*
Mount the device pointed to by interface, and set up a devoptab entry for it as "name:".
You can then access the filesystem using "name:/".
This will mount the active partition or the first valid partition on the disc,
and will use a cache size optimized for the host system.
*/
extern bool fatMountSimple ( const char* name, const DISC_INTERFACE* interface );
/*
Mount the device pointed to by interface, and set up a devoptab entry for it as "name:".
You can then access the filesystem using "name:/".
If startSector = 0, it will mount the active partition of the first valid partition on
the disc. Otherwise it will try to mount the partition starting at startSector.
cacheSize specifies the number of pages to allocate for the cache.
This will not startup the disc, so you need to call interface->startup(); first.
*/
extern bool fatMount (const char* name, const DISC_INTERFACE* interface, sec_t startSector, uint32_t cacheSize, uint32_t SectorsPerPage);
/*
Unmount the partition specified by name.
If there are open files, it will attempt to synchronise them to disc.
*/
extern void fatUnmount (const char* name);
/*
Mount the device pointed to by interface, and set up a devoptab entry for it as "name:".
You can then access the filesystem using "name:/".
If startSector = 0, it will mount the active partition of the first valid partition on
the disc. Otherwise it will try to mount the partition starting at startSector.
cacheSize specifies the number of pages to allocate for the cache.
This will not startup the disc, so you need to call interface->startup(); first.
*/
extern bool fatMount ( const char* name, const DISC_INTERFACE* interface, sec_t startSector, uint32_t cacheSize, uint32_t SectorsPerPage );
/*
Unmount the partition specified by name.
If there are open files, it will attempt to synchronise them to disc.
*/
extern void fatUnmount ( const char* name );
#ifdef __cplusplus
}

View File

@ -46,321 +46,356 @@
#define CACHE_FREE UINT_MAX
CACHE* _FAT_cache_constructor (unsigned int numberOfPages, unsigned int sectorsPerPage, const DISC_INTERFACE* discInterface, sec_t endOfPartition) {
CACHE* cache;
unsigned int i;
CACHE_ENTRY* cacheEntries;
CACHE* _FAT_cache_constructor ( unsigned int numberOfPages, unsigned int sectorsPerPage, const DISC_INTERFACE* discInterface, sec_t endOfPartition )
{
CACHE* cache;
unsigned int i;
CACHE_ENTRY* cacheEntries;
if (numberOfPages < 2) {
numberOfPages = 2;
}
if ( numberOfPages < 2 )
{
numberOfPages = 2;
}
if (sectorsPerPage < 8) {
sectorsPerPage = 8;
}
if ( sectorsPerPage < 8 )
{
sectorsPerPage = 8;
}
cache = (CACHE*) _FAT_mem_allocate (sizeof(CACHE));
if (cache == NULL) {
return NULL;
}
cache = ( CACHE* ) _FAT_mem_allocate ( sizeof( CACHE ) );
if ( cache == NULL )
{
return NULL;
}
cache->disc = discInterface;
cache->endOfPartition = endOfPartition;
cache->numberOfPages = numberOfPages;
cache->sectorsPerPage = sectorsPerPage;
cache->disc = discInterface;
cache->endOfPartition = endOfPartition;
cache->numberOfPages = numberOfPages;
cache->sectorsPerPage = sectorsPerPage;
cacheEntries = (CACHE_ENTRY*) _FAT_mem_allocate ( sizeof(CACHE_ENTRY) * numberOfPages);
if (cacheEntries == NULL) {
_FAT_mem_free (cache);
return NULL;
}
cacheEntries = ( CACHE_ENTRY* ) _FAT_mem_allocate ( sizeof( CACHE_ENTRY ) * numberOfPages );
if ( cacheEntries == NULL )
{
_FAT_mem_free ( cache );
return NULL;
}
for (i = 0; i < numberOfPages; i++) {
cacheEntries[i].sector = CACHE_FREE;
cacheEntries[i].count = 0;
cacheEntries[i].last_access = 0;
cacheEntries[i].dirty = false;
cacheEntries[i].cache = (uint8_t*) _FAT_mem_align ( sectorsPerPage * BYTES_PER_READ );
}
for ( i = 0; i < numberOfPages; i++ )
{
cacheEntries[i].sector = CACHE_FREE;
cacheEntries[i].count = 0;
cacheEntries[i].last_access = 0;
cacheEntries[i].dirty = false;
cacheEntries[i].cache = ( uint8_t* ) _FAT_mem_align ( sectorsPerPage * BYTES_PER_READ );
}
cache->cacheEntries = cacheEntries;
cache->cacheEntries = cacheEntries;
return cache;
return cache;
}
void _FAT_cache_destructor (CACHE* cache) {
unsigned int i;
// Clear out cache before destroying it
_FAT_cache_flush(cache);
void _FAT_cache_destructor ( CACHE* cache )
{
unsigned int i;
// Clear out cache before destroying it
_FAT_cache_flush( cache );
// Free memory in reverse allocation order
for (i = 0; i < cache->numberOfPages; i++) {
_FAT_mem_free (cache->cacheEntries[i].cache);
}
_FAT_mem_free (cache->cacheEntries);
_FAT_mem_free (cache);
// Free memory in reverse allocation order
for ( i = 0; i < cache->numberOfPages; i++ )
{
_FAT_mem_free ( cache->cacheEntries[i].cache );
}
_FAT_mem_free ( cache->cacheEntries );
_FAT_mem_free ( cache );
}
static u32 accessCounter = 0;
static u32 accessTime(){
accessCounter++;
return accessCounter;
static u32 accessTime()
{
accessCounter++;
return accessCounter;
}
static CACHE_ENTRY* _FAT_cache_getPage(CACHE *cache,sec_t sector)
static CACHE_ENTRY* _FAT_cache_getPage( CACHE *cache, sec_t sector )
{
unsigned int i;
CACHE_ENTRY* cacheEntries = cache->cacheEntries;
unsigned int numberOfPages = cache->numberOfPages;
unsigned int sectorsPerPage = cache->sectorsPerPage;
unsigned int i;
CACHE_ENTRY* cacheEntries = cache->cacheEntries;
unsigned int numberOfPages = cache->numberOfPages;
unsigned int sectorsPerPage = cache->sectorsPerPage;
bool foundFree = false;
unsigned int oldUsed = 0;
unsigned int oldAccess = UINT_MAX;
bool foundFree = false;
unsigned int oldUsed = 0;
unsigned int oldAccess = UINT_MAX;
for(i=0;i<numberOfPages;i++) {
if(sector>=cacheEntries[i].sector && sector<(cacheEntries[i].sector + cacheEntries[i].count)) {
cacheEntries[i].last_access = accessTime();
return &(cacheEntries[i]);
}
for ( i = 0; i < numberOfPages; i++ )
{
if ( sector >= cacheEntries[i].sector && sector < ( cacheEntries[i].sector + cacheEntries[i].count ) )
{
cacheEntries[i].last_access = accessTime();
return &( cacheEntries[i] );
}
if(foundFree==false && (cacheEntries[i].sector==CACHE_FREE || cacheEntries[i].last_access<oldAccess)) {
if(cacheEntries[i].sector==CACHE_FREE) foundFree = true;
oldUsed = i;
oldAccess = cacheEntries[i].last_access;
}
}
if ( foundFree == false && ( cacheEntries[i].sector == CACHE_FREE || cacheEntries[i].last_access < oldAccess ) )
{
if ( cacheEntries[i].sector == CACHE_FREE ) foundFree = true;
oldUsed = i;
oldAccess = cacheEntries[i].last_access;
}
}
if(foundFree==false && cacheEntries[oldUsed].dirty==true) {
if(!_FAT_disc_writeSectors(cache->disc,cacheEntries[oldUsed].sector,cacheEntries[oldUsed].count,cacheEntries[oldUsed].cache)) return NULL;
cacheEntries[oldUsed].dirty = false;
}
if ( foundFree == false && cacheEntries[oldUsed].dirty == true )
{
if ( !_FAT_disc_writeSectors( cache->disc, cacheEntries[oldUsed].sector, cacheEntries[oldUsed].count, cacheEntries[oldUsed].cache ) ) return NULL;
cacheEntries[oldUsed].dirty = false;
}
sector = (sector/sectorsPerPage)*sectorsPerPage; // align base sector to page size
sec_t next_page = sector + sectorsPerPage;
if(next_page > cache->endOfPartition) next_page = cache->endOfPartition;
sector = ( sector / sectorsPerPage ) * sectorsPerPage; // align base sector to page size
sec_t next_page = sector + sectorsPerPage;
if ( next_page > cache->endOfPartition ) next_page = cache->endOfPartition;
if(!_FAT_disc_readSectors(cache->disc,sector,next_page-sector,cacheEntries[oldUsed].cache)) return NULL;
if ( !_FAT_disc_readSectors( cache->disc, sector, next_page - sector, cacheEntries[oldUsed].cache ) ) return NULL;
cacheEntries[oldUsed].sector = sector;
cacheEntries[oldUsed].count = next_page-sector;
cacheEntries[oldUsed].last_access = accessTime();
cacheEntries[oldUsed].sector = sector;
cacheEntries[oldUsed].count = next_page - sector;
cacheEntries[oldUsed].last_access = accessTime();
return &(cacheEntries[oldUsed]);
return &( cacheEntries[oldUsed] );
}
bool _FAT_cache_readSectors(CACHE *cache,sec_t sector,sec_t numSectors,void *buffer)
bool _FAT_cache_readSectors( CACHE *cache, sec_t sector, sec_t numSectors, void *buffer )
{
sec_t sec;
sec_t secs_to_read;
CACHE_ENTRY *entry;
uint8_t *dest = buffer;
sec_t sec;
sec_t secs_to_read;
CACHE_ENTRY *entry;
uint8_t *dest = buffer;
while(numSectors>0) {
entry = _FAT_cache_getPage(cache,sector);
if(entry==NULL) return false;
while ( numSectors > 0 )
{
entry = _FAT_cache_getPage( cache, sector );
if ( entry == NULL ) return false;
sec = sector - entry->sector;
secs_to_read = entry->count - sec;
if(secs_to_read>numSectors) secs_to_read = numSectors;
sec = sector - entry->sector;
secs_to_read = entry->count - sec;
if ( secs_to_read > numSectors ) secs_to_read = numSectors;
memcpy(dest,entry->cache + (sec*BYTES_PER_READ),(secs_to_read*BYTES_PER_READ));
memcpy( dest, entry->cache + ( sec*BYTES_PER_READ ), ( secs_to_read*BYTES_PER_READ ) );
dest += (secs_to_read*BYTES_PER_READ);
sector += secs_to_read;
numSectors -= secs_to_read;
}
dest += ( secs_to_read * BYTES_PER_READ );
sector += secs_to_read;
numSectors -= secs_to_read;
}
return true;
return true;
}
/*
Reads some data from a cache page, determined by the sector number
*/
bool _FAT_cache_readPartialSector (CACHE* cache, void* buffer, sec_t sector, unsigned int offset, size_t size)
bool _FAT_cache_readPartialSector ( CACHE* cache, void* buffer, sec_t sector, unsigned int offset, size_t size )
{
sec_t sec;
CACHE_ENTRY *entry;
sec_t sec;
CACHE_ENTRY *entry;
if (offset + size > BYTES_PER_READ) return false;
if ( offset + size > BYTES_PER_READ ) return false;
entry = _FAT_cache_getPage(cache,sector);
if(entry==NULL) return false;
entry = _FAT_cache_getPage( cache, sector );
if ( entry == NULL ) return false;
sec = sector - entry->sector;
memcpy(buffer,entry->cache + ((sec*BYTES_PER_READ) + offset),size);
sec = sector - entry->sector;
memcpy( buffer, entry->cache + ( ( sec*BYTES_PER_READ ) + offset ), size );
return true;
return true;
}
bool _FAT_cache_readLittleEndianValue (CACHE* cache, uint32_t *value, sec_t sector, unsigned int offset, int num_bytes) {
uint8_t buf[4];
if (!_FAT_cache_readPartialSector(cache, buf, sector, offset, num_bytes)) return false;
bool _FAT_cache_readLittleEndianValue ( CACHE* cache, uint32_t *value, sec_t sector, unsigned int offset, int num_bytes )
{
uint8_t buf[4];
if ( !_FAT_cache_readPartialSector( cache, buf, sector, offset, num_bytes ) ) return false;
switch(num_bytes) {
case 1: *value = buf[0]; break;
case 2: *value = u8array_to_u16(buf,0); break;
case 4: *value = u8array_to_u32(buf,0); break;
default: return false;
}
return true;
switch ( num_bytes )
{
case 1: *value = buf[0]; break;
case 2: *value = u8array_to_u16( buf, 0 ); break;
case 4: *value = u8array_to_u32( buf, 0 ); break;
default: return false;
}
return true;
}
/*
Writes some data to a cache page, making sure it is loaded into memory first.
*/
bool _FAT_cache_writePartialSector (CACHE* cache, const void* buffer, sec_t sector, unsigned int offset, size_t size)
bool _FAT_cache_writePartialSector ( CACHE* cache, const void* buffer, sec_t sector, unsigned int offset, size_t size )
{
sec_t sec;
CACHE_ENTRY *entry;
sec_t sec;
CACHE_ENTRY *entry;
if (offset + size > BYTES_PER_READ) return false;
if ( offset + size > BYTES_PER_READ ) return false;
entry = _FAT_cache_getPage(cache,sector);
if(entry==NULL) return false;
entry = _FAT_cache_getPage( cache, sector );
if ( entry == NULL ) return false;
sec = sector - entry->sector;
memcpy(entry->cache + ((sec*BYTES_PER_READ) + offset),buffer,size);
sec = sector - entry->sector;
memcpy( entry->cache + ( ( sec*BYTES_PER_READ ) + offset ), buffer, size );
entry->dirty = true;
return true;
entry->dirty = true;
return true;
}
bool _FAT_cache_writeLittleEndianValue (CACHE* cache, const uint32_t value, sec_t sector, unsigned int offset, int size) {
uint8_t buf[4] = {0, 0, 0, 0};
bool _FAT_cache_writeLittleEndianValue ( CACHE* cache, const uint32_t value, sec_t sector, unsigned int offset, int size )
{
uint8_t buf[4] = {0, 0, 0, 0};
switch(size) {
case 1: buf[0] = value; break;
case 2: u16_to_u8array(buf, 0, value); break;
case 4: u32_to_u8array(buf, 0, value); break;
default: return false;
}
switch ( size )
{
case 1: buf[0] = value; break;
case 2: u16_to_u8array( buf, 0, value ); break;
case 4: u32_to_u8array( buf, 0, value ); break;
default: return false;
}
return _FAT_cache_writePartialSector(cache, buf, sector, offset, size);
return _FAT_cache_writePartialSector( cache, buf, sector, offset, size );
}
/*
Writes some data to a cache page, zeroing out the page first
*/
bool _FAT_cache_eraseWritePartialSector (CACHE* cache, const void* buffer, sec_t sector, unsigned int offset, size_t size)
bool _FAT_cache_eraseWritePartialSector ( CACHE* cache, const void* buffer, sec_t sector, unsigned int offset, size_t size )
{
sec_t sec;
CACHE_ENTRY *entry;
sec_t sec;
CACHE_ENTRY *entry;
if (offset + size > BYTES_PER_READ) return false;
if ( offset + size > BYTES_PER_READ ) return false;
entry = _FAT_cache_getPage(cache,sector);
if(entry==NULL) return false;
entry = _FAT_cache_getPage( cache, sector );
if ( entry == NULL ) return false;
sec = sector - entry->sector;
memset(entry->cache + (sec*BYTES_PER_READ),0,BYTES_PER_READ);
memcpy(entry->cache + ((sec*BYTES_PER_READ) + offset),buffer,size);
sec = sector - entry->sector;
memset( entry->cache + ( sec*BYTES_PER_READ ), 0, BYTES_PER_READ );
memcpy( entry->cache + ( ( sec*BYTES_PER_READ ) + offset ), buffer, size );
entry->dirty = true;
return true;
entry->dirty = true;
return true;
}
static CACHE_ENTRY* _FAT_cache_findPage(CACHE *cache, sec_t sector, sec_t count) {
static CACHE_ENTRY* _FAT_cache_findPage( CACHE *cache, sec_t sector, sec_t count )
{
unsigned int i;
CACHE_ENTRY* cacheEntries = cache->cacheEntries;
unsigned int numberOfPages = cache->numberOfPages;
CACHE_ENTRY *entry = NULL;
sec_t lowest = UINT_MAX;
unsigned int i;
CACHE_ENTRY* cacheEntries = cache->cacheEntries;
unsigned int numberOfPages = cache->numberOfPages;
CACHE_ENTRY *entry = NULL;
sec_t lowest = UINT_MAX;
for(i=0;i<numberOfPages;i++) {
if (cacheEntries[i].sector != CACHE_FREE) {
bool intersect;
if (sector > cacheEntries[i].sector) {
intersect = sector - cacheEntries[i].sector < cacheEntries[i].count;
} else {
intersect = cacheEntries[i].sector - sector < count;
}
for ( i = 0; i < numberOfPages; i++ )
{
if ( cacheEntries[i].sector != CACHE_FREE )
{
bool intersect;
if ( sector > cacheEntries[i].sector )
{
intersect = sector - cacheEntries[i].sector < cacheEntries[i].count;
}
else
{
intersect = cacheEntries[i].sector - sector < count;
}
if ( intersect && (cacheEntries[i].sector < lowest)) {
lowest = cacheEntries[i].sector;
entry = &cacheEntries[i];
}
}
}
if ( intersect && ( cacheEntries[i].sector < lowest ) )
{
lowest = cacheEntries[i].sector;
entry = &cacheEntries[i];
}
}
}
return entry;
return entry;
}
bool _FAT_cache_writeSectors (CACHE* cache, sec_t sector, sec_t numSectors, const void* buffer)
bool _FAT_cache_writeSectors ( CACHE* cache, sec_t sector, sec_t numSectors, const void* buffer )
{
sec_t sec;
sec_t secs_to_write;
CACHE_ENTRY* entry;
const uint8_t *src = buffer;
sec_t sec;
sec_t secs_to_write;
CACHE_ENTRY* entry;
const uint8_t *src = buffer;
while(numSectors>0)
{
entry = _FAT_cache_findPage(cache,sector,numSectors);
while ( numSectors > 0 )
{
entry = _FAT_cache_findPage( cache, sector, numSectors );
if(entry!=NULL) {
if ( entry != NULL )
{
if ( entry->sector > sector) {
if ( entry->sector > sector )
{
secs_to_write = entry->sector - sector;
secs_to_write = entry->sector - sector;
_FAT_disc_writeSectors(cache->disc,sector,secs_to_write,src);
src += (secs_to_write*BYTES_PER_READ);
sector += secs_to_write;
numSectors -= secs_to_write;
}
_FAT_disc_writeSectors( cache->disc, sector, secs_to_write, src );
src += ( secs_to_write * BYTES_PER_READ );
sector += secs_to_write;
numSectors -= secs_to_write;
}
sec = sector - entry->sector;
secs_to_write = entry->count - sec;
sec = sector - entry->sector;
secs_to_write = entry->count - sec;
if(secs_to_write>numSectors) secs_to_write = numSectors;
if ( secs_to_write > numSectors ) secs_to_write = numSectors;
memcpy(entry->cache + (sec*BYTES_PER_READ),src,(secs_to_write*BYTES_PER_READ));
memcpy( entry->cache + ( sec*BYTES_PER_READ ), src, ( secs_to_write*BYTES_PER_READ ) );
src += (secs_to_write*BYTES_PER_READ);
sector += secs_to_write;
numSectors -= secs_to_write;
src += ( secs_to_write * BYTES_PER_READ );
sector += secs_to_write;
numSectors -= secs_to_write;
entry->dirty = true;
entry->dirty = true;
} else {
_FAT_disc_writeSectors(cache->disc,sector,numSectors,src);
numSectors=0;
}
}
return true;
}
else
{
_FAT_disc_writeSectors( cache->disc, sector, numSectors, src );
numSectors = 0;
}
}
return true;
}
/*
Flushes all dirty pages to disc, clearing the dirty flag.
*/
bool _FAT_cache_flush (CACHE* cache) {
unsigned int i;
bool _FAT_cache_flush ( CACHE* cache )
{
unsigned int i;
for (i = 0; i < cache->numberOfPages; i++) {
if (cache->cacheEntries[i].dirty) {
if (!_FAT_disc_writeSectors (cache->disc, cache->cacheEntries[i].sector, cache->cacheEntries[i].count, cache->cacheEntries[i].cache)) {
return false;
}
}
cache->cacheEntries[i].dirty = false;
}
for ( i = 0; i < cache->numberOfPages; i++ )
{
if ( cache->cacheEntries[i].dirty )
{
if ( !_FAT_disc_writeSectors ( cache->disc, cache->cacheEntries[i].sector, cache->cacheEntries[i].count, cache->cacheEntries[i].cache ) )
{
return false;
}
}
cache->cacheEntries[i].dirty = false;
}
return true;
return true;
}
void _FAT_cache_invalidate (CACHE* cache) {
unsigned int i;
_FAT_cache_flush(cache);
for (i = 0; i < cache->numberOfPages; i++) {
cache->cacheEntries[i].sector = CACHE_FREE;
cache->cacheEntries[i].last_access = 0;
cache->cacheEntries[i].count = 0;
cache->cacheEntries[i].dirty = false;
}
void _FAT_cache_invalidate ( CACHE* cache )
{
unsigned int i;
_FAT_cache_flush( cache );
for ( i = 0; i < cache->numberOfPages; i++ )
{
cache->cacheEntries[i].sector = CACHE_FREE;
cache->cacheEntries[i].last_access = 0;
cache->cacheEntries[i].count = 0;
cache->cacheEntries[i].dirty = false;
}
}

View File

@ -42,20 +42,22 @@
#define PAGE_SECTORS 64
#define CACHE_PAGE_SIZE (BYTES_PER_READ * PAGE_SECTORS)
typedef struct {
sec_t sector;
unsigned int count;
unsigned int last_access;
bool dirty;
uint8_t* cache;
typedef struct
{
sec_t sector;
unsigned int count;
unsigned int last_access;
bool dirty;
uint8_t* cache;
} CACHE_ENTRY;
typedef struct {
const DISC_INTERFACE* disc;
sec_t endOfPartition;
unsigned int numberOfPages;
unsigned int sectorsPerPage;
CACHE_ENTRY* cacheEntries;
typedef struct
{
const DISC_INTERFACE* disc;
sec_t endOfPartition;
unsigned int numberOfPages;
unsigned int sectorsPerPage;
CACHE_ENTRY* cacheEntries;
} CACHE;
/*
@ -65,9 +67,9 @@ offset is the position to start reading from
size is the amount of data to read
Precondition: offset + size <= BYTES_PER_READ
*/
bool _FAT_cache_readPartialSector (CACHE* cache, void* buffer, sec_t sector, unsigned int offset, size_t size);
bool _FAT_cache_readPartialSector ( CACHE* cache, void* buffer, sec_t sector, unsigned int offset, size_t size );
bool _FAT_cache_readLittleEndianValue (CACHE* cache, uint32_t *value, sec_t sector, unsigned int offset, int num_bytes);
bool _FAT_cache_readLittleEndianValue ( CACHE* cache, uint32_t *value, sec_t sector, unsigned int offset, int num_bytes );
/*
Write data to a sector in the cache
@ -77,9 +79,9 @@ offset is the position to start writing to
size is the amount of data to write
Precondition: offset + size <= BYTES_PER_READ
*/
bool _FAT_cache_writePartialSector (CACHE* cache, const void* buffer, sec_t sector, unsigned int offset, size_t size);
bool _FAT_cache_writePartialSector ( CACHE* cache, const void* buffer, sec_t sector, unsigned int offset, size_t size );
bool _FAT_cache_writeLittleEndianValue (CACHE* cache, const uint32_t value, sec_t sector, unsigned int offset, int num_bytes);
bool _FAT_cache_writeLittleEndianValue ( CACHE* cache, const uint32_t value, sec_t sector, unsigned int offset, int num_bytes );
/*
Write data to a sector in the cache, zeroing the sector first
@ -89,42 +91,44 @@ offset is the position to start writing to
size is the amount of data to write
Precondition: offset + size <= BYTES_PER_READ
*/
bool _FAT_cache_eraseWritePartialSector (CACHE* cache, const void* buffer, sec_t sector, unsigned int offset, size_t size);
bool _FAT_cache_eraseWritePartialSector ( CACHE* cache, const void* buffer, sec_t sector, unsigned int offset, size_t size );
/*
Read several sectors from the cache
*/
bool _FAT_cache_readSectors (CACHE* cache, sec_t sector, sec_t numSectors, void* buffer);
bool _FAT_cache_readSectors ( CACHE* cache, sec_t sector, sec_t numSectors, void* buffer );
/*
Read a full sector from the cache
*/
static inline bool _FAT_cache_readSector (CACHE* cache, void* buffer, sec_t sector) {
return _FAT_cache_readPartialSector (cache, buffer, sector, 0, BYTES_PER_READ);
static inline bool _FAT_cache_readSector ( CACHE* cache, void* buffer, sec_t sector )
{
return _FAT_cache_readPartialSector ( cache, buffer, sector, 0, BYTES_PER_READ );
}
/*
Write a full sector to the cache
*/
static inline bool _FAT_cache_writeSector (CACHE* cache, const void* buffer, sec_t sector) {
return _FAT_cache_writePartialSector (cache, buffer, sector, 0, BYTES_PER_READ);
static inline bool _FAT_cache_writeSector ( CACHE* cache, const void* buffer, sec_t sector )
{
return _FAT_cache_writePartialSector ( cache, buffer, sector, 0, BYTES_PER_READ );
}
bool _FAT_cache_writeSectors (CACHE* cache, sec_t sector, sec_t numSectors, const void* buffer);
bool _FAT_cache_writeSectors ( CACHE* cache, sec_t sector, sec_t numSectors, const void* buffer );
/*
Write any dirty sectors back to disc and clear out the contents of the cache
*/
bool _FAT_cache_flush (CACHE* cache);
bool _FAT_cache_flush ( CACHE* cache );
/*
Clear out the contents of the cache without writing any dirty sectors first
*/
void _FAT_cache_invalidate (CACHE* cache);
void _FAT_cache_invalidate ( CACHE* cache );
CACHE* _FAT_cache_constructor (unsigned int numberOfPages, unsigned int sectorsPerPage, const DISC_INTERFACE* discInterface, sec_t endOfPartition);
CACHE* _FAT_cache_constructor ( unsigned int numberOfPages, unsigned int sectorsPerPage, const DISC_INTERFACE* discInterface, sec_t endOfPartition );
void _FAT_cache_destructor (CACHE* cache);
void _FAT_cache_destructor ( CACHE* cache );
#endif // _CACHE_H

File diff suppressed because it is too large Load Diff

View File

@ -39,35 +39,36 @@
#include "common.h"
#include "directory.h"
typedef struct {
PARTITION* partition;
DIR_ENTRY currentEntry;
uint32_t startCluster;
bool inUse;
bool validEntry;
typedef struct
{
PARTITION* partition;
DIR_ENTRY currentEntry;
uint32_t startCluster;
bool inUse;
bool validEntry;
} DIR_STATE_STRUCT;
extern int _FAT_stat_r (struct _reent *r, const char *path, struct stat *st);
extern int _FAT_stat_r ( struct _reent *r, const char *path, struct stat *st );
extern int _FAT_link_r (struct _reent *r, const char *existing, const char *newLink);
extern int _FAT_link_r ( struct _reent *r, const char *existing, const char *newLink );
extern int _FAT_unlink_r (struct _reent *r, const char *name);
extern int _FAT_unlink_r ( struct _reent *r, const char *name );
extern int _FAT_chdir_r (struct _reent *r, const char *name);
extern int _FAT_chdir_r ( struct _reent *r, const char *name );
extern int _FAT_rename_r (struct _reent *r, const char *oldName, const char *newName);
extern int _FAT_rename_r ( struct _reent *r, const char *oldName, const char *newName );
extern int _FAT_mkdir_r (struct _reent *r, const char *path, int mode);
extern int _FAT_mkdir_r ( struct _reent *r, const char *path, int mode );
extern int _FAT_statvfs_r (struct _reent *r, const char *path, struct statvfs *buf);
extern int _FAT_statvfs_r ( struct _reent *r, const char *path, struct statvfs *buf );
/*
Directory iterator functions
*/
extern DIR_ITER* _FAT_diropen_r(struct _reent *r, DIR_ITER *dirState, const char *path);
extern int _FAT_dirreset_r (struct _reent *r, DIR_ITER *dirState);
extern int _FAT_dirnext_r (struct _reent *r, DIR_ITER *dirState, char *filename, struct stat *filestat);
extern int _FAT_dirclose_r (struct _reent *r, DIR_ITER *dirState);
extern DIR_ITER* _FAT_diropen_r( struct _reent *r, DIR_ITER *dirState, const char *path );
extern int _FAT_dirreset_r ( struct _reent *r, DIR_ITER *dirState );
extern int _FAT_dirnext_r ( struct _reent *r, DIR_ITER *dirState, char *filename, struct stat *filestat );
extern int _FAT_dirclose_r ( struct _reent *r, DIR_ITER *dirState );
#endif // _FATDIR_H

File diff suppressed because it is too large Load Diff

View File

@ -39,67 +39,69 @@
#include "partition.h"
#include "directory.h"
#define FILE_MAX_SIZE ((uint32_t)0xFFFFFFFF) // 4GiB - 1B
#define FILE_MAX_SIZE ((uint32_t)0xFFFFFFFF) // 4GiB - 1B
typedef struct {
u32 cluster;
sec_t sector;
s32 byte;
typedef struct
{
u32 cluster;
sec_t sector;
s32 byte;
} FILE_POSITION;
struct _FILE_STRUCT;
struct _FILE_STRUCT {
uint32_t filesize;
uint32_t startCluster;
uint32_t currentPosition;
FILE_POSITION rwPosition;
FILE_POSITION appendPosition;
DIR_ENTRY_POSITION dirEntryStart; // Points to the start of the LFN entries of a file, or the alias for no LFN
DIR_ENTRY_POSITION dirEntryEnd; // Always points to the file's alias entry
PARTITION* partition;
struct _FILE_STRUCT* prevOpenFile; // The previous entry in a double-linked list of open files
struct _FILE_STRUCT* nextOpenFile; // The next entry in a double-linked list of open files
bool read;
bool write;
bool append;
bool inUse;
bool modified;
struct _FILE_STRUCT
{
uint32_t filesize;
uint32_t startCluster;
uint32_t currentPosition;
FILE_POSITION rwPosition;
FILE_POSITION appendPosition;
DIR_ENTRY_POSITION dirEntryStart; // Points to the start of the LFN entries of a file, or the alias for no LFN
DIR_ENTRY_POSITION dirEntryEnd; // Always points to the file's alias entry
PARTITION* partition;
struct _FILE_STRUCT* prevOpenFile; // The previous entry in a double-linked list of open files
struct _FILE_STRUCT* nextOpenFile; // The next entry in a double-linked list of open files
bool read;
bool write;
bool append;
bool inUse;
bool modified;
};
typedef struct _FILE_STRUCT FILE_STRUCT;
extern int _FAT_open_r (struct _reent *r, void *fileStruct, const char *path, int flags, int mode);
extern int _FAT_open_r ( struct _reent *r, void *fileStruct, const char *path, int flags, int mode );
extern int _FAT_close_r (struct _reent *r, int fd);
extern int _FAT_close_r ( struct _reent *r, int fd );
extern ssize_t _FAT_write_r (struct _reent *r,int fd, const char *ptr, size_t len);
extern ssize_t _FAT_write_r ( struct _reent *r, int fd, const char *ptr, size_t len );
extern ssize_t _FAT_read_r (struct _reent *r, int fd, char *ptr, size_t len);
extern ssize_t _FAT_read_r ( struct _reent *r, int fd, char *ptr, size_t len );
extern off_t _FAT_seek_r (struct _reent *r, int fd, off_t pos, int dir);
extern off_t _FAT_seek_r ( struct _reent *r, int fd, off_t pos, int dir );
extern int _FAT_fstat_r (struct _reent *r, int fd, struct stat *st);
extern int _FAT_fstat_r ( struct _reent *r, int fd, struct stat *st );
extern int _FAT_stat_r (struct _reent *r, const char *path, struct stat *st);
extern int _FAT_stat_r ( struct _reent *r, const char *path, struct stat *st );
extern int _FAT_link_r (struct _reent *r, const char *existing, const char *newLink);
extern int _FAT_link_r ( struct _reent *r, const char *existing, const char *newLink );
extern int _FAT_unlink_r (struct _reent *r, const char *name);
extern int _FAT_unlink_r ( struct _reent *r, const char *name );
extern int _FAT_chdir_r (struct _reent *r, const char *name);
extern int _FAT_chdir_r ( struct _reent *r, const char *name );
extern int _FAT_rename_r (struct _reent *r, const char *oldName, const char *newName);
extern int _FAT_rename_r ( struct _reent *r, const char *oldName, const char *newName );
extern int _FAT_ftruncate_r (struct _reent *r, int fd, off_t len);
extern int _FAT_ftruncate_r ( struct _reent *r, int fd, off_t len );
extern int _FAT_fsync_r (struct _reent *r, int fd);
extern int _FAT_fsync_r ( struct _reent *r, int fd );
/*
Synchronizes the file data to disc.
Does no locking of its own -- lock the partition before calling.
Returns 0 on success, an error code on failure.
*/
extern int _FAT_syncToDisc (FILE_STRUCT* file);
extern int _FAT_syncToDisc ( FILE_STRUCT* file );
#endif // _FATFILE_H

View File

@ -35,166 +35,179 @@
/*
Gets the cluster linked from input cluster
*/
uint32_t _FAT_fat_nextCluster(PARTITION* partition, uint32_t cluster)
uint32_t _FAT_fat_nextCluster( PARTITION* partition, uint32_t cluster )
{
uint32_t nextCluster = CLUSTER_FREE;
sec_t sector;
int offset;
uint32_t nextCluster = CLUSTER_FREE;
sec_t sector;
int offset;
if (cluster == CLUSTER_FREE) {
return CLUSTER_FREE;
}
if ( cluster == CLUSTER_FREE )
{
return CLUSTER_FREE;
}
switch (partition->filesysType)
{
case FS_UNKNOWN:
return CLUSTER_ERROR;
break;
switch ( partition->filesysType )
{
case FS_UNKNOWN:
return CLUSTER_ERROR;
break;
case FS_FAT12:
{
u32 nextCluster_h;
sector = partition->fat.fatStart + (((cluster * 3) / 2) / BYTES_PER_READ);
offset = ((cluster * 3) / 2) % BYTES_PER_READ;
case FS_FAT12:
{
u32 nextCluster_h;
sector = partition->fat.fatStart + ( ( ( cluster * 3 ) / 2 ) / BYTES_PER_READ );
offset = ( ( cluster * 3 ) / 2 ) % BYTES_PER_READ;
_FAT_cache_readLittleEndianValue (partition->cache, &nextCluster, sector, offset, sizeof(u8));
_FAT_cache_readLittleEndianValue ( partition->cache, &nextCluster, sector, offset, sizeof( u8 ) );
offset++;
offset++;
if (offset >= BYTES_PER_READ) {
offset = 0;
sector++;
}
nextCluster_h = 0;
if ( offset >= BYTES_PER_READ )
{
offset = 0;
sector++;
}
nextCluster_h = 0;
_FAT_cache_readLittleEndianValue (partition->cache, &nextCluster_h, sector, offset, sizeof(u8));
nextCluster |= (nextCluster_h << 8);
_FAT_cache_readLittleEndianValue ( partition->cache, &nextCluster_h, sector, offset, sizeof( u8 ) );
nextCluster |= ( nextCluster_h << 8 );
if (cluster & 0x01) {
nextCluster = nextCluster >> 4;
} else {
nextCluster &= 0x0FFF;
}
if ( cluster & 0x01 )
{
nextCluster = nextCluster >> 4;
}
else
{
nextCluster &= 0x0FFF;
}
if (nextCluster >= 0x0FF7)
{
nextCluster = CLUSTER_EOF;
}
if ( nextCluster >= 0x0FF7 )
{
nextCluster = CLUSTER_EOF;
}
break;
}
case FS_FAT16:
sector = partition->fat.fatStart + ((cluster << 1) / BYTES_PER_READ);
offset = (cluster % (BYTES_PER_READ >> 1)) << 1;
break;
}
case FS_FAT16:
sector = partition->fat.fatStart + ( ( cluster << 1 ) / BYTES_PER_READ );
offset = ( cluster % ( BYTES_PER_READ >> 1 ) ) << 1;
_FAT_cache_readLittleEndianValue (partition->cache, &nextCluster, sector, offset, sizeof(u16));
_FAT_cache_readLittleEndianValue ( partition->cache, &nextCluster, sector, offset, sizeof( u16 ) );
if (nextCluster >= 0xFFF7) {
nextCluster = CLUSTER_EOF;
}
break;
if ( nextCluster >= 0xFFF7 )
{
nextCluster = CLUSTER_EOF;
}
break;
case FS_FAT32:
sector = partition->fat.fatStart + ((cluster << 2) / BYTES_PER_READ);
offset = (cluster % (BYTES_PER_READ >> 2)) << 2;
case FS_FAT32:
sector = partition->fat.fatStart + ( ( cluster << 2 ) / BYTES_PER_READ );
offset = ( cluster % ( BYTES_PER_READ >> 2 ) ) << 2;
_FAT_cache_readLittleEndianValue (partition->cache, &nextCluster, sector, offset, sizeof(u32));
_FAT_cache_readLittleEndianValue ( partition->cache, &nextCluster, sector, offset, sizeof( u32 ) );
if (nextCluster >= 0x0FFFFFF7) {
nextCluster = CLUSTER_EOF;
}
break;
if ( nextCluster >= 0x0FFFFFF7 )
{
nextCluster = CLUSTER_EOF;
}
break;
default:
return CLUSTER_ERROR;
break;
}
default:
return CLUSTER_ERROR;
break;
}
return nextCluster;
return nextCluster;
}
/*
writes value into the correct offset within a partition's FAT, based
on the cluster number.
*/
static bool _FAT_fat_writeFatEntry (PARTITION* partition, uint32_t cluster, uint32_t value) {
sec_t sector;
int offset;
uint32_t oldValue;
static bool _FAT_fat_writeFatEntry ( PARTITION* partition, uint32_t cluster, uint32_t value )
{
sec_t sector;
int offset;
uint32_t oldValue;
if ((cluster < CLUSTER_FIRST) || (cluster > partition->fat.lastCluster /* This will catch CLUSTER_ERROR */))
{
return false;
}
if ( ( cluster < CLUSTER_FIRST ) || ( cluster > partition->fat.lastCluster /* This will catch CLUSTER_ERROR */ ) )
{
return false;
}
switch (partition->filesysType)
{
case FS_UNKNOWN:
return false;
break;
switch ( partition->filesysType )
{
case FS_UNKNOWN:
return false;
break;
case FS_FAT12:
sector = partition->fat.fatStart + (((cluster * 3) / 2) / BYTES_PER_READ);
offset = ((cluster * 3) / 2) % BYTES_PER_READ;
case FS_FAT12:
sector = partition->fat.fatStart + ( ( ( cluster * 3 ) / 2 ) / BYTES_PER_READ );
offset = ( ( cluster * 3 ) / 2 ) % BYTES_PER_READ;
if (cluster & 0x01) {
if ( cluster & 0x01 )
{
_FAT_cache_readLittleEndianValue (partition->cache, &oldValue, sector, offset, sizeof(u8));
_FAT_cache_readLittleEndianValue ( partition->cache, &oldValue, sector, offset, sizeof( u8 ) );
value = (value << 4) | (oldValue & 0x0F);
value = ( value << 4 ) | ( oldValue & 0x0F );
_FAT_cache_writeLittleEndianValue (partition->cache, value & 0xFF, sector, offset, sizeof(u8));
_FAT_cache_writeLittleEndianValue ( partition->cache, value & 0xFF, sector, offset, sizeof( u8 ) );
offset++;
if (offset >= BYTES_PER_READ) {
offset = 0;
sector++;
}
offset++;
if ( offset >= BYTES_PER_READ )
{
offset = 0;
sector++;
}
_FAT_cache_writeLittleEndianValue (partition->cache, (value >> 8) & 0xFF, sector, offset, sizeof(u8));
_FAT_cache_writeLittleEndianValue ( partition->cache, ( value >> 8 ) & 0xFF, sector, offset, sizeof( u8 ) );
} else {
}
else
{
_FAT_cache_writeLittleEndianValue (partition->cache, value, sector, offset, sizeof(u8));
_FAT_cache_writeLittleEndianValue ( partition->cache, value, sector, offset, sizeof( u8 ) );
offset++;
if (offset >= BYTES_PER_READ) {
offset = 0;
sector++;
}
offset++;
if ( offset >= BYTES_PER_READ )
{
offset = 0;
sector++;
}
_FAT_cache_readLittleEndianValue (partition->cache, &oldValue, sector, offset, sizeof(u8));
_FAT_cache_readLittleEndianValue ( partition->cache, &oldValue, sector, offset, sizeof( u8 ) );
value = ((value >> 8) & 0x0F) | (oldValue & 0xF0);
value = ( ( value >> 8 ) & 0x0F ) | ( oldValue & 0xF0 );
_FAT_cache_writeLittleEndianValue (partition->cache, value, sector, offset, sizeof(u8));
}
_FAT_cache_writeLittleEndianValue ( partition->cache, value, sector, offset, sizeof( u8 ) );
}
break;
break;
case FS_FAT16:
sector = partition->fat.fatStart + ((cluster << 1) / BYTES_PER_READ);
offset = (cluster % (BYTES_PER_READ >> 1)) << 1;
case FS_FAT16:
sector = partition->fat.fatStart + ( ( cluster << 1 ) / BYTES_PER_READ );
offset = ( cluster % ( BYTES_PER_READ >> 1 ) ) << 1;
_FAT_cache_writeLittleEndianValue (partition->cache, value, sector, offset, sizeof(u16));
_FAT_cache_writeLittleEndianValue ( partition->cache, value, sector, offset, sizeof( u16 ) );
break;
break;
case FS_FAT32:
sector = partition->fat.fatStart + ((cluster << 2) / BYTES_PER_READ);
offset = (cluster % (BYTES_PER_READ >> 2)) << 2;
case FS_FAT32:
sector = partition->fat.fatStart + ( ( cluster << 2 ) / BYTES_PER_READ );
offset = ( cluster % ( BYTES_PER_READ >> 2 ) ) << 2;
_FAT_cache_writeLittleEndianValue (partition->cache, value, sector, offset, sizeof(u32));
_FAT_cache_writeLittleEndianValue ( partition->cache, value, sector, offset, sizeof( u32 ) );
break;
break;
default:
return false;
break;
}
default:
return false;
break;
}
return true;
return true;
}
/*-----------------------------------------------------------------
@ -203,58 +216,67 @@ to end of file, links the input cluster to it then returns the
cluster number
If an error occurs, return CLUSTER_ERROR
-----------------------------------------------------------------*/
uint32_t _FAT_fat_linkFreeCluster(PARTITION* partition, uint32_t cluster) {
uint32_t firstFree;
uint32_t curLink;
uint32_t lastCluster;
bool loopedAroundFAT = false;
uint32_t _FAT_fat_linkFreeCluster( PARTITION* partition, uint32_t cluster )
{
uint32_t firstFree;
uint32_t curLink;
uint32_t lastCluster;
bool loopedAroundFAT = false;
lastCluster = partition->fat.lastCluster;
lastCluster = partition->fat.lastCluster;
if (cluster > lastCluster) {
return CLUSTER_ERROR;
}
if ( cluster > lastCluster )
{
return CLUSTER_ERROR;
}
// Check if the cluster already has a link, and return it if so
curLink = _FAT_fat_nextCluster(partition, cluster);
if ((curLink >= CLUSTER_FIRST) && (curLink <= lastCluster)) {
return curLink; // Return the current link - don't allocate a new one
}
// Check if the cluster already has a link, and return it if so
curLink = _FAT_fat_nextCluster( partition, cluster );
if ( ( curLink >= CLUSTER_FIRST ) && ( curLink <= lastCluster ) )
{
return curLink; // Return the current link - don't allocate a new one
}
// Get a free cluster
firstFree = partition->fat.firstFree;
// Start at first valid cluster
if (firstFree < CLUSTER_FIRST) {
firstFree = CLUSTER_FIRST;
}
// Get a free cluster
firstFree = partition->fat.firstFree;
// Start at first valid cluster
if ( firstFree < CLUSTER_FIRST )
{
firstFree = CLUSTER_FIRST;
}
// Search until a free cluster is found
while (_FAT_fat_nextCluster(partition, firstFree) != CLUSTER_FREE) {
firstFree++;
if (firstFree > lastCluster) {
if (loopedAroundFAT) {
// If couldn't get a free cluster then return an error
partition->fat.firstFree = firstFree;
return CLUSTER_ERROR;
} else {
// Try looping back to the beginning of the FAT
// This was suggested by loopy
firstFree = CLUSTER_FIRST;
loopedAroundFAT = true;
}
}
}
partition->fat.firstFree = firstFree;
// Search until a free cluster is found
while ( _FAT_fat_nextCluster( partition, firstFree ) != CLUSTER_FREE )
{
firstFree++;
if ( firstFree > lastCluster )
{
if ( loopedAroundFAT )
{
// If couldn't get a free cluster then return an error
partition->fat.firstFree = firstFree;
return CLUSTER_ERROR;
}
else
{
// Try looping back to the beginning of the FAT
// This was suggested by loopy
firstFree = CLUSTER_FIRST;
loopedAroundFAT = true;
}
}
}
partition->fat.firstFree = firstFree;
if ((cluster >= CLUSTER_FIRST) && (cluster < lastCluster))
{
// Update the linked from FAT entry
_FAT_fat_writeFatEntry (partition, cluster, firstFree);
}
// Create the linked to FAT entry
_FAT_fat_writeFatEntry (partition, firstFree, CLUSTER_EOF);
if ( ( cluster >= CLUSTER_FIRST ) && ( cluster < lastCluster ) )
{
// Update the linked from FAT entry
_FAT_fat_writeFatEntry ( partition, cluster, firstFree );
}
// Create the linked to FAT entry
_FAT_fat_writeFatEntry ( partition, firstFree, CLUSTER_EOF );
return firstFree;
return firstFree;
}
/*-----------------------------------------------------------------
@ -263,27 +285,30 @@ to end of file, links the input cluster to it, clears the new
cluster to 0 valued bytes, then returns the cluster number
If an error occurs, return CLUSTER_ERROR
-----------------------------------------------------------------*/
uint32_t _FAT_fat_linkFreeClusterCleared (PARTITION* partition, uint32_t cluster) {
uint32_t newCluster;
uint32_t i;
uint8_t emptySector[BYTES_PER_READ];
uint32_t _FAT_fat_linkFreeClusterCleared ( PARTITION* partition, uint32_t cluster )
{
uint32_t newCluster;
uint32_t i;
uint8_t emptySector[BYTES_PER_READ];
// Link the cluster
newCluster = _FAT_fat_linkFreeCluster(partition, cluster);
// Link the cluster
newCluster = _FAT_fat_linkFreeCluster( partition, cluster );
if (newCluster == CLUSTER_FREE || newCluster == CLUSTER_ERROR) {
return CLUSTER_ERROR;
}
if ( newCluster == CLUSTER_FREE || newCluster == CLUSTER_ERROR )
{
return CLUSTER_ERROR;
}
// Clear all the sectors within the cluster
memset (emptySector, 0, BYTES_PER_READ);
for (i = 0; i < partition->sectorsPerCluster; i++) {
_FAT_cache_writeSectors (partition->cache,
_FAT_fat_clusterToSector (partition, newCluster) + i,
1, emptySector);
}
// Clear all the sectors within the cluster
memset ( emptySector, 0, BYTES_PER_READ );
for ( i = 0; i < partition->sectorsPerCluster; i++ )
{
_FAT_cache_writeSectors ( partition->cache,
_FAT_fat_clusterToSector ( partition, newCluster ) + i,
1, emptySector );
}
return newCluster;
return newCluster;
}
@ -291,29 +316,32 @@ uint32_t _FAT_fat_linkFreeClusterCleared (PARTITION* partition, uint32_t cluster
_FAT_fat_clearLinks
frees any cluster used by a file
-----------------------------------------------------------------*/
bool _FAT_fat_clearLinks (PARTITION* partition, uint32_t cluster) {
uint32_t nextCluster;
bool _FAT_fat_clearLinks ( PARTITION* partition, uint32_t cluster )
{
uint32_t nextCluster;
if ((cluster < CLUSTER_FIRST) || (cluster > partition->fat.lastCluster /* This will catch CLUSTER_ERROR */))
return false;
if ( ( cluster < CLUSTER_FIRST ) || ( cluster > partition->fat.lastCluster /* This will catch CLUSTER_ERROR */ ) )
return false;
// If this clears up more space in the FAT before the current free pointer, move it backwards
if (cluster < partition->fat.firstFree) {
partition->fat.firstFree = cluster;
}
// If this clears up more space in the FAT before the current free pointer, move it backwards
if ( cluster < partition->fat.firstFree )
{
partition->fat.firstFree = cluster;
}
while ((cluster != CLUSTER_EOF) && (cluster != CLUSTER_FREE) && (cluster != CLUSTER_ERROR)) {
// Store next cluster before erasing the link
nextCluster = _FAT_fat_nextCluster (partition, cluster);
while ( ( cluster != CLUSTER_EOF ) && ( cluster != CLUSTER_FREE ) && ( cluster != CLUSTER_ERROR ) )
{
// Store next cluster before erasing the link
nextCluster = _FAT_fat_nextCluster ( partition, cluster );
// Erase the link
_FAT_fat_writeFatEntry (partition, cluster, CLUSTER_FREE);
// Erase the link
_FAT_fat_writeFatEntry ( partition, cluster, CLUSTER_FREE );
// Move onto next cluster
cluster = nextCluster;
}
// Move onto next cluster
cluster = nextCluster;
}
return true;
return true;
}
/*-----------------------------------------------------------------
@ -324,60 +352,71 @@ If chainLength is 1, the first cluster is kept and the rest are
dropped, and so on.
Return the last cluster left in the chain.
-----------------------------------------------------------------*/
uint32_t _FAT_fat_trimChain (PARTITION* partition, uint32_t startCluster, unsigned int chainLength) {
uint32_t nextCluster;
uint32_t _FAT_fat_trimChain ( PARTITION* partition, uint32_t startCluster, unsigned int chainLength )
{
uint32_t nextCluster;
if (chainLength == 0) {
// Drop the entire chain
_FAT_fat_clearLinks (partition, startCluster);
return CLUSTER_FREE;
} else {
// Find the last cluster in the chain, and the one after it
chainLength--;
nextCluster = _FAT_fat_nextCluster (partition, startCluster);
while ((chainLength > 0) && (nextCluster != CLUSTER_FREE) && (nextCluster != CLUSTER_EOF)) {
chainLength--;
startCluster = nextCluster;
nextCluster = _FAT_fat_nextCluster (partition, startCluster);
}
if ( chainLength == 0 )
{
// Drop the entire chain
_FAT_fat_clearLinks ( partition, startCluster );
return CLUSTER_FREE;
}
else
{
// Find the last cluster in the chain, and the one after it
chainLength--;
nextCluster = _FAT_fat_nextCluster ( partition, startCluster );
while ( ( chainLength > 0 ) && ( nextCluster != CLUSTER_FREE ) && ( nextCluster != CLUSTER_EOF ) )
{
chainLength--;
startCluster = nextCluster;
nextCluster = _FAT_fat_nextCluster ( partition, startCluster );
}
// Drop all clusters after the last in the chain
if (nextCluster != CLUSTER_FREE && nextCluster != CLUSTER_EOF) {
_FAT_fat_clearLinks (partition, nextCluster);
}
// Drop all clusters after the last in the chain
if ( nextCluster != CLUSTER_FREE && nextCluster != CLUSTER_EOF )
{
_FAT_fat_clearLinks ( partition, nextCluster );
}
// Mark the last cluster in the chain as the end of the file
_FAT_fat_writeFatEntry (partition, startCluster, CLUSTER_EOF);
// Mark the last cluster in the chain as the end of the file
_FAT_fat_writeFatEntry ( partition, startCluster, CLUSTER_EOF );
return startCluster;
}
return startCluster;
}
}
/*-----------------------------------------------------------------
_FAT_fat_lastCluster
Trace the cluster links until the last one is found
-----------------------------------------------------------------*/
uint32_t _FAT_fat_lastCluster (PARTITION* partition, uint32_t cluster) {
while ((_FAT_fat_nextCluster(partition, cluster) != CLUSTER_FREE) && (_FAT_fat_nextCluster(partition, cluster) != CLUSTER_EOF)) {
cluster = _FAT_fat_nextCluster(partition, cluster);
}
return cluster;
uint32_t _FAT_fat_lastCluster ( PARTITION* partition, uint32_t cluster )
{
while ( ( _FAT_fat_nextCluster( partition, cluster ) != CLUSTER_FREE ) && ( _FAT_fat_nextCluster( partition, cluster ) != CLUSTER_EOF ) )
{
cluster = _FAT_fat_nextCluster( partition, cluster );
}
return cluster;
}
/*-----------------------------------------------------------------
_FAT_fat_freeClusterCount
Return the number of free clusters available
-----------------------------------------------------------------*/
unsigned int _FAT_fat_freeClusterCount (PARTITION* partition) {
unsigned int count = 0;
uint32_t curCluster;
unsigned int _FAT_fat_freeClusterCount ( PARTITION* partition )
{
unsigned int count = 0;
uint32_t curCluster;
for (curCluster = CLUSTER_FIRST; curCluster <= partition->fat.lastCluster; curCluster++) {
if (_FAT_fat_nextCluster(partition, curCluster) == CLUSTER_FREE) {
count++;
}
}
for ( curCluster = CLUSTER_FIRST; curCluster <= partition->fat.lastCluster; curCluster++ )
{
if ( _FAT_fat_nextCluster( partition, curCluster ) == CLUSTER_FREE )
{
count++;
}
}
return count;
return count;
}

View File

@ -33,38 +33,40 @@
#include "common.h"
#include "partition.h"
#define CLUSTER_EOF_16 0xFFFF
#define CLUSTER_EOF 0x0FFFFFFF
#define CLUSTER_FREE 0x00000000
#define CLUSTER_ROOT 0x00000000
#define CLUSTER_FIRST 0x00000002
#define CLUSTER_ERROR 0xFFFFFFFF
#define CLUSTER_EOF_16 0xFFFF
#define CLUSTER_EOF 0x0FFFFFFF
#define CLUSTER_FREE 0x00000000
#define CLUSTER_ROOT 0x00000000
#define CLUSTER_FIRST 0x00000002
#define CLUSTER_ERROR 0xFFFFFFFF
#define CLUSTERS_PER_FAT12 4085
#define CLUSTERS_PER_FAT16 65525
uint32_t _FAT_fat_nextCluster(PARTITION* partition, uint32_t cluster);
uint32_t _FAT_fat_nextCluster( PARTITION* partition, uint32_t cluster );
uint32_t _FAT_fat_linkFreeCluster(PARTITION* partition, uint32_t cluster);
uint32_t _FAT_fat_linkFreeClusterCleared (PARTITION* partition, uint32_t cluster);
uint32_t _FAT_fat_linkFreeCluster( PARTITION* partition, uint32_t cluster );
uint32_t _FAT_fat_linkFreeClusterCleared ( PARTITION* partition, uint32_t cluster );
bool _FAT_fat_clearLinks (PARTITION* partition, uint32_t cluster);
bool _FAT_fat_clearLinks ( PARTITION* partition, uint32_t cluster );
uint32_t _FAT_fat_trimChain (PARTITION* partition, uint32_t startCluster, unsigned int chainLength);
uint32_t _FAT_fat_trimChain ( PARTITION* partition, uint32_t startCluster, unsigned int chainLength );
uint32_t _FAT_fat_lastCluster (PARTITION* partition, uint32_t cluster);
uint32_t _FAT_fat_lastCluster ( PARTITION* partition, uint32_t cluster );
unsigned int _FAT_fat_freeClusterCount (PARTITION* partition);
unsigned int _FAT_fat_freeClusterCount ( PARTITION* partition );
static inline sec_t _FAT_fat_clusterToSector (PARTITION* partition, uint32_t cluster) {
return (cluster >= CLUSTER_FIRST) ?
((cluster - CLUSTER_FIRST) * (sec_t)partition->sectorsPerCluster) + partition->dataStart :
partition->rootDirStart;
static inline sec_t _FAT_fat_clusterToSector ( PARTITION* partition, uint32_t cluster )
{
return ( cluster >= CLUSTER_FIRST ) ?
( ( cluster - CLUSTER_FIRST ) * ( sec_t )partition->sectorsPerCluster ) + partition->dataStart :
partition->rootDirStart;
}
static inline bool _FAT_fat_isValidCluster (PARTITION* partition, uint32_t cluster) {
return (cluster >= CLUSTER_FIRST) && (cluster <= partition->fat.lastCluster /* This will catch CLUSTER_ERROR */);
static inline bool _FAT_fat_isValidCluster ( PARTITION* partition, uint32_t cluster )
{
return ( cluster >= CLUSTER_FIRST ) && ( cluster <= partition->fat.lastCluster /* This will catch CLUSTER_ERROR */ );
}
#endif // _FAT_H

View File

@ -40,68 +40,73 @@
#define MAX_DAY 31
#define MIN_DAY 1
uint16_t _FAT_filetime_getTimeFromRTC (void) {
uint16_t _FAT_filetime_getTimeFromRTC ( void )
{
#ifdef USE_RTC_TIME
struct tm timeParts;
time_t epochTime;
struct tm timeParts;
time_t epochTime;
if (time(&epochTime) == (time_t)-1) {
return 0;
}
localtime_r(&epochTime, &timeParts);
if ( time( &epochTime ) == ( time_t ) - 1 )
{
return 0;
}
localtime_r( &epochTime, &timeParts );
// Check that the values are all in range.
// If they are not, return 0 (no timestamp)
if ((timeParts.tm_hour < 0) || (timeParts.tm_hour > MAX_HOUR)) return 0;
if ((timeParts.tm_min < 0) || (timeParts.tm_min > MAX_MINUTE)) return 0;
if ((timeParts.tm_sec < 0) || (timeParts.tm_sec > MAX_SECOND)) return 0;
// Check that the values are all in range.
// If they are not, return 0 (no timestamp)
if ( ( timeParts.tm_hour < 0 ) || ( timeParts.tm_hour > MAX_HOUR ) ) return 0;
if ( ( timeParts.tm_min < 0 ) || ( timeParts.tm_min > MAX_MINUTE ) ) return 0;
if ( ( timeParts.tm_sec < 0 ) || ( timeParts.tm_sec > MAX_SECOND ) ) return 0;
return (
((timeParts.tm_hour & 0x1F) << 11) |
((timeParts.tm_min & 0x3F) << 5) |
((timeParts.tm_sec >> 1) & 0x1F)
);
return (
( ( timeParts.tm_hour & 0x1F ) << 11 ) |
( ( timeParts.tm_min & 0x3F ) << 5 ) |
( ( timeParts.tm_sec >> 1 ) & 0x1F )
);
#else
return 0;
return 0;
#endif
}
uint16_t _FAT_filetime_getDateFromRTC (void) {
uint16_t _FAT_filetime_getDateFromRTC ( void )
{
#ifdef USE_RTC_TIME
struct tm timeParts;
time_t epochTime;
struct tm timeParts;
time_t epochTime;
if (time(&epochTime) == (time_t)-1) {
return 0;
}
localtime_r(&epochTime, &timeParts);
if ( time( &epochTime ) == ( time_t ) - 1 )
{
return 0;
}
localtime_r( &epochTime, &timeParts );
if ((timeParts.tm_mon < MIN_MONTH) || (timeParts.tm_mon > MAX_MONTH)) return 0;
if ((timeParts.tm_mday < MIN_DAY) || (timeParts.tm_mday > MAX_DAY)) return 0;
if ( ( timeParts.tm_mon < MIN_MONTH ) || ( timeParts.tm_mon > MAX_MONTH ) ) return 0;
if ( ( timeParts.tm_mday < MIN_DAY ) || ( timeParts.tm_mday > MAX_DAY ) ) return 0;
return (
(((timeParts.tm_year - 80) & 0x7F) <<9) | // Adjust for MS-FAT base year (1980 vs 1900 for tm_year)
(((timeParts.tm_mon + 1) & 0xF) << 5) |
(timeParts.tm_mday & 0x1F)
);
return (
( ( ( timeParts.tm_year - 80 ) & 0x7F ) << 9 ) | // Adjust for MS-FAT base year (1980 vs 1900 for tm_year)
( ( ( timeParts.tm_mon + 1 ) & 0xF ) << 5 ) |
( timeParts.tm_mday & 0x1F )
);
#else
return 0;
return 0;
#endif
}
time_t _FAT_filetime_to_time_t (uint16_t t, uint16_t d) {
struct tm timeParts;
time_t _FAT_filetime_to_time_t ( uint16_t t, uint16_t d )
{
struct tm timeParts;
timeParts.tm_hour = t >> 11;
timeParts.tm_min = (t >> 5) & 0x3F;
timeParts.tm_sec = (t & 0x1F) << 1;
timeParts.tm_hour = t >> 11;
timeParts.tm_min = ( t >> 5 ) & 0x3F;
timeParts.tm_sec = ( t & 0x1F ) << 1;
timeParts.tm_mday = d & 0x1F;
timeParts.tm_mon = ((d >> 5) & 0x0F) - 1;
timeParts.tm_year = (d >> 9) + 80;
timeParts.tm_mday = d & 0x1F;
timeParts.tm_mon = ( ( d >> 5 ) & 0x0F ) - 1;
timeParts.tm_year = ( d >> 9 ) + 80;
timeParts.tm_isdst = 0;
timeParts.tm_isdst = 0;
return mktime(&timeParts);
return mktime( &timeParts );
}

View File

@ -32,10 +32,10 @@
#include "common.h"
#include <sys/types.h>
uint16_t _FAT_filetime_getTimeFromRTC (void);
uint16_t _FAT_filetime_getDateFromRTC (void);
uint16_t _FAT_filetime_getTimeFromRTC ( void );
uint16_t _FAT_filetime_getDateFromRTC ( void );
time_t _FAT_filetime_to_time_t (uint16_t t, uint16_t d);
time_t _FAT_filetime_to_time_t ( uint16_t t, uint16_t d );
#endif // _FILETIME_H

View File

@ -1,6 +1,6 @@
/*
libfat.c
Simple functionality for startup, mounting and unmounting of FAT-based devices.
libfat.c
Simple functionality for startup, mounting and unmounting of FAT-based devices.
Copyright (c) 2006 Michael "Chishm" Chisholm
@ -38,160 +38,178 @@
#include "mem_allocate.h"
#include "disc_fat.h"
static const devoptab_t dotab_fat = {
"fat",
sizeof (FILE_STRUCT),
_FAT_open_r,
_FAT_close_r,
_FAT_write_r,
_FAT_read_r,
_FAT_seek_r,
_FAT_fstat_r,
_FAT_stat_r,
_FAT_link_r,
_FAT_unlink_r,
_FAT_chdir_r,
_FAT_rename_r,
_FAT_mkdir_r,
sizeof (DIR_STATE_STRUCT),
_FAT_diropen_r,
_FAT_dirreset_r,
_FAT_dirnext_r,
_FAT_dirclose_r,
_FAT_statvfs_r,
_FAT_ftruncate_r,
_FAT_fsync_r,
NULL /* Device data */
static const devoptab_t dotab_fat =
{
"fat",
sizeof ( FILE_STRUCT ),
_FAT_open_r,
_FAT_close_r,
_FAT_write_r,
_FAT_read_r,
_FAT_seek_r,
_FAT_fstat_r,
_FAT_stat_r,
_FAT_link_r,
_FAT_unlink_r,
_FAT_chdir_r,
_FAT_rename_r,
_FAT_mkdir_r,
sizeof ( DIR_STATE_STRUCT ),
_FAT_diropen_r,
_FAT_dirreset_r,
_FAT_dirnext_r,
_FAT_dirclose_r,
_FAT_statvfs_r,
_FAT_ftruncate_r,
_FAT_fsync_r,
NULL /* Device data */
};
bool fatMount (const char* name, const DISC_INTERFACE* interface, sec_t startSector, uint32_t cacheSize, uint32_t SectorsPerPage) {
PARTITION* partition;
devoptab_t* devops;
char* nameCopy;
bool fatMount ( const char* name, const DISC_INTERFACE* interface, sec_t startSector, uint32_t cacheSize, uint32_t SectorsPerPage )
{
PARTITION* partition;
devoptab_t* devops;
char* nameCopy;
if(!interface->startup())
return false;
if ( !interface->startup() )
return false;
if(!interface->isInserted()) {
interface->shutdown();
return false;
}
if ( !interface->isInserted() )
{
interface->shutdown();
return false;
}
devops = _FAT_mem_allocate (sizeof(devoptab_t) + strlen(name) + 1);
if (!devops) {
interface->shutdown();
return false;
}
// Use the space allocated at the end of the devoptab struct for storing the name
nameCopy = (char*)(devops+1);
devops = _FAT_mem_allocate ( sizeof( devoptab_t ) + strlen( name ) + 1 );
if ( !devops )
{
interface->shutdown();
return false;
}
// Use the space allocated at the end of the devoptab struct for storing the name
nameCopy = ( char* )( devops + 1 );
// Initialize the file system
partition = _FAT_partition_constructor (interface, cacheSize, SectorsPerPage, startSector);
if (!partition) {
_FAT_mem_free (devops);
interface->shutdown();
return false;
}
// Initialize the file system
partition = _FAT_partition_constructor ( interface, cacheSize, SectorsPerPage, startSector );
if ( !partition )
{
_FAT_mem_free ( devops );
interface->shutdown();
return false;
}
// Add an entry for this device to the devoptab table
memcpy (devops, &dotab_fat, sizeof(dotab_fat));
strcpy (nameCopy, name);
devops->name = nameCopy;
devops->deviceData = partition;
// Add an entry for this device to the devoptab table
memcpy ( devops, &dotab_fat, sizeof( dotab_fat ) );
strcpy ( nameCopy, name );
devops->name = nameCopy;
devops->deviceData = partition;
AddDevice (devops);
AddDevice ( devops );
return true;
return true;
}
bool fatMountSimple (const char* name, const DISC_INTERFACE* interface) {
return fatMount (name, interface, 0, DEFAULT_CACHE_PAGES, DEFAULT_SECTORS_PAGE);
bool fatMountSimple ( const char* name, const DISC_INTERFACE* interface )
{
return fatMount ( name, interface, 0, DEFAULT_CACHE_PAGES, DEFAULT_SECTORS_PAGE );
}
void fatUnmount (const char* name) {
devoptab_t *devops;
PARTITION* partition;
const DISC_INTERFACE *disc;
void fatUnmount ( const char* name )
{
devoptab_t *devops;
PARTITION* partition;
const DISC_INTERFACE *disc;
devops = (devoptab_t*)GetDeviceOpTab (name);
if (!devops) {
return;
}
devops = ( devoptab_t* )GetDeviceOpTab ( name );
if ( !devops )
{
return;
}
// Perform a quick check to make sure we're dealing with a libfat controlled device
if (devops->open_r != dotab_fat.open_r) {
return;
}
// Perform a quick check to make sure we're dealing with a libfat controlled device
if ( devops->open_r != dotab_fat.open_r )
{
return;
}
if (RemoveDevice (name) == -1) {
return;
}
if ( RemoveDevice ( name ) == -1 )
{
return;
}
partition = (PARTITION*)devops->deviceData;
disc = partition->disc;
_FAT_partition_destructor (partition);
_FAT_mem_free (devops);
disc->shutdown();
partition = ( PARTITION* )devops->deviceData;
disc = partition->disc;
_FAT_partition_destructor ( partition );
_FAT_mem_free ( devops );
disc->shutdown();
}
bool fatInit (uint32_t cacheSize, bool setAsDefaultDevice) {
int i;
int defaultDevice = -1;
const DISC_INTERFACE *disc;
bool fatInit ( uint32_t cacheSize, bool setAsDefaultDevice )
{
int i;
int defaultDevice = -1;
const DISC_INTERFACE *disc;
for (i = 0;
_FAT_disc_interfaces[i].name != NULL && _FAT_disc_interfaces[i].getInterface != NULL;
i++)
{
disc = _FAT_disc_interfaces[i].getInterface();
if (fatMount (_FAT_disc_interfaces[i].name, disc, 0, cacheSize, DEFAULT_SECTORS_PAGE)) {
// The first device to successfully mount is set as the default
if (defaultDevice < 0) {
defaultDevice = i;
}
}
}
for ( i = 0;
_FAT_disc_interfaces[i].name != NULL && _FAT_disc_interfaces[i].getInterface != NULL;
i++ )
{
disc = _FAT_disc_interfaces[i].getInterface();
if ( fatMount ( _FAT_disc_interfaces[i].name, disc, 0, cacheSize, DEFAULT_SECTORS_PAGE ) )
{
// The first device to successfully mount is set as the default
if ( defaultDevice < 0 )
{
defaultDevice = i;
}
}
}
if (defaultDevice < 0) {
// None of our devices mounted
return false;
}
if ( defaultDevice < 0 )
{
// None of our devices mounted
return false;
}
if (setAsDefaultDevice) {
char filePath[MAXPATHLEN * 2];
strcpy (filePath, _FAT_disc_interfaces[defaultDevice].name);
strcat (filePath, ":/");
if ( setAsDefaultDevice )
{
char filePath[MAXPATHLEN * 2];
strcpy ( filePath, _FAT_disc_interfaces[defaultDevice].name );
strcat ( filePath, ":/" );
#ifdef ARGV_MAGIC
if ( __system_argv->argvMagic == ARGV_MAGIC && __system_argv->argc >= 1 && strrchr( __system_argv->argv[0], '/' )!=NULL ) {
// Check the app's path against each of our mounted devices, to see
// if we can support it. If so, change to that path.
for (i = 0;
_FAT_disc_interfaces[i].name != NULL && _FAT_disc_interfaces[i].getInterface != NULL;
i++)
{
if ( !strncasecmp( __system_argv->argv[0], _FAT_disc_interfaces[i].name,
strlen(_FAT_disc_interfaces[i].name)))
{
char *lastSlash;
strcpy(filePath, __system_argv->argv[0]);
lastSlash = strrchr( filePath, '/' );
if ( __system_argv->argvMagic == ARGV_MAGIC && __system_argv->argc >= 1 && strrchr( __system_argv->argv[0], '/' ) != NULL )
{
// Check the app's path against each of our mounted devices, to see
// if we can support it. If so, change to that path.
for ( i = 0;
_FAT_disc_interfaces[i].name != NULL && _FAT_disc_interfaces[i].getInterface != NULL;
i++ )
{
if ( !strncasecmp( __system_argv->argv[0], _FAT_disc_interfaces[i].name,
strlen( _FAT_disc_interfaces[i].name ) ) )
{
char *lastSlash;
strcpy( filePath, __system_argv->argv[0] );
lastSlash = strrchr( filePath, '/' );
if ( NULL != lastSlash) {
if ( *(lastSlash - 1) == ':') lastSlash++;
*lastSlash = 0;
}
}
}
}
if ( NULL != lastSlash )
{
if ( *( lastSlash - 1 ) == ':' ) lastSlash++;
*lastSlash = 0;
}
}
}
}
#endif
chdir (filePath);
}
chdir ( filePath );
}
return true;
return true;
}
bool fatInitDefault (void) {
return fatInit (DEFAULT_CACHE_PAGES, true);
bool fatInitDefault ( void )
{
return fatInit ( DEFAULT_CACHE_PAGES, true );
}

View File

@ -1,9 +1,9 @@
#ifndef __LIBFATVERSION_H__
#define __LIBFATVERSION_H__
#define _LIBFAT_MAJOR_ 1
#define _LIBFAT_MINOR_ 0
#define _LIBFAT_PATCH_ 7
#define _LIBFAT_MAJOR_ 1
#define _LIBFAT_MINOR_ 0
#define _LIBFAT_PATCH_ 7
#define _LIBFAT_STRING "libFAT Release 1.0.7"

View File

@ -33,24 +33,24 @@
#ifdef USE_LWP_LOCK
static inline void _FAT_lock_init(mutex_t *mutex)
static inline void _FAT_lock_init( mutex_t *mutex )
{
LWP_MutexInit(mutex, false);
LWP_MutexInit( mutex, false );
}
static inline void _FAT_lock_deinit(mutex_t *mutex)
static inline void _FAT_lock_deinit( mutex_t *mutex )
{
LWP_MutexDestroy(*mutex);
LWP_MutexDestroy( *mutex );
}
static inline void _FAT_lock(mutex_t *mutex)
static inline void _FAT_lock( mutex_t *mutex )
{
LWP_MutexLock(*mutex);
LWP_MutexLock( *mutex );
}
static inline void _FAT_unlock(mutex_t *mutex)
static inline void _FAT_unlock( mutex_t *mutex )
{
LWP_MutexUnlock(*mutex);
LWP_MutexUnlock( *mutex );
}
#else
@ -60,24 +60,24 @@ static inline void _FAT_unlock(mutex_t *mutex)
typedef int mutex_t;
#endif
static inline void _FAT_lock_init(mutex_t *mutex)
static inline void _FAT_lock_init( mutex_t *mutex )
{
return;
return;
}
static inline void _FAT_lock_deinit(mutex_t *mutex)
static inline void _FAT_lock_deinit( mutex_t *mutex )
{
return;
return;
}
static inline void _FAT_lock(mutex_t *mutex)
static inline void _FAT_lock( mutex_t *mutex )
{
return;
return;
}
static inline void _FAT_unlock(mutex_t *mutex)
static inline void _FAT_unlock( mutex_t *mutex )
{
return;
return;
}
#endif // USE_LWP_LOCK

View File

@ -33,17 +33,20 @@
#include <malloc.h>
static inline void* _FAT_mem_allocate (size_t size) {
return malloc (size);
static inline void* _FAT_mem_allocate ( size_t size )
{
return malloc ( size );
}
static inline void* _FAT_mem_align (size_t size) {
static inline void* _FAT_mem_align ( size_t size )
{
return memalign (32, size);
return memalign ( 32, size );
}
static inline void _FAT_mem_free (void* mem) {
free (mem);
static inline void _FAT_mem_free ( void* mem )
{
free ( mem );
}
#endif // _MEM_ALLOCATE_H

View File

@ -50,263 +50,298 @@ Data offsets
*/
// BIOS Parameter Block offsets
enum BPB {
BPB_jmpBoot = 0x00,
BPB_OEMName = 0x03,
// BIOS Parameter Block
BPB_bytesPerSector = 0x0B,
BPB_sectorsPerCluster = 0x0D,
BPB_reservedSectors = 0x0E,
BPB_numFATs = 0x10,
BPB_rootEntries = 0x11,
BPB_numSectorsSmall = 0x13,
BPB_mediaDesc = 0x15,
BPB_sectorsPerFAT = 0x16,
BPB_sectorsPerTrk = 0x18,
BPB_numHeads = 0x1A,
BPB_numHiddenSectors = 0x1C,
BPB_numSectors = 0x20,
// Ext BIOS Parameter Block for FAT16
BPB_FAT16_driveNumber = 0x24,
BPB_FAT16_reserved1 = 0x25,
BPB_FAT16_extBootSig = 0x26,
BPB_FAT16_volumeID = 0x27,
BPB_FAT16_volumeLabel = 0x2B,
BPB_FAT16_fileSysType = 0x36,
// Bootcode
BPB_FAT16_bootCode = 0x3E,
// FAT32 extended block
BPB_FAT32_sectorsPerFAT32 = 0x24,
BPB_FAT32_extFlags = 0x28,
BPB_FAT32_fsVer = 0x2A,
BPB_FAT32_rootClus = 0x2C,
BPB_FAT32_fsInfo = 0x30,
BPB_FAT32_bkBootSec = 0x32,
// Ext BIOS Parameter Block for FAT32
BPB_FAT32_driveNumber = 0x40,
BPB_FAT32_reserved1 = 0x41,
BPB_FAT32_extBootSig = 0x42,
BPB_FAT32_volumeID = 0x43,
BPB_FAT32_volumeLabel = 0x47,
BPB_FAT32_fileSysType = 0x52,
// Bootcode
BPB_FAT32_bootCode = 0x5A,
BPB_bootSig_55 = 0x1FE,
BPB_bootSig_AA = 0x1FF
enum BPB
{
BPB_jmpBoot = 0x00,
BPB_OEMName = 0x03,
// BIOS Parameter Block
BPB_bytesPerSector = 0x0B,
BPB_sectorsPerCluster = 0x0D,
BPB_reservedSectors = 0x0E,
BPB_numFATs = 0x10,
BPB_rootEntries = 0x11,
BPB_numSectorsSmall = 0x13,
BPB_mediaDesc = 0x15,
BPB_sectorsPerFAT = 0x16,
BPB_sectorsPerTrk = 0x18,
BPB_numHeads = 0x1A,
BPB_numHiddenSectors = 0x1C,
BPB_numSectors = 0x20,
// Ext BIOS Parameter Block for FAT16
BPB_FAT16_driveNumber = 0x24,
BPB_FAT16_reserved1 = 0x25,
BPB_FAT16_extBootSig = 0x26,
BPB_FAT16_volumeID = 0x27,
BPB_FAT16_volumeLabel = 0x2B,
BPB_FAT16_fileSysType = 0x36,
// Bootcode
BPB_FAT16_bootCode = 0x3E,
// FAT32 extended block
BPB_FAT32_sectorsPerFAT32 = 0x24,
BPB_FAT32_extFlags = 0x28,
BPB_FAT32_fsVer = 0x2A,
BPB_FAT32_rootClus = 0x2C,
BPB_FAT32_fsInfo = 0x30,
BPB_FAT32_bkBootSec = 0x32,
// Ext BIOS Parameter Block for FAT32
BPB_FAT32_driveNumber = 0x40,
BPB_FAT32_reserved1 = 0x41,
BPB_FAT32_extBootSig = 0x42,
BPB_FAT32_volumeID = 0x43,
BPB_FAT32_volumeLabel = 0x47,
BPB_FAT32_fileSysType = 0x52,
// Bootcode
BPB_FAT32_bootCode = 0x5A,
BPB_bootSig_55 = 0x1FE,
BPB_bootSig_AA = 0x1FF
};
static const char FAT_SIG[3] = {'F', 'A', 'T'};
sec_t FindFirstValidPartition(const DISC_INTERFACE* disc)
sec_t FindFirstValidPartition( const DISC_INTERFACE* disc )
{
uint8_t part_table[16*4];
uint8_t *ptr;
int i;
uint8_t part_table[16*4];
uint8_t *ptr;
int i;
uint8_t sectorBuffer[BYTES_PER_READ] = {0};
uint8_t sectorBuffer[BYTES_PER_READ] = {0};
// Read first sector of disc
if (!_FAT_disc_readSectors (disc, 0, 1, sectorBuffer)) {
return 0;
}
// Read first sector of disc
if ( !_FAT_disc_readSectors ( disc, 0, 1, sectorBuffer ) )
{
return 0;
}
memcpy(part_table,sectorBuffer+0x1BE,16*4);
ptr = part_table;
memcpy( part_table, sectorBuffer + 0x1BE, 16*4 );
ptr = part_table;
for(i=0;i<4;i++,ptr+=16) {
sec_t part_lba = u8array_to_u32(ptr, 0x8);
for ( i = 0; i < 4; i++, ptr += 16 )
{
sec_t part_lba = u8array_to_u32( ptr, 0x8 );
if (!memcmp(sectorBuffer + BPB_FAT16_fileSysType, FAT_SIG, sizeof(FAT_SIG)) ||
!memcmp(sectorBuffer + BPB_FAT32_fileSysType, FAT_SIG, sizeof(FAT_SIG))) {
return part_lba;
}
if ( !memcmp( sectorBuffer + BPB_FAT16_fileSysType, FAT_SIG, sizeof( FAT_SIG ) ) ||
!memcmp( sectorBuffer + BPB_FAT32_fileSysType, FAT_SIG, sizeof( FAT_SIG ) ) )
{
return part_lba;
}
if(ptr[4]==0) continue;
if ( ptr[4] == 0 ) continue;
if(ptr[4]==0x0F) {
sec_t part_lba2=part_lba;
sec_t next_lba2=0;
int n;
if ( ptr[4] == 0x0F )
{
sec_t part_lba2 = part_lba;
sec_t next_lba2 = 0;
int n;
for(n=0;n<8;n++) // max 8 logic partitions
{
if(!_FAT_disc_readSectors (disc, part_lba+next_lba2, 1, sectorBuffer)) return 0;
for ( n = 0; n < 8; n++ ) // max 8 logic partitions
{
if ( !_FAT_disc_readSectors ( disc, part_lba + next_lba2, 1, sectorBuffer ) ) return 0;
part_lba2 = part_lba + next_lba2 + u8array_to_u32(sectorBuffer, 0x1C6) ;
next_lba2 = u8array_to_u32(sectorBuffer, 0x1D6);
part_lba2 = part_lba + next_lba2 + u8array_to_u32( sectorBuffer, 0x1C6 ) ;
next_lba2 = u8array_to_u32( sectorBuffer, 0x1D6 );
if(!_FAT_disc_readSectors (disc, part_lba2, 1, sectorBuffer)) return 0;
if ( !_FAT_disc_readSectors ( disc, part_lba2, 1, sectorBuffer ) ) return 0;
if (!memcmp(sectorBuffer + BPB_FAT16_fileSysType, FAT_SIG, sizeof(FAT_SIG)) ||
!memcmp(sectorBuffer + BPB_FAT32_fileSysType, FAT_SIG, sizeof(FAT_SIG)))
{
return part_lba2;
}
if ( !memcmp( sectorBuffer + BPB_FAT16_fileSysType, FAT_SIG, sizeof( FAT_SIG ) ) ||
!memcmp( sectorBuffer + BPB_FAT32_fileSysType, FAT_SIG, sizeof( FAT_SIG ) ) )
{
return part_lba2;
}
if(next_lba2==0) break;
}
} else {
if(!_FAT_disc_readSectors (disc, part_lba, 1, sectorBuffer)) return 0;
if (!memcmp(sectorBuffer + BPB_FAT16_fileSysType, FAT_SIG, sizeof(FAT_SIG)) ||
!memcmp(sectorBuffer + BPB_FAT32_fileSysType, FAT_SIG, sizeof(FAT_SIG))) {
return part_lba;
}
}
}
return 0;
if ( next_lba2 == 0 ) break;
}
}
else
{
if ( !_FAT_disc_readSectors ( disc, part_lba, 1, sectorBuffer ) ) return 0;
if ( !memcmp( sectorBuffer + BPB_FAT16_fileSysType, FAT_SIG, sizeof( FAT_SIG ) ) ||
!memcmp( sectorBuffer + BPB_FAT32_fileSysType, FAT_SIG, sizeof( FAT_SIG ) ) )
{
return part_lba;
}
}
}
return 0;
}
PARTITION* _FAT_partition_constructor (const DISC_INTERFACE* disc, uint32_t cacheSize, uint32_t sectorsPerPage, sec_t startSector) {
PARTITION* partition;
uint8_t sectorBuffer[BYTES_PER_READ] = {0};
PARTITION* _FAT_partition_constructor ( const DISC_INTERFACE* disc, uint32_t cacheSize, uint32_t sectorsPerPage, sec_t startSector )
{
PARTITION* partition;
uint8_t sectorBuffer[BYTES_PER_READ] = {0};
// Read first sector of disc
if (!_FAT_disc_readSectors (disc, startSector, 1, sectorBuffer)) {
return NULL;
}
// Read first sector of disc
if ( !_FAT_disc_readSectors ( disc, startSector, 1, sectorBuffer ) )
{
return NULL;
}
// Make sure it is a valid MBR or boot sector
if ( (sectorBuffer[BPB_bootSig_55] != 0x55) || (sectorBuffer[BPB_bootSig_AA] != 0xAA)) {
return NULL;
}
// Make sure it is a valid MBR or boot sector
if ( ( sectorBuffer[BPB_bootSig_55] != 0x55 ) || ( sectorBuffer[BPB_bootSig_AA] != 0xAA ) )
{
return NULL;
}
if (startSector != 0) {
// We're told where to start the partition, so just accept it
} else if (!memcmp(sectorBuffer + BPB_FAT16_fileSysType, FAT_SIG, sizeof(FAT_SIG))) {
// Check if there is a FAT string, which indicates this is a boot sector
startSector = 0;
} else if (!memcmp(sectorBuffer + BPB_FAT32_fileSysType, FAT_SIG, sizeof(FAT_SIG))) {
// Check for FAT32
startSector = 0;
} else {
startSector = FindFirstValidPartition(disc);
if (!_FAT_disc_readSectors (disc, startSector, 1, sectorBuffer)) {
return NULL;
}
}
if ( startSector != 0 )
{
// We're told where to start the partition, so just accept it
}
else if ( !memcmp( sectorBuffer + BPB_FAT16_fileSysType, FAT_SIG, sizeof( FAT_SIG ) ) )
{
// Check if there is a FAT string, which indicates this is a boot sector
startSector = 0;
}
else if ( !memcmp( sectorBuffer + BPB_FAT32_fileSysType, FAT_SIG, sizeof( FAT_SIG ) ) )
{
// Check for FAT32
startSector = 0;
}
else
{
startSector = FindFirstValidPartition( disc );
if ( !_FAT_disc_readSectors ( disc, startSector, 1, sectorBuffer ) )
{
return NULL;
}
}
// Now verify that this is indeed a FAT partition
if (memcmp(sectorBuffer + BPB_FAT16_fileSysType, FAT_SIG, sizeof(FAT_SIG)) &&
memcmp(sectorBuffer + BPB_FAT32_fileSysType, FAT_SIG, sizeof(FAT_SIG)))
{
return NULL;
}
// Now verify that this is indeed a FAT partition
if ( memcmp( sectorBuffer + BPB_FAT16_fileSysType, FAT_SIG, sizeof( FAT_SIG ) ) &&
memcmp( sectorBuffer + BPB_FAT32_fileSysType, FAT_SIG, sizeof( FAT_SIG ) ) )
{
return NULL;
}
// check again for the last two cases to make sure that we really have a FAT filesystem here
// and won't corrupt any data
if(memcmp(sectorBuffer + BPB_FAT16_fileSysType, "FAT", 3) != 0 && memcmp(sectorBuffer + BPB_FAT32_fileSysType, "FAT32", 5) != 0)
{
return NULL;
}
// check again for the last two cases to make sure that we really have a FAT filesystem here
// and won't corrupt any data
if ( memcmp( sectorBuffer + BPB_FAT16_fileSysType, "FAT", 3 ) != 0 && memcmp( sectorBuffer + BPB_FAT32_fileSysType, "FAT32", 5 ) != 0 )
{
return NULL;
}
partition = (PARTITION*) _FAT_mem_allocate (sizeof(PARTITION));
if (partition == NULL) {
return NULL;
}
partition = ( PARTITION* ) _FAT_mem_allocate ( sizeof( PARTITION ) );
if ( partition == NULL )
{
return NULL;
}
_FAT_startSector = startSector;
_FAT_startSector = startSector;
// Init the partition lock
_FAT_lock_init(&partition->lock);
// Init the partition lock
_FAT_lock_init( &partition->lock );
// Set partition's disc interface
partition->disc = disc;
// Set partition's disc interface
partition->disc = disc;
// Store required information about the file system
partition->fat.sectorsPerFat = u8array_to_u16(sectorBuffer, BPB_sectorsPerFAT);
if (partition->fat.sectorsPerFat == 0) {
partition->fat.sectorsPerFat = u8array_to_u32( sectorBuffer, BPB_FAT32_sectorsPerFAT32);
}
// Store required information about the file system
partition->fat.sectorsPerFat = u8array_to_u16( sectorBuffer, BPB_sectorsPerFAT );
if ( partition->fat.sectorsPerFat == 0 )
{
partition->fat.sectorsPerFat = u8array_to_u32( sectorBuffer, BPB_FAT32_sectorsPerFAT32 );
}
partition->numberOfSectors = u8array_to_u16( sectorBuffer, BPB_numSectorsSmall);
if (partition->numberOfSectors == 0) {
partition->numberOfSectors = u8array_to_u32( sectorBuffer, BPB_numSectors);
}
partition->numberOfSectors = u8array_to_u16( sectorBuffer, BPB_numSectorsSmall );
if ( partition->numberOfSectors == 0 )
{
partition->numberOfSectors = u8array_to_u32( sectorBuffer, BPB_numSectors );
}
partition->bytesPerSector = BYTES_PER_READ; // Sector size is redefined to be 512 bytes
partition->sectorsPerCluster = sectorBuffer[BPB_sectorsPerCluster] * u8array_to_u16(sectorBuffer, BPB_bytesPerSector) / BYTES_PER_READ;
partition->bytesPerCluster = partition->bytesPerSector * partition->sectorsPerCluster;
partition->fat.fatStart = startSector + u8array_to_u16(sectorBuffer, BPB_reservedSectors);
partition->bytesPerSector = BYTES_PER_READ; // Sector size is redefined to be 512 bytes
partition->sectorsPerCluster = sectorBuffer[BPB_sectorsPerCluster] * u8array_to_u16( sectorBuffer, BPB_bytesPerSector ) / BYTES_PER_READ;
partition->bytesPerCluster = partition->bytesPerSector * partition->sectorsPerCluster;
partition->fat.fatStart = startSector + u8array_to_u16( sectorBuffer, BPB_reservedSectors );
partition->rootDirStart = partition->fat.fatStart + (sectorBuffer[BPB_numFATs] * partition->fat.sectorsPerFat);
partition->dataStart = partition->rootDirStart +
(( u8array_to_u16(sectorBuffer, BPB_rootEntries) * DIR_ENTRY_DATA_SIZE) / partition->bytesPerSector);
partition->rootDirStart = partition->fat.fatStart + ( sectorBuffer[BPB_numFATs] * partition->fat.sectorsPerFat );
partition->dataStart = partition->rootDirStart +
( ( u8array_to_u16( sectorBuffer, BPB_rootEntries ) * DIR_ENTRY_DATA_SIZE ) / partition->bytesPerSector );
partition->totalSize = ((uint64_t)partition->numberOfSectors - (partition->dataStart - startSector)) * (uint64_t)partition->bytesPerSector;
partition->totalSize = ( ( uint64_t )partition->numberOfSectors - ( partition->dataStart - startSector ) ) * ( uint64_t )partition->bytesPerSector;
// Store info about FAT
uint32_t clusterCount = (partition->numberOfSectors - (uint32_t)(partition->dataStart - startSector)) / partition->sectorsPerCluster;
partition->fat.lastCluster = clusterCount + CLUSTER_FIRST - 1;
partition->fat.firstFree = CLUSTER_FIRST;
// Store info about FAT
uint32_t clusterCount = ( partition->numberOfSectors - ( uint32_t )( partition->dataStart - startSector ) ) / partition->sectorsPerCluster;
partition->fat.lastCluster = clusterCount + CLUSTER_FIRST - 1;
partition->fat.firstFree = CLUSTER_FIRST;
if (clusterCount < CLUSTERS_PER_FAT12) {
partition->filesysType = FS_FAT12; // FAT12 volume
} else if (clusterCount < CLUSTERS_PER_FAT16) {
partition->filesysType = FS_FAT16; // FAT16 volume
} else {
partition->filesysType = FS_FAT32; // FAT32 volume
}
if ( clusterCount < CLUSTERS_PER_FAT12 )
{
partition->filesysType = FS_FAT12; // FAT12 volume
}
else if ( clusterCount < CLUSTERS_PER_FAT16 )
{
partition->filesysType = FS_FAT16; // FAT16 volume
}
else
{
partition->filesysType = FS_FAT32; // FAT32 volume
}
if (partition->filesysType != FS_FAT32) {
partition->rootDirCluster = FAT16_ROOT_DIR_CLUSTER;
} else {
// Set up for the FAT32 way
partition->rootDirCluster = u8array_to_u32(sectorBuffer, BPB_FAT32_rootClus);
// Check if FAT mirroring is enabled
if (!(sectorBuffer[BPB_FAT32_extFlags] & 0x80)) {
// Use the active FAT
partition->fat.fatStart = partition->fat.fatStart + ( partition->fat.sectorsPerFat * (sectorBuffer[BPB_FAT32_extFlags] & 0x0F));
}
}
if ( partition->filesysType != FS_FAT32 )
{
partition->rootDirCluster = FAT16_ROOT_DIR_CLUSTER;
}
else
{
// Set up for the FAT32 way
partition->rootDirCluster = u8array_to_u32( sectorBuffer, BPB_FAT32_rootClus );
// Check if FAT mirroring is enabled
if ( !( sectorBuffer[BPB_FAT32_extFlags] & 0x80 ) )
{
// Use the active FAT
partition->fat.fatStart = partition->fat.fatStart + ( partition->fat.sectorsPerFat * ( sectorBuffer[BPB_FAT32_extFlags] & 0x0F ) );
}
}
// Create a cache to use
partition->cache = _FAT_cache_constructor (cacheSize, sectorsPerPage, partition->disc, startSector+partition->numberOfSectors);
// Create a cache to use
partition->cache = _FAT_cache_constructor ( cacheSize, sectorsPerPage, partition->disc, startSector + partition->numberOfSectors );
// Set current directory to the root
partition->cwdCluster = partition->rootDirCluster;
// Set current directory to the root
partition->cwdCluster = partition->rootDirCluster;
// Check if this disc is writable, and set the readOnly property appropriately
partition->readOnly = !(_FAT_disc_features(disc) & FEATURE_MEDIUM_CANWRITE);
// Check if this disc is writable, and set the readOnly property appropriately
partition->readOnly = !( _FAT_disc_features( disc ) & FEATURE_MEDIUM_CANWRITE );
// There are currently no open files on this partition
partition->openFileCount = 0;
partition->firstOpenFile = NULL;
// There are currently no open files on this partition
partition->openFileCount = 0;
partition->firstOpenFile = NULL;
return partition;
return partition;
}
void _FAT_partition_destructor (PARTITION* partition) {
FILE_STRUCT* nextFile;
void _FAT_partition_destructor ( PARTITION* partition )
{
FILE_STRUCT* nextFile;
_FAT_lock(&partition->lock);
_FAT_lock( &partition->lock );
// Synchronize open files
nextFile = partition->firstOpenFile;
while (nextFile) {
_FAT_syncToDisc (nextFile);
nextFile = nextFile->nextOpenFile;
}
// Synchronize open files
nextFile = partition->firstOpenFile;
while ( nextFile )
{
_FAT_syncToDisc ( nextFile );
nextFile = nextFile->nextOpenFile;
}
// Free memory used by the cache, writing it to disc at the same time
_FAT_cache_destructor (partition->cache);
// Free memory used by the cache, writing it to disc at the same time
_FAT_cache_destructor ( partition->cache );
// Unlock the partition and destroy the lock
_FAT_unlock(&partition->lock);
_FAT_lock_deinit(&partition->lock);
// Unlock the partition and destroy the lock
_FAT_unlock( &partition->lock );
_FAT_lock_deinit( &partition->lock );
// Free memory used by the partition
_FAT_mem_free (partition);
// Free memory used by the partition
_FAT_mem_free ( partition );
}
PARTITION* _FAT_partition_getPartitionFromPath (const char* path) {
const devoptab_t *devops;
PARTITION* _FAT_partition_getPartitionFromPath ( const char* path )
{
const devoptab_t *devops;
devops = GetDeviceOpTab (path);
devops = GetDeviceOpTab ( path );
if (!devops) {
return NULL;
}
if ( !devops )
{
return NULL;
}
return (PARTITION*)devops->deviceData;
return ( PARTITION* )devops->deviceData;
}

View File

@ -40,49 +40,51 @@ extern const char* DEVICE_NAME;
// Filesystem type
typedef enum {FS_UNKNOWN, FS_FAT12, FS_FAT16, FS_FAT32} FS_TYPE;
typedef struct {
sec_t fatStart;
uint32_t sectorsPerFat;
uint32_t lastCluster;
uint32_t firstFree;
typedef struct
{
sec_t fatStart;
uint32_t sectorsPerFat;
uint32_t lastCluster;
uint32_t firstFree;
} FAT;
typedef struct {
const DISC_INTERFACE* disc;
CACHE* cache;
// Info about the partition
FS_TYPE filesysType;
uint64_t totalSize;
sec_t rootDirStart;
uint32_t rootDirCluster;
uint32_t numberOfSectors;
sec_t dataStart;
uint32_t bytesPerSector;
uint32_t sectorsPerCluster;
uint32_t bytesPerCluster;
FAT fat;
// Values that may change after construction
uint32_t cwdCluster; // Current working directory cluster
int openFileCount;
struct _FILE_STRUCT* firstOpenFile; // The start of a linked list of files
mutex_t lock; // A lock for partition operations
bool readOnly; // If this is set, then do not try writing to the disc
typedef struct
{
const DISC_INTERFACE* disc;
CACHE* cache;
// Info about the partition
FS_TYPE filesysType;
uint64_t totalSize;
sec_t rootDirStart;
uint32_t rootDirCluster;
uint32_t numberOfSectors;
sec_t dataStart;
uint32_t bytesPerSector;
uint32_t sectorsPerCluster;
uint32_t bytesPerCluster;
FAT fat;
// Values that may change after construction
uint32_t cwdCluster; // Current working directory cluster
int openFileCount;
struct _FILE_STRUCT* firstOpenFile; // The start of a linked list of files
mutex_t lock; // A lock for partition operations
bool readOnly; // If this is set, then do not try writing to the disc
} PARTITION;
/*
Mount the supplied device and return a pointer to the struct necessary to use it
*/
PARTITION* _FAT_partition_constructor (const DISC_INTERFACE* disc, uint32_t cacheSize, uint32_t SectorsPerPage, sec_t startSector);
PARTITION* _FAT_partition_constructor ( const DISC_INTERFACE* disc, uint32_t cacheSize, uint32_t SectorsPerPage, sec_t startSector );
/*
Dismount the device and free all structures used.
Will also attempt to synchronise all open files to disc.
*/
void _FAT_partition_destructor (PARTITION* partition);
void _FAT_partition_destructor ( PARTITION* partition );
/*
Return the partition specified in a path, as taken from the devoptab.
*/
PARTITION* _FAT_partition_getPartitionFromPath (const char* path);
PARTITION* _FAT_partition_getPartitionFromPath ( const char* path );
#endif // _PARTITION_H

File diff suppressed because it is too large Load Diff

View File

@ -25,30 +25,30 @@
#define ACLS_H
/*
* JPA configuration modes for security.c / acls.c
* should be moved to some config file
* JPA configuration modes for security.c / acls.c
* should be moved to some config file
*/
#define BUFSZ 1024 /* buffer size to read mapping file */
#define BUFSZ 1024 /* buffer size to read mapping file */
#define MAPPINGFILE ".NTFS-3G/UserMapping" /* default mapping file */
#define LINESZ 120 /* maximum useful size of a mapping line */
#define CACHE_PERMISSIONS_BITS 6 /* log2 of unitary allocation of permissions */
#define CACHE_PERMISSIONS_SIZE 262144 /* max cacheable permissions */
/*
* JPA The following must be in some library...
* but did not found out where
* JPA The following must be in some library...
* but did not found out where
*/
#define endian_rev16(x) (((x >> 8) & 255) | ((x & 255) << 8))
#define endian_rev32(x) (((x >> 24) & 255) | ((x >> 8) & 0xff00) \
| ((x & 0xff00) << 8) | ((x & 255) << 24))
| ((x & 0xff00) << 8) | ((x & 255) << 24))
#define cpu_to_be16(x) endian_rev16(cpu_to_le16(x))
#define cpu_to_be32(x) endian_rev32(cpu_to_le32(x))
/*
* Macro definitions needed to share code with secaudit
* Macro definitions needed to share code with secaudit
*/
#define NTFS_FIND_USID(map,uid,buf) ntfs_find_usid(map,uid,buf)
@ -58,25 +58,25 @@
/*
* Matching of ntfs permissions to Linux permissions
* these constants are adapted to endianness
* when setting, set them all
* when checking, check one is present
* Matching of ntfs permissions to Linux permissions
* these constants are adapted to endianness
* when setting, set them all
* when checking, check one is present
*/
/* flags which are set to mean exec, write or read */
/* flags which are set to mean exec, write or read */
#define FILE_READ (FILE_READ_DATA)
#define FILE_WRITE (FILE_WRITE_DATA | FILE_APPEND_DATA \
| READ_CONTROL | FILE_WRITE_ATTRIBUTES | FILE_WRITE_EA)
| READ_CONTROL | FILE_WRITE_ATTRIBUTES | FILE_WRITE_EA)
#define FILE_EXEC (FILE_EXECUTE)
#define DIR_READ FILE_LIST_DIRECTORY
#define DIR_WRITE (FILE_ADD_FILE | FILE_ADD_SUBDIRECTORY | FILE_DELETE_CHILD \
| READ_CONTROL | FILE_WRITE_ATTRIBUTES | FILE_WRITE_EA)
| READ_CONTROL | FILE_WRITE_ATTRIBUTES | FILE_WRITE_EA)
#define DIR_EXEC (FILE_TRAVERSE)
/* flags tested for meaning exec, write or read */
/* tests for write allow for interpretation of a sticky bit */
/* flags tested for meaning exec, write or read */
/* tests for write allow for interpretation of a sticky bit */
#define FILE_GREAD (FILE_READ_DATA | GENERIC_READ)
#define FILE_GWRITE (FILE_WRITE_DATA | FILE_APPEND_DATA | GENERIC_WRITE)
@ -85,115 +85,116 @@
#define DIR_GWRITE (FILE_ADD_FILE | FILE_ADD_SUBDIRECTORY | GENERIC_WRITE)
#define DIR_GEXEC (FILE_TRAVERSE | GENERIC_EXECUTE)
/* standard owner (and administrator) rights */
/* standard owner (and administrator) rights */
#define OWNER_RIGHTS (DELETE | READ_CONTROL | WRITE_DAC | WRITE_OWNER \
| SYNCHRONIZE \
| FILE_READ_ATTRIBUTES | FILE_WRITE_ATTRIBUTES \
| FILE_READ_EA | FILE_WRITE_EA)
| SYNCHRONIZE \
| FILE_READ_ATTRIBUTES | FILE_WRITE_ATTRIBUTES \
| FILE_READ_EA | FILE_WRITE_EA)
/* standard world rights */
/* standard world rights */
#define WORLD_RIGHTS (READ_CONTROL | FILE_READ_ATTRIBUTES | FILE_READ_EA \
| SYNCHRONIZE)
| SYNCHRONIZE)
/* inheritance flags for files and directories */
/* inheritance flags for files and directories */
#define FILE_INHERITANCE NO_PROPAGATE_INHERIT_ACE
#define DIR_INHERITANCE (OBJECT_INHERIT_ACE | CONTAINER_INHERIT_ACE)
/*
* To identify NTFS ACL meaning Posix ACL granted to root
* we use rights always granted to anybody, so they have no impact
* either on Windows or on Linux.
* To identify NTFS ACL meaning Posix ACL granted to root
* we use rights always granted to anybody, so they have no impact
* either on Windows or on Linux.
*/
#define ROOT_OWNER_UNMARK SYNCHRONIZE /* ACL granted to root as owner */
#define ROOT_GROUP_UNMARK FILE_READ_EA /* ACL granted to root as group */
#define ROOT_OWNER_UNMARK SYNCHRONIZE /* ACL granted to root as owner */
#define ROOT_GROUP_UNMARK FILE_READ_EA /* ACL granted to root as group */
/*
* A type large enough to hold any SID
* A type large enough to hold any SID
*/
typedef char BIGSID[40];
/*
* Struct to hold the input mapping file
* (private to this module)
* Struct to hold the input mapping file
* (private to this module)
*/
struct MAPLIST {
struct MAPLIST *next;
char *uidstr; /* uid text from the same record */
char *gidstr; /* gid text from the same record */
char *sidstr; /* sid text from the same record */
char maptext[LINESZ + 1];
struct MAPLIST
{
struct MAPLIST *next;
char *uidstr; /* uid text from the same record */
char *gidstr; /* gid text from the same record */
char *sidstr; /* sid text from the same record */
char maptext[LINESZ + 1];
};
typedef int (*FILEREADER)(void *fileid, char *buf, size_t size, off_t pos);
typedef int ( *FILEREADER )( void *fileid, char *buf, size_t size, off_t pos );
/*
* Constants defined in acls.c
* Constants defined in acls.c
*/
extern const SID *adminsid;
extern const SID *worldsid;
/*
* Functions defined in acls.c
* Functions defined in acls.c
*/
BOOL ntfs_valid_descr(const char *securattr, unsigned int attrsz);
BOOL ntfs_valid_pattern(const SID *sid);
BOOL ntfs_valid_sid(const SID *sid);
BOOL ntfs_same_sid(const SID *first, const SID *second);
BOOL ntfs_valid_descr( const char *securattr, unsigned int attrsz );
BOOL ntfs_valid_pattern( const SID *sid );
BOOL ntfs_valid_sid( const SID *sid );
BOOL ntfs_same_sid( const SID *first, const SID *second );
BOOL ntfs_is_user_sid(const SID *usid);
BOOL ntfs_is_user_sid( const SID *usid );
int ntfs_sid_size(const SID * sid);
unsigned int ntfs_attr_size(const char *attr);
int ntfs_sid_size( const SID * sid );
unsigned int ntfs_attr_size( const char *attr );
const SID *ntfs_find_usid(const struct MAPPING *usermapping,
uid_t uid, SID *pdefsid);
const SID *ntfs_find_gsid(const struct MAPPING *groupmapping,
gid_t gid, SID *pdefsid);
uid_t ntfs_find_user(const struct MAPPING *usermapping, const SID *usid);
gid_t ntfs_find_group(const struct MAPPING *groupmapping, const SID * gsid);
const SID *ntfs_acl_owner(const char *secattr);
const SID *ntfs_find_usid( const struct MAPPING *usermapping,
uid_t uid, SID *pdefsid );
const SID *ntfs_find_gsid( const struct MAPPING *groupmapping,
gid_t gid, SID *pdefsid );
uid_t ntfs_find_user( const struct MAPPING *usermapping, const SID *usid );
gid_t ntfs_find_group( const struct MAPPING *groupmapping, const SID * gsid );
const SID *ntfs_acl_owner( const char *secattr );
#if POSIXACLS
BOOL ntfs_valid_posix(const struct POSIX_SECURITY *pxdesc);
void ntfs_sort_posix(struct POSIX_SECURITY *pxdesc);
int ntfs_merge_mode_posix(struct POSIX_SECURITY *pxdesc, mode_t mode);
BOOL ntfs_valid_posix( const struct POSIX_SECURITY *pxdesc );
void ntfs_sort_posix( struct POSIX_SECURITY *pxdesc );
int ntfs_merge_mode_posix( struct POSIX_SECURITY *pxdesc, mode_t mode );
struct POSIX_SECURITY *ntfs_build_inherited_posix(
const struct POSIX_SECURITY *pxdesc, mode_t mode,
mode_t umask, BOOL isdir);
struct POSIX_SECURITY *ntfs_replace_acl(const struct POSIX_SECURITY *oldpxdesc,
const struct POSIX_ACL *newacl, int count, BOOL deflt);
const struct POSIX_SECURITY *pxdesc, mode_t mode,
mode_t umask, BOOL isdir );
struct POSIX_SECURITY *ntfs_replace_acl( const struct POSIX_SECURITY *oldpxdesc,
const struct POSIX_ACL *newacl, int count, BOOL deflt );
struct POSIX_SECURITY *ntfs_build_permissions_posix(
struct MAPPING* const mapping[],
const char *securattr,
const SID *usid, const SID *gsid, BOOL isdir);
struct POSIX_SECURITY *ntfs_merge_descr_posix(const struct POSIX_SECURITY *first,
const struct POSIX_SECURITY *second);
char *ntfs_build_descr_posix(struct MAPPING* const mapping[],
struct POSIX_SECURITY *pxdesc,
int isdir, const SID *usid, const SID *gsid);
struct MAPPING* const mapping[],
const char *securattr,
const SID *usid, const SID *gsid, BOOL isdir );
struct POSIX_SECURITY *ntfs_merge_descr_posix( const struct POSIX_SECURITY *first,
const struct POSIX_SECURITY *second );
char *ntfs_build_descr_posix( struct MAPPING* const mapping[],
struct POSIX_SECURITY *pxdesc,
int isdir, const SID *usid, const SID *gsid );
#endif /* POSIXACLS */
int ntfs_inherit_acl(const ACL *oldacl, ACL *newacl,
const SID *usid, const SID *gsid, BOOL fordir);
int ntfs_build_permissions(const char *securattr,
const SID *usid, const SID *gsid, BOOL isdir);
char *ntfs_build_descr(mode_t mode,
int isdir, const SID * usid, const SID * gsid);
struct MAPLIST *ntfs_read_mapping(FILEREADER reader, void *fileid);
struct MAPPING *ntfs_do_user_mapping(struct MAPLIST *firstitem);
struct MAPPING *ntfs_do_group_mapping(struct MAPLIST *firstitem);
void ntfs_free_mapping(struct MAPPING *mapping[]);
int ntfs_inherit_acl( const ACL *oldacl, ACL *newacl,
const SID *usid, const SID *gsid, BOOL fordir );
int ntfs_build_permissions( const char *securattr,
const SID *usid, const SID *gsid, BOOL isdir );
char *ntfs_build_descr( mode_t mode,
int isdir, const SID * usid, const SID * gsid );
struct MAPLIST *ntfs_read_mapping( FILEREADER reader, void *fileid );
struct MAPPING *ntfs_do_user_mapping( struct MAPLIST *firstitem );
struct MAPPING *ntfs_do_group_mapping( struct MAPLIST *firstitem );
void ntfs_free_mapping( struct MAPPING *mapping[] );
#endif /* ACLS_H */

File diff suppressed because it is too large Load Diff

View File

@ -49,19 +49,20 @@ extern ntfschar TXF_DATA[10];
*
* TODO: Describe them.
*/
typedef enum {
LCN_HOLE = -1, /* Keep this as highest value or die! */
LCN_RL_NOT_MAPPED = -2,
LCN_ENOENT = -3,
LCN_EINVAL = -4,
LCN_EIO = -5,
typedef enum
{
LCN_HOLE = -1, /* Keep this as highest value or die! */
LCN_RL_NOT_MAPPED = -2,
LCN_ENOENT = -3,
LCN_EINVAL = -4,
LCN_EIO = -5,
} ntfs_lcn_special_values;
/**
* struct ntfs_attr_search_ctx - search context used in attribute search functions
* @mrec: buffer containing mft record to search
* @attr: attribute record in @mrec where to begin/continue search
* @is_first: if true lookup_attr() begins search with @attr, else after @attr
* @mrec: buffer containing mft record to search
* @attr: attribute record in @mrec where to begin/continue search
* @is_first: if true lookup_attr() begins search with @attr, else after @attr
*
* Structure must be initialized to zero before the first call to one of the
* attribute search functions. Initialize @mrec to point to the mft record to
@ -75,35 +76,36 @@ typedef enum {
* any modification of the search context, to automagically get the next
* matching attribute.
*/
struct _ntfs_attr_search_ctx {
MFT_RECORD *mrec;
ATTR_RECORD *attr;
BOOL is_first;
ntfs_inode *ntfs_ino;
ATTR_LIST_ENTRY *al_entry;
ntfs_inode *base_ntfs_ino;
MFT_RECORD *base_mrec;
ATTR_RECORD *base_attr;
struct _ntfs_attr_search_ctx
{
MFT_RECORD *mrec;
ATTR_RECORD *attr;
BOOL is_first;
ntfs_inode *ntfs_ino;
ATTR_LIST_ENTRY *al_entry;
ntfs_inode *base_ntfs_ino;
MFT_RECORD *base_mrec;
ATTR_RECORD *base_attr;
};
extern void ntfs_attr_reinit_search_ctx(ntfs_attr_search_ctx *ctx);
extern ntfs_attr_search_ctx *ntfs_attr_get_search_ctx(ntfs_inode *ni,
MFT_RECORD *mrec);
extern void ntfs_attr_put_search_ctx(ntfs_attr_search_ctx *ctx);
extern void ntfs_attr_reinit_search_ctx( ntfs_attr_search_ctx *ctx );
extern ntfs_attr_search_ctx *ntfs_attr_get_search_ctx( ntfs_inode *ni,
MFT_RECORD *mrec );
extern void ntfs_attr_put_search_ctx( ntfs_attr_search_ctx *ctx );
extern int ntfs_attr_lookup(const ATTR_TYPES type, const ntfschar *name,
const u32 name_len, const IGNORE_CASE_BOOL ic,
const VCN lowest_vcn, const u8 *val, const u32 val_len,
ntfs_attr_search_ctx *ctx);
extern int ntfs_attr_lookup( const ATTR_TYPES type, const ntfschar *name,
const u32 name_len, const IGNORE_CASE_BOOL ic,
const VCN lowest_vcn, const u8 *val, const u32 val_len,
ntfs_attr_search_ctx *ctx );
extern int ntfs_attr_position(const ATTR_TYPES type, ntfs_attr_search_ctx *ctx);
extern int ntfs_attr_position( const ATTR_TYPES type, ntfs_attr_search_ctx *ctx );
extern ATTR_DEF *ntfs_attr_find_in_attrdef(const ntfs_volume *vol,
const ATTR_TYPES type);
extern ATTR_DEF *ntfs_attr_find_in_attrdef( const ntfs_volume *vol,
const ATTR_TYPES type );
/**
* ntfs_attrs_walk - syntactic sugar for walking all attributes in an inode
* @ctx: initialised attribute search context
* @ctx: initialised attribute search context
*
* Syntactic sugar for walking attributes in an inode.
*
@ -111,42 +113,42 @@ extern ATTR_DEF *ntfs_attr_find_in_attrdef(const ntfs_volume *vol,
* ntfs_attr_lookup().
*
* Example: When you want to enumerate all attributes in an open ntfs inode
* @ni, you can simply do:
* @ni, you can simply do:
*
* int err;
* ntfs_attr_search_ctx *ctx = ntfs_attr_get_search_ctx(ni, NULL);
* if (!ctx)
* // Error code is in errno. Handle this case.
* while (!(err = ntfs_attrs_walk(ctx))) {
* ATTR_RECORD *attr = ctx->attr;
* // attr now contains the next attribute. Do whatever you want
* // with it and then just continue with the while loop.
* }
* if (err && errno != ENOENT)
* // Ooops. An error occurred! You should handle this case.
* // Now finished with all attributes in the inode.
* int err;
* ntfs_attr_search_ctx *ctx = ntfs_attr_get_search_ctx(ni, NULL);
* if (!ctx)
* // Error code is in errno. Handle this case.
* while (!(err = ntfs_attrs_walk(ctx))) {
* ATTR_RECORD *attr = ctx->attr;
* // attr now contains the next attribute. Do whatever you want
* // with it and then just continue with the while loop.
* }
* if (err && errno != ENOENT)
* // Ooops. An error occurred! You should handle this case.
* // Now finished with all attributes in the inode.
*/
static __inline__ int ntfs_attrs_walk(ntfs_attr_search_ctx *ctx)
static __inline__ int ntfs_attrs_walk( ntfs_attr_search_ctx *ctx )
{
return ntfs_attr_lookup(AT_UNUSED, NULL, 0, CASE_SENSITIVE, 0,
NULL, 0, ctx);
return ntfs_attr_lookup( AT_UNUSED, NULL, 0, CASE_SENSITIVE, 0,
NULL, 0, ctx );
}
/**
* struct ntfs_attr - ntfs in memory non-resident attribute structure
* @rl: if not NULL, the decompressed runlist
* @ni: base ntfs inode to which this attribute belongs
* @type: attribute type
* @name: Unicode name of the attribute
* @name_len: length of @name in Unicode characters
* @state: NTFS attribute specific flags describing this attribute
* @allocated_size: copy from the attribute record
* @data_size: copy from the attribute record
* @initialized_size: copy from the attribute record
* @compressed_size: copy from the attribute record
* @compression_block_size: size of a compression block (cb)
* @compression_block_size_bits: log2 of the size of a cb
* @compression_block_clusters: number of clusters per cb
* @rl: if not NULL, the decompressed runlist
* @ni: base ntfs inode to which this attribute belongs
* @type: attribute type
* @name: Unicode name of the attribute
* @name_len: length of @name in Unicode characters
* @state: NTFS attribute specific flags describing this attribute
* @allocated_size: copy from the attribute record
* @data_size: copy from the attribute record
* @initialized_size: copy from the attribute record
* @compressed_size: copy from the attribute record
* @compression_block_size: size of a compression block (cb)
* @compression_block_size_bits: log2 of the size of a cb
* @compression_block_clusters: number of clusters per cb
*
* This structure exists purely to provide a mechanism of caching the runlist
* of an attribute. If you want to operate on a particular attribute extent,
@ -174,68 +176,70 @@ static __inline__ int ntfs_attrs_walk(ntfs_attr_search_ctx *ctx)
* @state contains NTFS attribute specific flags describing this attribute
* structure. See ntfs_attr_state_bits above.
*/
struct _ntfs_attr {
runlist_element *rl;
ntfs_inode *ni;
ATTR_TYPES type;
ATTR_FLAGS data_flags;
ntfschar *name;
u32 name_len;
unsigned long state;
s64 allocated_size;
s64 data_size;
s64 initialized_size;
s64 compressed_size;
u32 compression_block_size;
u8 compression_block_size_bits;
u8 compression_block_clusters;
s8 unused_runs; /* pre-reserved entries available */
struct _ntfs_attr
{
runlist_element *rl;
ntfs_inode *ni;
ATTR_TYPES type;
ATTR_FLAGS data_flags;
ntfschar *name;
u32 name_len;
unsigned long state;
s64 allocated_size;
s64 data_size;
s64 initialized_size;
s64 compressed_size;
u32 compression_block_size;
u8 compression_block_size_bits;
u8 compression_block_clusters;
s8 unused_runs; /* pre-reserved entries available */
};
/**
* enum ntfs_attr_state_bits - bits for the state field in the ntfs_attr
* structure
*/
typedef enum {
NA_Initialized, /* 1: structure is initialized. */
NA_NonResident, /* 1: Attribute is not resident. */
NA_BeingNonResident, /* 1: Attribute is being made not resident. */
NA_FullyMapped, /* 1: Attribute has been fully mapped */
NA_ComprClosing, /* 1: Compressed attribute is being closed */
typedef enum
{
NA_Initialized, /* 1: structure is initialized. */
NA_NonResident, /* 1: Attribute is not resident. */
NA_BeingNonResident, /* 1: Attribute is being made not resident. */
NA_FullyMapped, /* 1: Attribute has been fully mapped */
NA_ComprClosing, /* 1: Compressed attribute is being closed */
} ntfs_attr_state_bits;
#define test_nattr_flag(na, flag) test_bit(NA_##flag, (na)->state)
#define set_nattr_flag(na, flag) set_bit(NA_##flag, (na)->state)
#define clear_nattr_flag(na, flag) clear_bit(NA_##flag, (na)->state)
#define test_nattr_flag(na, flag) test_bit(NA_##flag, (na)->state)
#define set_nattr_flag(na, flag) set_bit(NA_##flag, (na)->state)
#define clear_nattr_flag(na, flag) clear_bit(NA_##flag, (na)->state)
#define NAttrInitialized(na) test_nattr_flag(na, Initialized)
#define NAttrSetInitialized(na) set_nattr_flag(na, Initialized)
#define NAttrClearInitialized(na) clear_nattr_flag(na, Initialized)
#define NAttrInitialized(na) test_nattr_flag(na, Initialized)
#define NAttrSetInitialized(na) set_nattr_flag(na, Initialized)
#define NAttrClearInitialized(na) clear_nattr_flag(na, Initialized)
#define NAttrNonResident(na) test_nattr_flag(na, NonResident)
#define NAttrSetNonResident(na) set_nattr_flag(na, NonResident)
#define NAttrClearNonResident(na) clear_nattr_flag(na, NonResident)
#define NAttrNonResident(na) test_nattr_flag(na, NonResident)
#define NAttrSetNonResident(na) set_nattr_flag(na, NonResident)
#define NAttrClearNonResident(na) clear_nattr_flag(na, NonResident)
#define NAttrBeingNonResident(na) test_nattr_flag(na, BeingNonResident)
#define NAttrSetBeingNonResident(na) set_nattr_flag(na, BeingNonResident)
#define NAttrClearBeingNonResident(na) clear_nattr_flag(na, BeingNonResident)
#define NAttrBeingNonResident(na) test_nattr_flag(na, BeingNonResident)
#define NAttrSetBeingNonResident(na) set_nattr_flag(na, BeingNonResident)
#define NAttrClearBeingNonResident(na) clear_nattr_flag(na, BeingNonResident)
#define NAttrFullyMapped(na) test_nattr_flag(na, FullyMapped)
#define NAttrSetFullyMapped(na) set_nattr_flag(na, FullyMapped)
#define NAttrClearFullyMapped(na) clear_nattr_flag(na, FullyMapped)
#define NAttrFullyMapped(na) test_nattr_flag(na, FullyMapped)
#define NAttrSetFullyMapped(na) set_nattr_flag(na, FullyMapped)
#define NAttrClearFullyMapped(na) clear_nattr_flag(na, FullyMapped)
#define NAttrComprClosing(na) test_nattr_flag(na, ComprClosing)
#define NAttrSetComprClosing(na) set_nattr_flag(na, ComprClosing)
#define NAttrClearComprClosing(na) clear_nattr_flag(na, ComprClosing)
#define NAttrComprClosing(na) test_nattr_flag(na, ComprClosing)
#define NAttrSetComprClosing(na) set_nattr_flag(na, ComprClosing)
#define NAttrClearComprClosing(na) clear_nattr_flag(na, ComprClosing)
#define GenNAttrIno(func_name, flag) \
extern int NAttr##func_name(ntfs_attr *na); \
extern void NAttrSet##func_name(ntfs_attr *na); \
#define GenNAttrIno(func_name, flag) \
extern int NAttr##func_name(ntfs_attr *na); \
extern void NAttrSet##func_name(ntfs_attr *na); \
extern void NAttrClear##func_name(ntfs_attr *na);
GenNAttrIno(Compressed, FILE_ATTR_COMPRESSED)
GenNAttrIno(Encrypted, FILE_ATTR_ENCRYPTED)
GenNAttrIno(Sparse, FILE_ATTR_SPARSE_FILE)
GenNAttrIno( Compressed, FILE_ATTR_COMPRESSED )
GenNAttrIno( Encrypted, FILE_ATTR_ENCRYPTED )
GenNAttrIno( Sparse, FILE_ATTR_SPARSE_FILE )
#undef GenNAttrIno
/**
@ -243,99 +247,100 @@ GenNAttrIno(Sparse, FILE_ATTR_SPARSE_FILE)
*
* For convenience. Used in the attr structure.
*/
typedef union {
u8 _default; /* Unnamed u8 to serve as default when just using
a_val without specifying any of the below. */
STANDARD_INFORMATION std_inf;
ATTR_LIST_ENTRY al_entry;
FILE_NAME_ATTR filename;
OBJECT_ID_ATTR obj_id;
SECURITY_DESCRIPTOR_ATTR sec_desc;
VOLUME_NAME vol_name;
VOLUME_INFORMATION vol_inf;
DATA_ATTR data;
INDEX_ROOT index_root;
INDEX_BLOCK index_blk;
BITMAP_ATTR bmp;
REPARSE_POINT reparse;
EA_INFORMATION ea_inf;
EA_ATTR ea;
PROPERTY_SET property_set;
LOGGED_UTILITY_STREAM logged_util_stream;
EFS_ATTR_HEADER efs;
typedef union
{
u8 _default; /* Unnamed u8 to serve as default when just using
a_val without specifying any of the below. */
STANDARD_INFORMATION std_inf;
ATTR_LIST_ENTRY al_entry;
FILE_NAME_ATTR filename;
OBJECT_ID_ATTR obj_id;
SECURITY_DESCRIPTOR_ATTR sec_desc;
VOLUME_NAME vol_name;
VOLUME_INFORMATION vol_inf;
DATA_ATTR data;
INDEX_ROOT index_root;
INDEX_BLOCK index_blk;
BITMAP_ATTR bmp;
REPARSE_POINT reparse;
EA_INFORMATION ea_inf;
EA_ATTR ea;
PROPERTY_SET property_set;
LOGGED_UTILITY_STREAM logged_util_stream;
EFS_ATTR_HEADER efs;
} attr_val;
extern void ntfs_attr_init(ntfs_attr *na, const BOOL non_resident,
const ATTR_FLAGS data_flags, const BOOL encrypted,
const BOOL sparse,
const s64 allocated_size, const s64 data_size,
const s64 initialized_size, const s64 compressed_size,
const u8 compression_unit);
extern void ntfs_attr_init( ntfs_attr *na, const BOOL non_resident,
const ATTR_FLAGS data_flags, const BOOL encrypted,
const BOOL sparse,
const s64 allocated_size, const s64 data_size,
const s64 initialized_size, const s64 compressed_size,
const u8 compression_unit );
/* warning : in the following "name" has to be freeable */
/* or one of constants AT_UNNAMED, NTFS_INDEX_I30 or STREAM_SDS */
extern ntfs_attr *ntfs_attr_open(ntfs_inode *ni, const ATTR_TYPES type,
ntfschar *name, u32 name_len);
extern void ntfs_attr_close(ntfs_attr *na);
/* warning : in the following "name" has to be freeable */
/* or one of constants AT_UNNAMED, NTFS_INDEX_I30 or STREAM_SDS */
extern ntfs_attr *ntfs_attr_open( ntfs_inode *ni, const ATTR_TYPES type,
ntfschar *name, u32 name_len );
extern void ntfs_attr_close( ntfs_attr *na );
extern s64 ntfs_attr_pread(ntfs_attr *na, const s64 pos, s64 count,
void *b);
extern s64 ntfs_attr_pwrite(ntfs_attr *na, const s64 pos, s64 count,
const void *b);
extern int ntfs_attr_pclose(ntfs_attr *na);
extern s64 ntfs_attr_pread( ntfs_attr *na, const s64 pos, s64 count,
void *b );
extern s64 ntfs_attr_pwrite( ntfs_attr *na, const s64 pos, s64 count,
const void *b );
extern int ntfs_attr_pclose( ntfs_attr *na );
extern void *ntfs_attr_readall(ntfs_inode *ni, const ATTR_TYPES type,
ntfschar *name, u32 name_len, s64 *data_size);
extern void *ntfs_attr_readall( ntfs_inode *ni, const ATTR_TYPES type,
ntfschar *name, u32 name_len, s64 *data_size );
extern s64 ntfs_attr_mst_pread(ntfs_attr *na, const s64 pos,
const s64 bk_cnt, const u32 bk_size, void *dst);
extern s64 ntfs_attr_mst_pwrite(ntfs_attr *na, const s64 pos,
s64 bk_cnt, const u32 bk_size, void *src);
extern s64 ntfs_attr_mst_pread( ntfs_attr *na, const s64 pos,
const s64 bk_cnt, const u32 bk_size, void *dst );
extern s64 ntfs_attr_mst_pwrite( ntfs_attr *na, const s64 pos,
s64 bk_cnt, const u32 bk_size, void *src );
extern int ntfs_attr_map_runlist(ntfs_attr *na, VCN vcn);
extern int ntfs_attr_map_whole_runlist(ntfs_attr *na);
extern int ntfs_attr_map_runlist( ntfs_attr *na, VCN vcn );
extern int ntfs_attr_map_whole_runlist( ntfs_attr *na );
extern LCN ntfs_attr_vcn_to_lcn(ntfs_attr *na, const VCN vcn);
extern runlist_element *ntfs_attr_find_vcn(ntfs_attr *na, const VCN vcn);
extern LCN ntfs_attr_vcn_to_lcn( ntfs_attr *na, const VCN vcn );
extern runlist_element *ntfs_attr_find_vcn( ntfs_attr *na, const VCN vcn );
extern int ntfs_attr_size_bounds_check(const ntfs_volume *vol,
const ATTR_TYPES type, const s64 size);
extern int ntfs_attr_can_be_resident(const ntfs_volume *vol,
const ATTR_TYPES type);
int ntfs_attr_make_non_resident(ntfs_attr *na,
ntfs_attr_search_ctx *ctx);
int ntfs_attr_force_non_resident(ntfs_attr *na);
extern int ntfs_make_room_for_attr(MFT_RECORD *m, u8 *pos, u32 size);
extern int ntfs_attr_size_bounds_check( const ntfs_volume *vol,
const ATTR_TYPES type, const s64 size );
extern int ntfs_attr_can_be_resident( const ntfs_volume *vol,
const ATTR_TYPES type );
int ntfs_attr_make_non_resident( ntfs_attr *na,
ntfs_attr_search_ctx *ctx );
int ntfs_attr_force_non_resident( ntfs_attr *na );
extern int ntfs_make_room_for_attr( MFT_RECORD *m, u8 *pos, u32 size );
extern int ntfs_resident_attr_record_add(ntfs_inode *ni, ATTR_TYPES type,
ntfschar *name, u8 name_len, u8 *val, u32 size,
ATTR_FLAGS flags);
extern int ntfs_non_resident_attr_record_add(ntfs_inode *ni, ATTR_TYPES type,
ntfschar *name, u8 name_len, VCN lowest_vcn, int dataruns_size,
ATTR_FLAGS flags);
extern int ntfs_attr_record_rm(ntfs_attr_search_ctx *ctx);
extern int ntfs_resident_attr_record_add( ntfs_inode *ni, ATTR_TYPES type,
ntfschar *name, u8 name_len, u8 *val, u32 size,
ATTR_FLAGS flags );
extern int ntfs_non_resident_attr_record_add( ntfs_inode *ni, ATTR_TYPES type,
ntfschar *name, u8 name_len, VCN lowest_vcn, int dataruns_size,
ATTR_FLAGS flags );
extern int ntfs_attr_record_rm( ntfs_attr_search_ctx *ctx );
extern int ntfs_attr_add(ntfs_inode *ni, ATTR_TYPES type,
ntfschar *name, u8 name_len, u8 *val, s64 size);
extern int ntfs_attr_set_flags(ntfs_inode *ni, ATTR_TYPES type,
ntfschar *name, u8 name_len, ATTR_FLAGS flags, ATTR_FLAGS mask);
extern int ntfs_attr_rm(ntfs_attr *na);
extern int ntfs_attr_add( ntfs_inode *ni, ATTR_TYPES type,
ntfschar *name, u8 name_len, u8 *val, s64 size );
extern int ntfs_attr_set_flags( ntfs_inode *ni, ATTR_TYPES type,
ntfschar *name, u8 name_len, ATTR_FLAGS flags, ATTR_FLAGS mask );
extern int ntfs_attr_rm( ntfs_attr *na );
extern int ntfs_attr_record_resize(MFT_RECORD *m, ATTR_RECORD *a, u32 new_size);
extern int ntfs_attr_record_resize( MFT_RECORD *m, ATTR_RECORD *a, u32 new_size );
extern int ntfs_resident_attr_value_resize(MFT_RECORD *m, ATTR_RECORD *a,
const u32 new_size);
extern int ntfs_resident_attr_value_resize( MFT_RECORD *m, ATTR_RECORD *a,
const u32 new_size );
extern int ntfs_attr_record_move_to(ntfs_attr_search_ctx *ctx, ntfs_inode *ni);
extern int ntfs_attr_record_move_away(ntfs_attr_search_ctx *ctx, int extra);
extern int ntfs_attr_record_move_to( ntfs_attr_search_ctx *ctx, ntfs_inode *ni );
extern int ntfs_attr_record_move_away( ntfs_attr_search_ctx *ctx, int extra );
extern int ntfs_attr_update_mapping_pairs(ntfs_attr *na, VCN from_vcn);
extern int ntfs_attr_update_mapping_pairs( ntfs_attr *na, VCN from_vcn );
extern int ntfs_attr_truncate(ntfs_attr *na, const s64 newsize);
extern int ntfs_attr_truncate( ntfs_attr *na, const s64 newsize );
/**
* get_attribute_value_length - return the length of the value of an attribute
* @a: pointer to a buffer containing the attribute record
* @a: pointer to a buffer containing the attribute record
*
* Return the byte size of the attribute value of the attribute @a (as it
* would be after eventual decompression and filling in of holes if sparse).
@ -344,13 +349,13 @@ extern int ntfs_attr_truncate(ntfs_attr *na, const s64 newsize);
*
* FIXME: Describe possible errnos.
*/
extern s64 ntfs_get_attribute_value_length(const ATTR_RECORD *a);
extern s64 ntfs_get_attribute_value_length( const ATTR_RECORD *a );
/**
* get_attribute_value - return the attribute value of an attribute
* @vol: volume on which the attribute is present
* @a: attribute to get the value of
* @b: destination buffer for the attribute value
* @vol: volume on which the attribute is present
* @a: attribute to get the value of
* @b: destination buffer for the attribute value
*
* Make a copy of the attribute value of the attribute @a into the destination
* buffer @b. Note, that the size of @b has to be at least equal to the value
@ -360,16 +365,16 @@ extern s64 ntfs_get_attribute_value_length(const ATTR_RECORD *a);
* then nothing was read due to a zero-length attribute value, otherwise
* errno describes the error.
*/
extern s64 ntfs_get_attribute_value(const ntfs_volume *vol,
const ATTR_RECORD *a, u8 *b);
extern s64 ntfs_get_attribute_value( const ntfs_volume *vol,
const ATTR_RECORD *a, u8 *b );
extern void ntfs_attr_name_free(char **name);
extern char *ntfs_attr_name_get(const ntfschar *uname, const int uname_len);
extern int ntfs_attr_exist(ntfs_inode *ni, const ATTR_TYPES type,
ntfschar *name, u32 name_len);
extern int ntfs_attr_remove(ntfs_inode *ni, const ATTR_TYPES type,
ntfschar *name, u32 name_len);
extern s64 ntfs_attr_get_free_bits(ntfs_attr *na);
extern void ntfs_attr_name_free( char **name );
extern char *ntfs_attr_name_get( const ntfschar *uname, const int uname_len );
extern int ntfs_attr_exist( ntfs_inode *ni, const ATTR_TYPES type,
ntfschar *name, u32 name_len );
extern int ntfs_attr_remove( ntfs_inode *ni, const ATTR_TYPES type,
ntfschar *name, u32 name_len );
extern s64 ntfs_attr_get_free_bits( ntfs_attr *na );
#endif /* defined _NTFS_ATTRIB_H */

File diff suppressed because it is too large Load Diff

View File

@ -1,6 +1,6 @@
/**
* attrlist.c - Attribute list attribute handling code. Originated from the Linux-NTFS
* project.
* project.
*
* Copyright (c) 2004-2005 Anton Altaparmakov
* Copyright (c) 2004-2005 Yura Pakhuchiy
@ -47,7 +47,7 @@
/**
* ntfs_attrlist_need - check whether inode need attribute list
* @ni: opened ntfs inode for which perform check
* @ni: opened ntfs inode for which perform check
*
* Check whether all are attributes belong to one MFT record, in that case
* attribute list is not needed.
@ -55,260 +55,278 @@
* Return 1 if inode need attribute list, 0 if not, -1 on error with errno set
* to the error code. If function succeed errno set to 0. The following error
* codes are defined:
* EINVAL - Invalid arguments passed to function or attribute haven't got
* attribute list.
* EINVAL - Invalid arguments passed to function or attribute haven't got
* attribute list.
*/
int ntfs_attrlist_need(ntfs_inode *ni)
int ntfs_attrlist_need( ntfs_inode *ni )
{
ATTR_LIST_ENTRY *ale;
ATTR_LIST_ENTRY *ale;
if (!ni) {
ntfs_log_trace("Invalid arguments.\n");
errno = EINVAL;
return -1;
}
if ( !ni )
{
ntfs_log_trace( "Invalid arguments.\n" );
errno = EINVAL;
return -1;
}
ntfs_log_trace("Entering for inode 0x%llx.\n", (long long) ni->mft_no);
ntfs_log_trace( "Entering for inode 0x%llx.\n", ( long long ) ni->mft_no );
if (!NInoAttrList(ni)) {
ntfs_log_trace("Inode haven't got attribute list.\n");
errno = EINVAL;
return -1;
}
if ( !NInoAttrList( ni ) )
{
ntfs_log_trace( "Inode haven't got attribute list.\n" );
errno = EINVAL;
return -1;
}
if (!ni->attr_list) {
ntfs_log_trace("Corrupt in-memory struct.\n");
errno = EINVAL;
return -1;
}
if ( !ni->attr_list )
{
ntfs_log_trace( "Corrupt in-memory struct.\n" );
errno = EINVAL;
return -1;
}
errno = 0;
ale = (ATTR_LIST_ENTRY *)ni->attr_list;
while ((u8*)ale < ni->attr_list + ni->attr_list_size) {
if (MREF_LE(ale->mft_reference) != ni->mft_no)
return 1;
ale = (ATTR_LIST_ENTRY *)((u8*)ale + le16_to_cpu(ale->length));
}
return 0;
errno = 0;
ale = ( ATTR_LIST_ENTRY * )ni->attr_list;
while ( ( u8* )ale < ni->attr_list + ni->attr_list_size )
{
if ( MREF_LE( ale->mft_reference ) != ni->mft_no )
return 1;
ale = ( ATTR_LIST_ENTRY * )( ( u8* )ale + le16_to_cpu( ale->length ) );
}
return 0;
}
/**
* ntfs_attrlist_entry_add - add an attribute list attribute entry
* @ni: opened ntfs inode, which contains that attribute
* @attr: attribute record to add to attribute list
* @ni: opened ntfs inode, which contains that attribute
* @attr: attribute record to add to attribute list
*
* Return 0 on success and -1 on error with errno set to the error code. The
* following error codes are defined:
* EINVAL - Invalid arguments passed to function.
* ENOMEM - Not enough memory to allocate necessary buffers.
* EIO - I/O error occurred or damaged filesystem.
* EEXIST - Such attribute already present in attribute list.
* EINVAL - Invalid arguments passed to function.
* ENOMEM - Not enough memory to allocate necessary buffers.
* EIO - I/O error occurred or damaged filesystem.
* EEXIST - Such attribute already present in attribute list.
*/
int ntfs_attrlist_entry_add(ntfs_inode *ni, ATTR_RECORD *attr)
int ntfs_attrlist_entry_add( ntfs_inode *ni, ATTR_RECORD *attr )
{
ATTR_LIST_ENTRY *ale;
MFT_REF mref;
ntfs_attr *na = NULL;
ntfs_attr_search_ctx *ctx;
u8 *new_al;
int entry_len, entry_offset, err;
ATTR_LIST_ENTRY *ale;
MFT_REF mref;
ntfs_attr *na = NULL;
ntfs_attr_search_ctx *ctx;
u8 *new_al;
int entry_len, entry_offset, err;
ntfs_log_trace("Entering for inode 0x%llx, attr 0x%x.\n",
(long long) ni->mft_no,
(unsigned) le32_to_cpu(attr->type));
ntfs_log_trace( "Entering for inode 0x%llx, attr 0x%x.\n",
( long long ) ni->mft_no,
( unsigned ) le32_to_cpu( attr->type ) );
if (!ni || !attr) {
ntfs_log_trace("Invalid arguments.\n");
errno = EINVAL;
return -1;
}
if ( !ni || !attr )
{
ntfs_log_trace( "Invalid arguments.\n" );
errno = EINVAL;
return -1;
}
mref = MK_LE_MREF(ni->mft_no, le16_to_cpu(ni->mrec->sequence_number));
mref = MK_LE_MREF( ni->mft_no, le16_to_cpu( ni->mrec->sequence_number ) );
if (ni->nr_extents == -1)
ni = ni->base_ni;
if ( ni->nr_extents == -1 )
ni = ni->base_ni;
if (!NInoAttrList(ni)) {
ntfs_log_trace("Attribute list isn't present.\n");
errno = ENOENT;
return -1;
}
if ( !NInoAttrList( ni ) )
{
ntfs_log_trace( "Attribute list isn't present.\n" );
errno = ENOENT;
return -1;
}
/* Determine size and allocate memory for new attribute list. */
entry_len = (sizeof(ATTR_LIST_ENTRY) + sizeof(ntfschar) *
attr->name_length + 7) & ~7;
new_al = ntfs_calloc(ni->attr_list_size + entry_len);
if (!new_al)
return -1;
/* Determine size and allocate memory for new attribute list. */
entry_len = ( sizeof( ATTR_LIST_ENTRY ) + sizeof( ntfschar ) *
attr->name_length + 7 ) & ~7;
new_al = ntfs_calloc( ni->attr_list_size + entry_len );
if ( !new_al )
return -1;
/* Find place for the new entry. */
ctx = ntfs_attr_get_search_ctx(ni, NULL);
if (!ctx) {
err = errno;
goto err_out;
}
if (!ntfs_attr_lookup(attr->type, (attr->name_length) ? (ntfschar*)
((u8*)attr + le16_to_cpu(attr->name_offset)) :
AT_UNNAMED, attr->name_length, CASE_SENSITIVE,
(attr->non_resident) ? le64_to_cpu(attr->lowest_vcn) :
0, (attr->non_resident) ? NULL : ((u8*)attr +
le16_to_cpu(attr->value_offset)), (attr->non_resident) ?
0 : le32_to_cpu(attr->value_length), ctx)) {
/* Found some extent, check it to be before new extent. */
if (ctx->al_entry->lowest_vcn == attr->lowest_vcn) {
err = EEXIST;
ntfs_log_trace("Such attribute already present in the "
"attribute list.\n");
ntfs_attr_put_search_ctx(ctx);
goto err_out;
}
/* Add new entry after this extent. */
ale = (ATTR_LIST_ENTRY*)((u8*)ctx->al_entry +
le16_to_cpu(ctx->al_entry->length));
} else {
/* Check for real errors. */
if (errno != ENOENT) {
err = errno;
ntfs_log_trace("Attribute lookup failed.\n");
ntfs_attr_put_search_ctx(ctx);
goto err_out;
}
/* No previous extents found. */
ale = ctx->al_entry;
}
/* Don't need it anymore, @ctx->al_entry points to @ni->attr_list. */
ntfs_attr_put_search_ctx(ctx);
/* Find place for the new entry. */
ctx = ntfs_attr_get_search_ctx( ni, NULL );
if ( !ctx )
{
err = errno;
goto err_out;
}
if ( !ntfs_attr_lookup( attr->type, ( attr->name_length ) ? ( ntfschar* )
( ( u8* )attr + le16_to_cpu( attr->name_offset ) ) :
AT_UNNAMED, attr->name_length, CASE_SENSITIVE,
( attr->non_resident ) ? le64_to_cpu( attr->lowest_vcn ) :
0, ( attr->non_resident ) ? NULL : ( ( u8* )attr +
le16_to_cpu( attr->value_offset ) ), ( attr->non_resident ) ?
0 : le32_to_cpu( attr->value_length ), ctx ) )
{
/* Found some extent, check it to be before new extent. */
if ( ctx->al_entry->lowest_vcn == attr->lowest_vcn )
{
err = EEXIST;
ntfs_log_trace( "Such attribute already present in the "
"attribute list.\n" );
ntfs_attr_put_search_ctx( ctx );
goto err_out;
}
/* Add new entry after this extent. */
ale = ( ATTR_LIST_ENTRY* )( ( u8* )ctx->al_entry +
le16_to_cpu( ctx->al_entry->length ) );
}
else
{
/* Check for real errors. */
if ( errno != ENOENT )
{
err = errno;
ntfs_log_trace( "Attribute lookup failed.\n" );
ntfs_attr_put_search_ctx( ctx );
goto err_out;
}
/* No previous extents found. */
ale = ctx->al_entry;
}
/* Don't need it anymore, @ctx->al_entry points to @ni->attr_list. */
ntfs_attr_put_search_ctx( ctx );
/* Determine new entry offset. */
entry_offset = ((u8 *)ale - ni->attr_list);
/* Set pointer to new entry. */
ale = (ATTR_LIST_ENTRY *)(new_al + entry_offset);
/* Zero it to fix valgrind warning. */
memset(ale, 0, entry_len);
/* Form new entry. */
ale->type = attr->type;
ale->length = cpu_to_le16(entry_len);
ale->name_length = attr->name_length;
ale->name_offset = offsetof(ATTR_LIST_ENTRY, name);
if (attr->non_resident)
ale->lowest_vcn = attr->lowest_vcn;
else
ale->lowest_vcn = 0;
ale->mft_reference = mref;
ale->instance = attr->instance;
memcpy(ale->name, (u8 *)attr + le16_to_cpu(attr->name_offset),
attr->name_length * sizeof(ntfschar));
/* Determine new entry offset. */
entry_offset = ( ( u8 * )ale - ni->attr_list );
/* Set pointer to new entry. */
ale = ( ATTR_LIST_ENTRY * )( new_al + entry_offset );
/* Zero it to fix valgrind warning. */
memset( ale, 0, entry_len );
/* Form new entry. */
ale->type = attr->type;
ale->length = cpu_to_le16( entry_len );
ale->name_length = attr->name_length;
ale->name_offset = offsetof( ATTR_LIST_ENTRY, name );
if ( attr->non_resident )
ale->lowest_vcn = attr->lowest_vcn;
else
ale->lowest_vcn = 0;
ale->mft_reference = mref;
ale->instance = attr->instance;
memcpy( ale->name, ( u8 * )attr + le16_to_cpu( attr->name_offset ),
attr->name_length * sizeof( ntfschar ) );
/* Resize $ATTRIBUTE_LIST to new length. */
na = ntfs_attr_open(ni, AT_ATTRIBUTE_LIST, AT_UNNAMED, 0);
if (!na) {
err = errno;
ntfs_log_trace("Failed to open $ATTRIBUTE_LIST attribute.\n");
goto err_out;
}
if (ntfs_attr_truncate(na, ni->attr_list_size + entry_len)) {
err = errno;
ntfs_log_trace("$ATTRIBUTE_LIST resize failed.\n");
goto err_out;
}
/* Resize $ATTRIBUTE_LIST to new length. */
na = ntfs_attr_open( ni, AT_ATTRIBUTE_LIST, AT_UNNAMED, 0 );
if ( !na )
{
err = errno;
ntfs_log_trace( "Failed to open $ATTRIBUTE_LIST attribute.\n" );
goto err_out;
}
if ( ntfs_attr_truncate( na, ni->attr_list_size + entry_len ) )
{
err = errno;
ntfs_log_trace( "$ATTRIBUTE_LIST resize failed.\n" );
goto err_out;
}
/* Copy entries from old attribute list to new. */
memcpy(new_al, ni->attr_list, entry_offset);
memcpy(new_al + entry_offset + entry_len, ni->attr_list +
entry_offset, ni->attr_list_size - entry_offset);
/* Copy entries from old attribute list to new. */
memcpy( new_al, ni->attr_list, entry_offset );
memcpy( new_al + entry_offset + entry_len, ni->attr_list +
entry_offset, ni->attr_list_size - entry_offset );
/* Set new runlist. */
free(ni->attr_list);
ni->attr_list = new_al;
ni->attr_list_size = ni->attr_list_size + entry_len;
NInoAttrListSetDirty(ni);
/* Done! */
ntfs_attr_close(na);
return 0;
/* Set new runlist. */
free( ni->attr_list );
ni->attr_list = new_al;
ni->attr_list_size = ni->attr_list_size + entry_len;
NInoAttrListSetDirty( ni );
/* Done! */
ntfs_attr_close( na );
return 0;
err_out:
if (na)
ntfs_attr_close(na);
free(new_al);
errno = err;
return -1;
if ( na )
ntfs_attr_close( na );
free( new_al );
errno = err;
return -1;
}
/**
* ntfs_attrlist_entry_rm - remove an attribute list attribute entry
* @ctx: attribute search context describing the attribute list entry
* @ctx: attribute search context describing the attribute list entry
*
* Remove the attribute list entry @ctx->al_entry from the attribute list.
*
* Return 0 on success and -1 on error with errno set to the error code.
*/
int ntfs_attrlist_entry_rm(ntfs_attr_search_ctx *ctx)
int ntfs_attrlist_entry_rm( ntfs_attr_search_ctx *ctx )
{
u8 *new_al;
int new_al_len;
ntfs_inode *base_ni;
ntfs_attr *na;
ATTR_LIST_ENTRY *ale;
int err;
u8 *new_al;
int new_al_len;
ntfs_inode *base_ni;
ntfs_attr *na;
ATTR_LIST_ENTRY *ale;
int err;
if (!ctx || !ctx->ntfs_ino || !ctx->al_entry) {
ntfs_log_trace("Invalid arguments.\n");
errno = EINVAL;
return -1;
}
if ( !ctx || !ctx->ntfs_ino || !ctx->al_entry )
{
ntfs_log_trace( "Invalid arguments.\n" );
errno = EINVAL;
return -1;
}
if (ctx->base_ntfs_ino)
base_ni = ctx->base_ntfs_ino;
else
base_ni = ctx->ntfs_ino;
ale = ctx->al_entry;
if ( ctx->base_ntfs_ino )
base_ni = ctx->base_ntfs_ino;
else
base_ni = ctx->ntfs_ino;
ale = ctx->al_entry;
ntfs_log_trace("Entering for inode 0x%llx, attr 0x%x, lowest_vcn %lld.\n",
(long long) ctx->ntfs_ino->mft_no,
(unsigned) le32_to_cpu(ctx->al_entry->type),
(long long) le64_to_cpu(ctx->al_entry->lowest_vcn));
ntfs_log_trace( "Entering for inode 0x%llx, attr 0x%x, lowest_vcn %lld.\n",
( long long ) ctx->ntfs_ino->mft_no,
( unsigned ) le32_to_cpu( ctx->al_entry->type ),
( long long ) le64_to_cpu( ctx->al_entry->lowest_vcn ) );
if (!NInoAttrList(base_ni)) {
ntfs_log_trace("Attribute list isn't present.\n");
errno = ENOENT;
return -1;
}
if ( !NInoAttrList( base_ni ) )
{
ntfs_log_trace( "Attribute list isn't present.\n" );
errno = ENOENT;
return -1;
}
/* Allocate memory for new attribute list. */
new_al_len = base_ni->attr_list_size - le16_to_cpu(ale->length);
new_al = ntfs_calloc(new_al_len);
if (!new_al)
return -1;
/* Allocate memory for new attribute list. */
new_al_len = base_ni->attr_list_size - le16_to_cpu( ale->length );
new_al = ntfs_calloc( new_al_len );
if ( !new_al )
return -1;
/* Reisze $ATTRIBUTE_LIST to new length. */
na = ntfs_attr_open(base_ni, AT_ATTRIBUTE_LIST, AT_UNNAMED, 0);
if (!na) {
err = errno;
ntfs_log_trace("Failed to open $ATTRIBUTE_LIST attribute.\n");
goto err_out;
}
if (ntfs_attr_truncate(na, new_al_len)) {
err = errno;
ntfs_log_trace("$ATTRIBUTE_LIST resize failed.\n");
goto err_out;
}
/* Reisze $ATTRIBUTE_LIST to new length. */
na = ntfs_attr_open( base_ni, AT_ATTRIBUTE_LIST, AT_UNNAMED, 0 );
if ( !na )
{
err = errno;
ntfs_log_trace( "Failed to open $ATTRIBUTE_LIST attribute.\n" );
goto err_out;
}
if ( ntfs_attr_truncate( na, new_al_len ) )
{
err = errno;
ntfs_log_trace( "$ATTRIBUTE_LIST resize failed.\n" );
goto err_out;
}
/* Copy entries from old attribute list to new. */
memcpy(new_al, base_ni->attr_list, (u8*)ale - base_ni->attr_list);
memcpy(new_al + ((u8*)ale - base_ni->attr_list), (u8*)ale + le16_to_cpu(
ale->length), new_al_len - ((u8*)ale - base_ni->attr_list));
/* Copy entries from old attribute list to new. */
memcpy( new_al, base_ni->attr_list, ( u8* )ale - base_ni->attr_list );
memcpy( new_al + ( ( u8* )ale - base_ni->attr_list ), ( u8* )ale + le16_to_cpu(
ale->length ), new_al_len - ( ( u8* )ale - base_ni->attr_list ) );
/* Set new runlist. */
free(base_ni->attr_list);
base_ni->attr_list = new_al;
base_ni->attr_list_size = new_al_len;
NInoAttrListSetDirty(base_ni);
/* Done! */
ntfs_attr_close(na);
return 0;
/* Set new runlist. */
free( base_ni->attr_list );
base_ni->attr_list = new_al;
base_ni->attr_list_size = new_al_len;
NInoAttrListSetDirty( base_ni );
/* Done! */
ntfs_attr_close( na );
return 0;
err_out:
if (na)
ntfs_attr_close(na);
free(new_al);
errno = err;
return -1;
if ( na )
ntfs_attr_close( na );
free( new_al );
errno = err;
return -1;
}

View File

@ -1,6 +1,6 @@
/*
* attrlist.h - Exports for attribute list attribute handling.
* Originated from Linux-NTFS project.
* Originated from Linux-NTFS project.
*
* Copyright (c) 2004 Anton Altaparmakov
* Copyright (c) 2004 Yura Pakhuchiy
@ -26,26 +26,26 @@
#include "attrib.h"
extern int ntfs_attrlist_need(ntfs_inode *ni);
extern int ntfs_attrlist_need( ntfs_inode *ni );
extern int ntfs_attrlist_entry_add(ntfs_inode *ni, ATTR_RECORD *attr);
extern int ntfs_attrlist_entry_rm(ntfs_attr_search_ctx *ctx);
extern int ntfs_attrlist_entry_add( ntfs_inode *ni, ATTR_RECORD *attr );
extern int ntfs_attrlist_entry_rm( ntfs_attr_search_ctx *ctx );
/**
* ntfs_attrlist_mark_dirty - set the attribute list dirty
* @ni: ntfs inode which base inode contain dirty attribute list
* @ni: ntfs inode which base inode contain dirty attribute list
*
* Set the attribute list dirty so it is written out later (at the latest at
* ntfs_inode_close() time).
*
* This function cannot fail.
*/
static __inline__ void ntfs_attrlist_mark_dirty(ntfs_inode *ni)
static __inline__ void ntfs_attrlist_mark_dirty( ntfs_inode *ni )
{
if (ni->nr_extents == -1)
NInoAttrListSetDirty(ni->base_ni);
else
NInoAttrListSetDirty(ni);
if ( ni->nr_extents == -1 )
NInoAttrListSetDirty( ni->base_ni );
else
NInoAttrListSetDirty( ni );
}
#endif /* defined _NTFS_ATTRLIST_H */

View File

@ -34,24 +34,28 @@
/*-----------------------------------------------------------------
Functions to deal with little endian values stored in uint8_t arrays
-----------------------------------------------------------------*/
static inline uint16_t u8array_to_u16 (const uint8_t* item, int offset) {
return ( item[offset] | (item[offset + 1] << 8));
static inline uint16_t u8array_to_u16 ( const uint8_t* item, int offset )
{
return ( item[offset] | ( item[offset + 1] << 8 ) );
}
static inline uint32_t u8array_to_u32 (const uint8_t* item, int offset) {
return ( item[offset] | (item[offset + 1] << 8) | (item[offset + 2] << 16) | (item[offset + 3] << 24));
static inline uint32_t u8array_to_u32 ( const uint8_t* item, int offset )
{
return ( item[offset] | ( item[offset + 1] << 8 ) | ( item[offset + 2] << 16 ) | ( item[offset + 3] << 24 ) );
}
static inline void u16_to_u8array (uint8_t* item, int offset, uint16_t value) {
item[offset] = (uint8_t) value;
item[offset + 1] = (uint8_t)(value >> 8);
static inline void u16_to_u8array ( uint8_t* item, int offset, uint16_t value )
{
item[offset] = ( uint8_t ) value;
item[offset + 1] = ( uint8_t )( value >> 8 );
}
static inline void u32_to_u8array (uint8_t* item, int offset, uint32_t value) {
item[offset] = (uint8_t) value;
item[offset + 1] = (uint8_t)(value >> 8);
item[offset + 2] = (uint8_t)(value >> 16);
item[offset + 3] = (uint8_t)(value >> 24);
static inline void u32_to_u8array ( uint8_t* item, int offset, uint32_t value )
{
item[offset] = ( uint8_t ) value;
item[offset + 1] = ( uint8_t )( value >> 8 );
item[offset + 2] = ( uint8_t )( value >> 16 );
item[offset + 3] = ( uint8_t )( value >> 24 );
}
#endif // _BIT_OPS_H

View File

@ -47,254 +47,268 @@
/**
* ntfs_bit_set - set a bit in a field of bits
* @bitmap: field of bits
* @bit: bit to set
* @new_value: value to set bit to (0 or 1)
* @bitmap: field of bits
* @bit: bit to set
* @new_value: value to set bit to (0 or 1)
*
* Set the bit @bit in the @bitmap to @new_value. Ignore all errors.
*/
void ntfs_bit_set(u8 *bitmap, const u64 bit, const u8 new_value)
void ntfs_bit_set( u8 *bitmap, const u64 bit, const u8 new_value )
{
if (!bitmap || new_value > 1)
return;
if (!new_value)
bitmap[bit >> 3] &= ~(1 << (bit & 7));
else
bitmap[bit >> 3] |= (1 << (bit & 7));
if ( !bitmap || new_value > 1 )
return;
if ( !new_value )
bitmap[bit >> 3] &= ~( 1 << ( bit & 7 ) );
else
bitmap[bit >> 3] |= ( 1 << ( bit & 7 ) );
}
/**
* ntfs_bit_get - get value of a bit in a field of bits
* @bitmap: field of bits
* @bit: bit to get
* @bitmap: field of bits
* @bit: bit to get
*
* Get and return the value of the bit @bit in @bitmap (0 or 1).
* Return -1 on error.
*/
char ntfs_bit_get(const u8 *bitmap, const u64 bit)
char ntfs_bit_get( const u8 *bitmap, const u64 bit )
{
if (!bitmap)
return -1;
return (bitmap[bit >> 3] >> (bit & 7)) & 1;
if ( !bitmap )
return -1;
return ( bitmap[bit >> 3] >> ( bit & 7 ) ) & 1;
}
/**
* ntfs_bit_get_and_set - get value of a bit in a field of bits and set it
* @bitmap: field of bits
* @bit: bit to get/set
* @new_value: value to set bit to (0 or 1)
* @bitmap: field of bits
* @bit: bit to get/set
* @new_value: value to set bit to (0 or 1)
*
* Return the value of the bit @bit and set it to @new_value (0 or 1).
* Return -1 on error.
*/
char ntfs_bit_get_and_set(u8 *bitmap, const u64 bit, const u8 new_value)
char ntfs_bit_get_and_set( u8 *bitmap, const u64 bit, const u8 new_value )
{
register u8 old_bit, shift;
register u8 old_bit, shift;
if (!bitmap || new_value > 1)
return -1;
shift = bit & 7;
old_bit = (bitmap[bit >> 3] >> shift) & 1;
if (new_value != old_bit)
bitmap[bit >> 3] ^= 1 << shift;
return old_bit;
if ( !bitmap || new_value > 1 )
return -1;
shift = bit & 7;
old_bit = ( bitmap[bit >> 3] >> shift ) & 1;
if ( new_value != old_bit )
bitmap[bit >> 3] ^= 1 << shift;
return old_bit;
}
/**
* ntfs_bitmap_set_bits_in_run - set a run of bits in a bitmap to a value
* @na: attribute containing the bitmap
* @start_bit: first bit to set
* @count: number of bits to set
* @value: value to set the bits to (i.e. 0 or 1)
* @na: attribute containing the bitmap
* @start_bit: first bit to set
* @count: number of bits to set
* @value: value to set the bits to (i.e. 0 or 1)
*
* Set @count bits starting at bit @start_bit in the bitmap described by the
* attribute @na to @value, where @value is either 0 or 1.
*
* On success return 0 and on error return -1 with errno set to the error code.
*/
static int ntfs_bitmap_set_bits_in_run(ntfs_attr *na, s64 start_bit,
s64 count, int value)
static int ntfs_bitmap_set_bits_in_run( ntfs_attr *na, s64 start_bit,
s64 count, int value )
{
s64 bufsize, br;
u8 *buf, *lastbyte_buf;
int bit, firstbyte, lastbyte, lastbyte_pos, tmp, ret = -1;
s64 bufsize, br;
u8 *buf, *lastbyte_buf;
int bit, firstbyte, lastbyte, lastbyte_pos, tmp, ret = -1;
if (!na || start_bit < 0 || count < 0) {
errno = EINVAL;
ntfs_log_perror("%s: Invalid argument (%p, %lld, %lld)",
__FUNCTION__, na, (long long)start_bit, (long long)count);
return -1;
}
if ( !na || start_bit < 0 || count < 0 )
{
errno = EINVAL;
ntfs_log_perror( "%s: Invalid argument (%p, %lld, %lld)",
__FUNCTION__, na, ( long long )start_bit, ( long long )count );
return -1;
}
bit = start_bit & 7;
if (bit)
firstbyte = 1;
else
firstbyte = 0;
bit = start_bit & 7;
if ( bit )
firstbyte = 1;
else
firstbyte = 0;
/* Calculate the required buffer size in bytes, capping it at 8kiB. */
bufsize = ((count - (bit ? 8 - bit : 0) + 7) >> 3) + firstbyte;
if (bufsize > 8192)
bufsize = 8192;
/* Calculate the required buffer size in bytes, capping it at 8kiB. */
bufsize = ( ( count - ( bit ? 8 - bit : 0 ) + 7 ) >> 3 ) + firstbyte;
if ( bufsize > 8192 )
bufsize = 8192;
buf = ntfs_malloc(bufsize);
if (!buf)
return -1;
buf = ntfs_malloc( bufsize );
if ( !buf )
return -1;
/* Depending on @value, zero or set all bits in the allocated buffer. */
memset(buf, value ? 0xff : 0, bufsize);
/* Depending on @value, zero or set all bits in the allocated buffer. */
memset( buf, value ? 0xff : 0, bufsize );
/* If there is a first partial byte... */
if (bit) {
/* read it in... */
br = ntfs_attr_pread(na, start_bit >> 3, 1, buf);
if (br != 1) {
if (br >= 0)
errno = EIO;
goto free_err_out;
}
/* and set or clear the appropriate bits in it. */
while ((bit & 7) && count--) {
if (value)
*buf |= 1 << bit++;
else
*buf &= ~(1 << bit++);
}
/* Update @start_bit to the new position. */
start_bit = (start_bit + 7) & ~7;
}
/* If there is a first partial byte... */
if ( bit )
{
/* read it in... */
br = ntfs_attr_pread( na, start_bit >> 3, 1, buf );
if ( br != 1 )
{
if ( br >= 0 )
errno = EIO;
goto free_err_out;
}
/* and set or clear the appropriate bits in it. */
while ( ( bit & 7 ) && count-- )
{
if ( value )
*buf |= 1 << bit++;
else
*buf &= ~( 1 << bit++ );
}
/* Update @start_bit to the new position. */
start_bit = ( start_bit + 7 ) & ~7;
}
/* Loop until @count reaches zero. */
lastbyte = 0;
lastbyte_buf = NULL;
bit = count & 7;
do {
/* If there is a last partial byte... */
if (count > 0 && bit) {
lastbyte_pos = ((count + 7) >> 3) + firstbyte;
if (!lastbyte_pos) {
// FIXME: Eeek! BUG!
ntfs_log_error("Lastbyte is zero. Leaving "
"inconsistent metadata.\n");
errno = EIO;
goto free_err_out;
}
/* and it is in the currently loaded bitmap window... */
if (lastbyte_pos <= bufsize) {
lastbyte_buf = buf + lastbyte_pos - 1;
/* Loop until @count reaches zero. */
lastbyte = 0;
lastbyte_buf = NULL;
bit = count & 7;
do
{
/* If there is a last partial byte... */
if ( count > 0 && bit )
{
lastbyte_pos = ( ( count + 7 ) >> 3 ) + firstbyte;
if ( !lastbyte_pos )
{
// FIXME: Eeek! BUG!
ntfs_log_error( "Lastbyte is zero. Leaving "
"inconsistent metadata.\n" );
errno = EIO;
goto free_err_out;
}
/* and it is in the currently loaded bitmap window... */
if ( lastbyte_pos <= bufsize )
{
lastbyte_buf = buf + lastbyte_pos - 1;
/* read the byte in... */
br = ntfs_attr_pread(na, (start_bit + count) >>
3, 1, lastbyte_buf);
if (br != 1) {
// FIXME: Eeek! We need rollback! (AIA)
if (br >= 0)
errno = EIO;
ntfs_log_perror("Reading of last byte "
"failed (%lld). Leaving inconsistent "
"metadata", (long long)br);
goto free_err_out;
}
/* and set/clear the appropriate bits in it. */
while (bit && count--) {
if (value)
*lastbyte_buf |= 1 << --bit;
else
*lastbyte_buf &= ~(1 << --bit);
}
/* We don't want to come back here... */
bit = 0;
/* We have a last byte that we have handled. */
lastbyte = 1;
}
}
/* read the byte in... */
br = ntfs_attr_pread( na, ( start_bit + count ) >>
3, 1, lastbyte_buf );
if ( br != 1 )
{
// FIXME: Eeek! We need rollback! (AIA)
if ( br >= 0 )
errno = EIO;
ntfs_log_perror( "Reading of last byte "
"failed (%lld). Leaving inconsistent "
"metadata", ( long long )br );
goto free_err_out;
}
/* and set/clear the appropriate bits in it. */
while ( bit && count-- )
{
if ( value )
*lastbyte_buf |= 1 << --bit;
else
*lastbyte_buf &= ~( 1 << --bit );
}
/* We don't want to come back here... */
bit = 0;
/* We have a last byte that we have handled. */
lastbyte = 1;
}
}
/* Write the prepared buffer to disk. */
tmp = (start_bit >> 3) - firstbyte;
br = ntfs_attr_pwrite(na, tmp, bufsize, buf);
if (br != bufsize) {
// FIXME: Eeek! We need rollback! (AIA)
if (br >= 0)
errno = EIO;
ntfs_log_perror("Failed to write buffer to bitmap "
"(%lld != %lld). Leaving inconsistent metadata",
(long long)br, (long long)bufsize);
goto free_err_out;
}
/* Write the prepared buffer to disk. */
tmp = ( start_bit >> 3 ) - firstbyte;
br = ntfs_attr_pwrite( na, tmp, bufsize, buf );
if ( br != bufsize )
{
// FIXME: Eeek! We need rollback! (AIA)
if ( br >= 0 )
errno = EIO;
ntfs_log_perror( "Failed to write buffer to bitmap "
"(%lld != %lld). Leaving inconsistent metadata",
( long long )br, ( long long )bufsize );
goto free_err_out;
}
/* Update counters. */
tmp = (bufsize - firstbyte - lastbyte) << 3;
if (firstbyte) {
firstbyte = 0;
/*
* Re-set the partial first byte so a subsequent write
* of the buffer does not have stale, incorrect bits.
*/
*buf = value ? 0xff : 0;
}
start_bit += tmp;
count -= tmp;
if (bufsize > (tmp = (count + 7) >> 3))
bufsize = tmp;
/* Update counters. */
tmp = ( bufsize - firstbyte - lastbyte ) << 3;
if ( firstbyte )
{
firstbyte = 0;
/*
* Re-set the partial first byte so a subsequent write
* of the buffer does not have stale, incorrect bits.
*/
*buf = value ? 0xff : 0;
}
start_bit += tmp;
count -= tmp;
if ( bufsize > ( tmp = ( count + 7 ) >> 3 ) )
bufsize = tmp;
if (lastbyte && count != 0) {
// FIXME: Eeek! BUG!
ntfs_log_error("Last buffer but count is not zero "
"(%lld). Leaving inconsistent metadata.\n",
(long long)count);
errno = EIO;
goto free_err_out;
}
} while (count > 0);
if ( lastbyte && count != 0 )
{
// FIXME: Eeek! BUG!
ntfs_log_error( "Last buffer but count is not zero "
"(%lld). Leaving inconsistent metadata.\n",
( long long )count );
errno = EIO;
goto free_err_out;
}
}
while ( count > 0 );
ret = 0;
ret = 0;
free_err_out:
free(buf);
return ret;
free( buf );
return ret;
}
/**
* ntfs_bitmap_set_run - set a run of bits in a bitmap
* @na: attribute containing the bitmap
* @start_bit: first bit to set
* @count: number of bits to set
* @na: attribute containing the bitmap
* @start_bit: first bit to set
* @count: number of bits to set
*
* Set @count bits starting at bit @start_bit in the bitmap described by the
* attribute @na.
*
* On success return 0 and on error return -1 with errno set to the error code.
*/
int ntfs_bitmap_set_run(ntfs_attr *na, s64 start_bit, s64 count)
int ntfs_bitmap_set_run( ntfs_attr *na, s64 start_bit, s64 count )
{
int ret;
int ret;
ntfs_log_enter("Set from bit %lld, count %lld\n",
(long long)start_bit, (long long)count);
ret = ntfs_bitmap_set_bits_in_run(na, start_bit, count, 1);
ntfs_log_leave("\n");
return ret;
ntfs_log_enter( "Set from bit %lld, count %lld\n",
( long long )start_bit, ( long long )count );
ret = ntfs_bitmap_set_bits_in_run( na, start_bit, count, 1 );
ntfs_log_leave( "\n" );
return ret;
}
/**
* ntfs_bitmap_clear_run - clear a run of bits in a bitmap
* @na: attribute containing the bitmap
* @start_bit: first bit to clear
* @count: number of bits to clear
* @na: attribute containing the bitmap
* @start_bit: first bit to clear
* @count: number of bits to clear
*
* Clear @count bits starting at bit @start_bit in the bitmap described by the
* attribute @na.
*
* On success return 0 and on error return -1 with errno set to the error code.
*/
int ntfs_bitmap_clear_run(ntfs_attr *na, s64 start_bit, s64 count)
int ntfs_bitmap_clear_run( ntfs_attr *na, s64 start_bit, s64 count )
{
int ret;
int ret;
ntfs_log_enter("Clear from bit %lld, count %lld\n",
(long long)start_bit, (long long)count);
ret = ntfs_bitmap_set_bits_in_run(na, start_bit, count, 0);
ntfs_log_leave("\n");
return ret;
ntfs_log_enter( "Clear from bit %lld, count %lld\n",
( long long )start_bit, ( long long )count );
ret = ntfs_bitmap_set_bits_in_run( na, start_bit, count, 0 );
ntfs_log_leave( "\n" );
return ret;
}

View File

@ -36,38 +36,38 @@
* size of the bitmap.
*/
extern void ntfs_bit_set(u8 *bitmap, const u64 bit, const u8 new_value);
extern char ntfs_bit_get(const u8 *bitmap, const u64 bit);
extern char ntfs_bit_get_and_set(u8 *bitmap, const u64 bit, const u8 new_value);
extern int ntfs_bitmap_set_run(ntfs_attr *na, s64 start_bit, s64 count);
extern int ntfs_bitmap_clear_run(ntfs_attr *na, s64 start_bit, s64 count);
extern void ntfs_bit_set( u8 *bitmap, const u64 bit, const u8 new_value );
extern char ntfs_bit_get( const u8 *bitmap, const u64 bit );
extern char ntfs_bit_get_and_set( u8 *bitmap, const u64 bit, const u8 new_value );
extern int ntfs_bitmap_set_run( ntfs_attr *na, s64 start_bit, s64 count );
extern int ntfs_bitmap_clear_run( ntfs_attr *na, s64 start_bit, s64 count );
/**
* ntfs_bitmap_set_bit - set a bit in a bitmap
* @na: attribute containing the bitmap
* @bit: bit to set
* @na: attribute containing the bitmap
* @bit: bit to set
*
* Set the @bit in the bitmap described by the attribute @na.
*
* On success return 0 and on error return -1 with errno set to the error code.
*/
static __inline__ int ntfs_bitmap_set_bit(ntfs_attr *na, s64 bit)
static __inline__ int ntfs_bitmap_set_bit( ntfs_attr *na, s64 bit )
{
return ntfs_bitmap_set_run(na, bit, 1);
return ntfs_bitmap_set_run( na, bit, 1 );
}
/**
* ntfs_bitmap_clear_bit - clear a bit in a bitmap
* @na: attribute containing the bitmap
* @bit: bit to clear
* @na: attribute containing the bitmap
* @bit: bit to clear
*
* Clear @bit in the bitmap described by the attribute @na.
*
* On success return 0 and on error return -1 with errno set to the error code.
*/
static __inline__ int ntfs_bitmap_clear_bit(ntfs_attr *na, s64 bit)
static __inline__ int ntfs_bitmap_clear_bit( ntfs_attr *na, s64 bit )
{
return ntfs_bitmap_clear_run(na, bit, 1);
return ntfs_bitmap_clear_run( na, bit, 1 );
}
/*
@ -76,9 +76,9 @@ static __inline__ int ntfs_bitmap_clear_bit(ntfs_attr *na, s64 bit)
* @word: value to rotate
* @shift: bits to roll
*/
static __inline__ u32 ntfs_rol32(u32 word, unsigned int shift)
static __inline__ u32 ntfs_rol32( u32 word, unsigned int shift )
{
return (word << shift) | (word >> (32 - shift));
return ( word << shift ) | ( word >> ( 32 - shift ) );
}
/*
@ -87,9 +87,9 @@ static __inline__ u32 ntfs_rol32(u32 word, unsigned int shift)
* @word: value to rotate
* @shift: bits to roll
*/
static __inline__ u32 ntfs_ror32(u32 word, unsigned int shift)
static __inline__ u32 ntfs_ror32( u32 word, unsigned int shift )
{
return (word >> shift) | (word << (32 - shift));
return ( word >> shift ) | ( word << ( 32 - shift ) );
}
#endif /* defined _NTFS_BITMAP_H */

View File

@ -45,8 +45,8 @@
/**
* ntfs_boot_sector_is_ntfs - check if buffer contains a valid ntfs boot sector
* @b: buffer containing putative boot sector to analyze
* @silent: if zero, output progress messages to stderr
* @b: buffer containing putative boot sector to analyze
* @silent: if zero, output progress messages to stderr
*
* Check if the buffer @b contains a valid ntfs boot sector. The buffer @b
* must be at least 512 bytes in size.
@ -57,229 +57,244 @@
*
* Return TRUE if @b contains a valid ntfs boot sector and FALSE if not.
*/
BOOL ntfs_boot_sector_is_ntfs(NTFS_BOOT_SECTOR *b)
BOOL ntfs_boot_sector_is_ntfs( NTFS_BOOT_SECTOR *b )
{
u32 i;
BOOL ret = FALSE;
u32 i;
BOOL ret = FALSE;
ntfs_log_debug("Beginning bootsector check.\n");
ntfs_log_debug( "Beginning bootsector check.\n" );
ntfs_log_debug("Checking OEMid, NTFS signature.\n");
if (b->oem_id != cpu_to_le64(0x202020205346544eULL)) { /* "NTFS " */
ntfs_log_error("NTFS signature is missing.\n");
goto not_ntfs;
}
ntfs_log_debug( "Checking OEMid, NTFS signature.\n" );
if ( b->oem_id != cpu_to_le64( 0x202020205346544eULL ) ) /* "NTFS " */
{
ntfs_log_error( "NTFS signature is missing.\n" );
goto not_ntfs;
}
ntfs_log_debug("Checking bytes per sector.\n");
if (le16_to_cpu(b->bpb.bytes_per_sector) < 256 ||
le16_to_cpu(b->bpb.bytes_per_sector) > 4096) {
ntfs_log_error("Unexpected bytes per sector value (%d).\n",
le16_to_cpu(b->bpb.bytes_per_sector));
goto not_ntfs;
}
ntfs_log_debug( "Checking bytes per sector.\n" );
if ( le16_to_cpu( b->bpb.bytes_per_sector ) < 256 ||
le16_to_cpu( b->bpb.bytes_per_sector ) > 4096 )
{
ntfs_log_error( "Unexpected bytes per sector value (%d).\n",
le16_to_cpu( b->bpb.bytes_per_sector ) );
goto not_ntfs;
}
ntfs_log_debug("Checking sectors per cluster.\n");
switch (b->bpb.sectors_per_cluster) {
case 1: case 2: case 4: case 8: case 16: case 32: case 64: case 128:
break;
default:
ntfs_log_error("Unexpected sectors per cluster value (%d).\n",
b->bpb.sectors_per_cluster);
goto not_ntfs;
}
ntfs_log_debug( "Checking sectors per cluster.\n" );
switch ( b->bpb.sectors_per_cluster )
{
case 1: case 2: case 4: case 8: case 16: case 32: case 64: case 128:
break;
default:
ntfs_log_error( "Unexpected sectors per cluster value (%d).\n",
b->bpb.sectors_per_cluster );
goto not_ntfs;
}
ntfs_log_debug("Checking cluster size.\n");
i = (u32)le16_to_cpu(b->bpb.bytes_per_sector) *
b->bpb.sectors_per_cluster;
if (i > 65536) {
ntfs_log_error("Unexpected cluster size (%d).\n", i);
goto not_ntfs;
}
ntfs_log_debug( "Checking cluster size.\n" );
i = ( u32 )le16_to_cpu( b->bpb.bytes_per_sector ) *
b->bpb.sectors_per_cluster;
if ( i > 65536 )
{
ntfs_log_error( "Unexpected cluster size (%d).\n", i );
goto not_ntfs;
}
ntfs_log_debug("Checking reserved fields are zero.\n");
if (le16_to_cpu(b->bpb.reserved_sectors) ||
le16_to_cpu(b->bpb.root_entries) ||
le16_to_cpu(b->bpb.sectors) ||
le16_to_cpu(b->bpb.sectors_per_fat) ||
le32_to_cpu(b->bpb.large_sectors) ||
b->bpb.fats) {
ntfs_log_error("Reserved fields aren't zero "
"(%d, %d, %d, %d, %d, %d).\n",
le16_to_cpu(b->bpb.reserved_sectors),
le16_to_cpu(b->bpb.root_entries),
le16_to_cpu(b->bpb.sectors),
le16_to_cpu(b->bpb.sectors_per_fat),
le32_to_cpu(b->bpb.large_sectors),
b->bpb.fats);
goto not_ntfs;
}
ntfs_log_debug( "Checking reserved fields are zero.\n" );
if ( le16_to_cpu( b->bpb.reserved_sectors ) ||
le16_to_cpu( b->bpb.root_entries ) ||
le16_to_cpu( b->bpb.sectors ) ||
le16_to_cpu( b->bpb.sectors_per_fat ) ||
le32_to_cpu( b->bpb.large_sectors ) ||
b->bpb.fats )
{
ntfs_log_error( "Reserved fields aren't zero "
"(%d, %d, %d, %d, %d, %d).\n",
le16_to_cpu( b->bpb.reserved_sectors ),
le16_to_cpu( b->bpb.root_entries ),
le16_to_cpu( b->bpb.sectors ),
le16_to_cpu( b->bpb.sectors_per_fat ),
le32_to_cpu( b->bpb.large_sectors ),
b->bpb.fats );
goto not_ntfs;
}
ntfs_log_debug("Checking clusters per mft record.\n");
if ((u8)b->clusters_per_mft_record < 0xe1 ||
(u8)b->clusters_per_mft_record > 0xf7) {
switch (b->clusters_per_mft_record) {
case 1: case 2: case 4: case 8: case 0x10: case 0x20: case 0x40:
break;
default:
ntfs_log_error("Unexpected clusters per mft record "
"(%d).\n", b->clusters_per_mft_record);
goto not_ntfs;
}
}
ntfs_log_debug( "Checking clusters per mft record.\n" );
if ( ( u8 )b->clusters_per_mft_record < 0xe1 ||
( u8 )b->clusters_per_mft_record > 0xf7 )
{
switch ( b->clusters_per_mft_record )
{
case 1: case 2: case 4: case 8: case 0x10: case 0x20: case 0x40:
break;
default:
ntfs_log_error( "Unexpected clusters per mft record "
"(%d).\n", b->clusters_per_mft_record );
goto not_ntfs;
}
}
ntfs_log_debug("Checking clusters per index block.\n");
if ((u8)b->clusters_per_index_record < 0xe1 ||
(u8)b->clusters_per_index_record > 0xf7) {
switch (b->clusters_per_index_record) {
case 1: case 2: case 4: case 8: case 0x10: case 0x20: case 0x40:
break;
default:
ntfs_log_error("Unexpected clusters per index record "
"(%d).\n", b->clusters_per_index_record);
goto not_ntfs;
}
}
ntfs_log_debug( "Checking clusters per index block.\n" );
if ( ( u8 )b->clusters_per_index_record < 0xe1 ||
( u8 )b->clusters_per_index_record > 0xf7 )
{
switch ( b->clusters_per_index_record )
{
case 1: case 2: case 4: case 8: case 0x10: case 0x20: case 0x40:
break;
default:
ntfs_log_error( "Unexpected clusters per index record "
"(%d).\n", b->clusters_per_index_record );
goto not_ntfs;
}
}
if (b->end_of_sector_marker != cpu_to_le16(0xaa55))
ntfs_log_debug("Warning: Bootsector has invalid end of sector "
"marker.\n");
if ( b->end_of_sector_marker != cpu_to_le16( 0xaa55 ) )
ntfs_log_debug( "Warning: Bootsector has invalid end of sector "
"marker.\n" );
ntfs_log_debug("Bootsector check completed successfully.\n");
ntfs_log_debug( "Bootsector check completed successfully.\n" );
ret = TRUE;
ret = TRUE;
not_ntfs:
return ret;
return ret;
}
static const char *last_sector_error =
"HINTS: Either the volume is a RAID/LDM but it wasn't setup yet,\n"
" or it was not setup correctly (e.g. by not using mdadm --build ...),\n"
" or a wrong device is tried to be mounted,\n"
" or the partition table is corrupt (partition is smaller than NTFS),\n"
" or the NTFS boot sector is corrupt (NTFS size is not valid).\n";
"HINTS: Either the volume is a RAID/LDM but it wasn't setup yet,\n"
" or it was not setup correctly (e.g. by not using mdadm --build ...),\n"
" or a wrong device is tried to be mounted,\n"
" or the partition table is corrupt (partition is smaller than NTFS),\n"
" or the NTFS boot sector is corrupt (NTFS size is not valid).\n";
/**
* ntfs_boot_sector_parse - setup an ntfs volume from an ntfs boot sector
* @vol: ntfs_volume to setup
* @bs: buffer containing ntfs boot sector to parse
* @vol: ntfs_volume to setup
* @bs: buffer containing ntfs boot sector to parse
*
* Parse the ntfs bootsector @bs and setup the ntfs volume @vol with the
* obtained values.
*
* Return 0 on success or -1 on error with errno set to the error code EINVAL.
*/
int ntfs_boot_sector_parse(ntfs_volume *vol, const NTFS_BOOT_SECTOR *bs)
int ntfs_boot_sector_parse( ntfs_volume *vol, const NTFS_BOOT_SECTOR *bs )
{
s64 sectors;
u8 sectors_per_cluster;
s8 c;
s64 sectors;
u8 sectors_per_cluster;
s8 c;
/* We return -1 with errno = EINVAL on error. */
errno = EINVAL;
/* We return -1 with errno = EINVAL on error. */
errno = EINVAL;
vol->sector_size = le16_to_cpu(bs->bpb.bytes_per_sector);
vol->sector_size_bits = ffs(vol->sector_size) - 1;
ntfs_log_debug("SectorSize = 0x%x\n", vol->sector_size);
ntfs_log_debug("SectorSizeBits = %u\n", vol->sector_size_bits);
/*
* The bounds checks on mft_lcn and mft_mirr_lcn (i.e. them being
* below or equal the number_of_clusters) really belong in the
* ntfs_boot_sector_is_ntfs but in this way we can just do this once.
*/
sectors_per_cluster = bs->bpb.sectors_per_cluster;
ntfs_log_debug("SectorsPerCluster = 0x%x\n", sectors_per_cluster);
if (sectors_per_cluster & (sectors_per_cluster - 1)) {
ntfs_log_error("sectors_per_cluster (%d) is not a power of 2."
"\n", sectors_per_cluster);
return -1;
}
vol->sector_size = le16_to_cpu( bs->bpb.bytes_per_sector );
vol->sector_size_bits = ffs( vol->sector_size ) - 1;
ntfs_log_debug( "SectorSize = 0x%x\n", vol->sector_size );
ntfs_log_debug( "SectorSizeBits = %u\n", vol->sector_size_bits );
/*
* The bounds checks on mft_lcn and mft_mirr_lcn (i.e. them being
* below or equal the number_of_clusters) really belong in the
* ntfs_boot_sector_is_ntfs but in this way we can just do this once.
*/
sectors_per_cluster = bs->bpb.sectors_per_cluster;
ntfs_log_debug( "SectorsPerCluster = 0x%x\n", sectors_per_cluster );
if ( sectors_per_cluster & ( sectors_per_cluster - 1 ) )
{
ntfs_log_error( "sectors_per_cluster (%d) is not a power of 2."
"\n", sectors_per_cluster );
return -1;
}
sectors = sle64_to_cpu(bs->number_of_sectors);
ntfs_log_debug("NumberOfSectors = %lld\n", (long long)sectors);
if (!sectors) {
ntfs_log_error("Volume size is set to zero.\n");
return -1;
}
if (vol->dev->d_ops->seek(vol->dev,
(sectors - 1) << vol->sector_size_bits,
SEEK_SET) == -1) {
ntfs_log_perror("Failed to read last sector (%lld)",
(long long)sectors);
ntfs_log_error("%s", last_sector_error);
return -1;
}
sectors = sle64_to_cpu( bs->number_of_sectors );
ntfs_log_debug( "NumberOfSectors = %lld\n", ( long long )sectors );
if ( !sectors )
{
ntfs_log_error( "Volume size is set to zero.\n" );
return -1;
}
if ( vol->dev->d_ops->seek( vol->dev,
( sectors - 1 ) << vol->sector_size_bits,
SEEK_SET ) == -1 )
{
ntfs_log_perror( "Failed to read last sector (%lld)",
( long long )sectors );
ntfs_log_error( "%s", last_sector_error );
return -1;
}
vol->nr_clusters = sectors >> (ffs(sectors_per_cluster) - 1);
vol->nr_clusters = sectors >> ( ffs( sectors_per_cluster ) - 1 );
vol->mft_lcn = sle64_to_cpu(bs->mft_lcn);
vol->mftmirr_lcn = sle64_to_cpu(bs->mftmirr_lcn);
ntfs_log_debug("MFT LCN = %lld\n", (long long)vol->mft_lcn);
ntfs_log_debug("MFTMirr LCN = %lld\n", (long long)vol->mftmirr_lcn);
if (vol->mft_lcn > vol->nr_clusters ||
vol->mftmirr_lcn > vol->nr_clusters) {
ntfs_log_error("$MFT LCN (%lld) or $MFTMirr LCN (%lld) is "
"greater than the number of clusters (%lld).\n",
(long long)vol->mft_lcn, (long long)vol->mftmirr_lcn,
(long long)vol->nr_clusters);
return -1;
}
vol->mft_lcn = sle64_to_cpu( bs->mft_lcn );
vol->mftmirr_lcn = sle64_to_cpu( bs->mftmirr_lcn );
ntfs_log_debug( "MFT LCN = %lld\n", ( long long )vol->mft_lcn );
ntfs_log_debug( "MFTMirr LCN = %lld\n", ( long long )vol->mftmirr_lcn );
if ( vol->mft_lcn > vol->nr_clusters ||
vol->mftmirr_lcn > vol->nr_clusters )
{
ntfs_log_error( "$MFT LCN (%lld) or $MFTMirr LCN (%lld) is "
"greater than the number of clusters (%lld).\n",
( long long )vol->mft_lcn, ( long long )vol->mftmirr_lcn,
( long long )vol->nr_clusters );
return -1;
}
vol->cluster_size = sectors_per_cluster * vol->sector_size;
if (vol->cluster_size & (vol->cluster_size - 1)) {
ntfs_log_error("cluster_size (%d) is not a power of 2.\n",
vol->cluster_size);
return -1;
}
vol->cluster_size_bits = ffs(vol->cluster_size) - 1;
/*
* Need to get the clusters per mft record and handle it if it is
* negative. Then calculate the mft_record_size. A value of 0x80 is
* illegal, thus signed char is actually ok!
*/
c = bs->clusters_per_mft_record;
ntfs_log_debug("ClusterSize = 0x%x\n", (unsigned)vol->cluster_size);
ntfs_log_debug("ClusterSizeBits = %u\n", vol->cluster_size_bits);
ntfs_log_debug("ClustersPerMftRecord = 0x%x\n", c);
/*
* When clusters_per_mft_record is negative, it means that it is to
* be taken to be the negative base 2 logarithm of the mft_record_size
* min bytes. Then:
* mft_record_size = 2^(-clusters_per_mft_record) bytes.
*/
if (c < 0)
vol->mft_record_size = 1 << -c;
else
vol->mft_record_size = c << vol->cluster_size_bits;
if (vol->mft_record_size & (vol->mft_record_size - 1)) {
ntfs_log_error("mft_record_size (%d) is not a power of 2.\n",
vol->mft_record_size);
return -1;
}
vol->mft_record_size_bits = ffs(vol->mft_record_size) - 1;
ntfs_log_debug("MftRecordSize = 0x%x\n", (unsigned)vol->mft_record_size);
ntfs_log_debug("MftRecordSizeBits = %u\n", vol->mft_record_size_bits);
/* Same as above for INDX record. */
c = bs->clusters_per_index_record;
ntfs_log_debug("ClustersPerINDXRecord = 0x%x\n", c);
if (c < 0)
vol->indx_record_size = 1 << -c;
else
vol->indx_record_size = c << vol->cluster_size_bits;
vol->indx_record_size_bits = ffs(vol->indx_record_size) - 1;
ntfs_log_debug("INDXRecordSize = 0x%x\n", (unsigned)vol->indx_record_size);
ntfs_log_debug("INDXRecordSizeBits = %u\n", vol->indx_record_size_bits);
/*
* Work out the size of the MFT mirror in number of mft records. If the
* cluster size is less than or equal to the size taken by four mft
* records, the mft mirror stores the first four mft records. If the
* cluster size is bigger than the size taken by four mft records, the
* mft mirror contains as many mft records as will fit into one
* cluster.
*/
if (vol->cluster_size <= 4 * vol->mft_record_size)
vol->mftmirr_size = 4;
else
vol->mftmirr_size = vol->cluster_size / vol->mft_record_size;
return 0;
vol->cluster_size = sectors_per_cluster * vol->sector_size;
if ( vol->cluster_size & ( vol->cluster_size - 1 ) )
{
ntfs_log_error( "cluster_size (%d) is not a power of 2.\n",
vol->cluster_size );
return -1;
}
vol->cluster_size_bits = ffs( vol->cluster_size ) - 1;
/*
* Need to get the clusters per mft record and handle it if it is
* negative. Then calculate the mft_record_size. A value of 0x80 is
* illegal, thus signed char is actually ok!
*/
c = bs->clusters_per_mft_record;
ntfs_log_debug( "ClusterSize = 0x%x\n", ( unsigned )vol->cluster_size );
ntfs_log_debug( "ClusterSizeBits = %u\n", vol->cluster_size_bits );
ntfs_log_debug( "ClustersPerMftRecord = 0x%x\n", c );
/*
* When clusters_per_mft_record is negative, it means that it is to
* be taken to be the negative base 2 logarithm of the mft_record_size
* min bytes. Then:
* mft_record_size = 2^(-clusters_per_mft_record) bytes.
*/
if ( c < 0 )
vol->mft_record_size = 1 << -c;
else
vol->mft_record_size = c << vol->cluster_size_bits;
if ( vol->mft_record_size & ( vol->mft_record_size - 1 ) )
{
ntfs_log_error( "mft_record_size (%d) is not a power of 2.\n",
vol->mft_record_size );
return -1;
}
vol->mft_record_size_bits = ffs( vol->mft_record_size ) - 1;
ntfs_log_debug( "MftRecordSize = 0x%x\n", ( unsigned )vol->mft_record_size );
ntfs_log_debug( "MftRecordSizeBits = %u\n", vol->mft_record_size_bits );
/* Same as above for INDX record. */
c = bs->clusters_per_index_record;
ntfs_log_debug( "ClustersPerINDXRecord = 0x%x\n", c );
if ( c < 0 )
vol->indx_record_size = 1 << -c;
else
vol->indx_record_size = c << vol->cluster_size_bits;
vol->indx_record_size_bits = ffs( vol->indx_record_size ) - 1;
ntfs_log_debug( "INDXRecordSize = 0x%x\n", ( unsigned )vol->indx_record_size );
ntfs_log_debug( "INDXRecordSizeBits = %u\n", vol->indx_record_size_bits );
/*
* Work out the size of the MFT mirror in number of mft records. If the
* cluster size is less than or equal to the size taken by four mft
* records, the mft mirror stores the first four mft records. If the
* cluster size is bigger than the size taken by four mft records, the
* mft mirror contains as many mft records as will fit into one
* cluster.
*/
if ( vol->cluster_size <= 4 * vol->mft_record_size )
vol->mftmirr_size = 4;
else
vol->mftmirr_size = vol->cluster_size / vol->mft_record_size;
return 0;
}

View File

@ -1,6 +1,6 @@
/*
* bootsect.h - Exports for bootsector record handling.
* Originated from the Linux-NTFS project.
* Originated from the Linux-NTFS project.
*
* Copyright (c) 2000-2002 Anton Altaparmakov
* Copyright (c) 2006 Szabolcs Szakacsits
@ -30,13 +30,13 @@
/**
* ntfs_boot_sector_is_ntfs - check a boot sector for describing an ntfs volume
* @b: buffer containing the boot sector
* @b: buffer containing the boot sector
*
* This function checks the boot sector in @b for describing a valid ntfs
* volume. Return TRUE if @b is a valid NTFS boot sector or FALSE otherwise.
*/
extern BOOL ntfs_boot_sector_is_ntfs(NTFS_BOOT_SECTOR *b);
extern int ntfs_boot_sector_parse(ntfs_volume *vol, const NTFS_BOOT_SECTOR *bs);
extern BOOL ntfs_boot_sector_is_ntfs( NTFS_BOOT_SECTOR *b );
extern int ntfs_boot_sector_parse( ntfs_volume *vol, const NTFS_BOOT_SECTOR *bs );
#endif /* defined _NTFS_BOOTSECT_H */

File diff suppressed because it is too large Load Diff

View File

@ -24,96 +24,104 @@
#include "volume.h"
struct CACHED_GENERIC {
struct CACHED_GENERIC *next;
struct CACHED_GENERIC *previous;
void *variable;
size_t varsize;
union {
/* force alignment for pointers and u64 */
u64 u64align;
void *ptralign;
} fixed[0];
struct CACHED_GENERIC
{
struct CACHED_GENERIC *next;
struct CACHED_GENERIC *previous;
void *variable;
size_t varsize;
union
{
/* force alignment for pointers and u64 */
u64 u64align;
void *ptralign;
} fixed[0];
} ;
struct CACHED_INODE {
struct CACHED_INODE *next;
struct CACHED_INODE *previous;
const char *pathname;
size_t varsize;
/* above fields must match "struct CACHED_GENERIC" */
u64 inum;
struct CACHED_INODE
{
struct CACHED_INODE *next;
struct CACHED_INODE *previous;
const char *pathname;
size_t varsize;
/* above fields must match "struct CACHED_GENERIC" */
u64 inum;
} ;
struct CACHED_NIDATA {
struct CACHED_NIDATA *next;
struct CACHED_NIDATA *previous;
const char *pathname; /* not used */
size_t varsize; /* not used */
/* above fields must match "struct CACHED_GENERIC" */
u64 inum;
ntfs_inode *ni;
struct CACHED_NIDATA
{
struct CACHED_NIDATA *next;
struct CACHED_NIDATA *previous;
const char *pathname; /* not used */
size_t varsize; /* not used */
/* above fields must match "struct CACHED_GENERIC" */
u64 inum;
ntfs_inode *ni;
} ;
struct CACHED_LOOKUP {
struct CACHED_LOOKUP *next;
struct CACHED_LOOKUP *previous;
const char *name;
size_t namesize;
/* above fields must match "struct CACHED_GENERIC" */
u64 parent;
u64 inum;
struct CACHED_LOOKUP
{
struct CACHED_LOOKUP *next;
struct CACHED_LOOKUP *previous;
const char *name;
size_t namesize;
/* above fields must match "struct CACHED_GENERIC" */
u64 parent;
u64 inum;
} ;
enum {
CACHE_FREE = 1,
CACHE_NOHASH = 2
enum
{
CACHE_FREE = 1,
CACHE_NOHASH = 2
} ;
typedef int (*cache_compare)(const struct CACHED_GENERIC *cached,
const struct CACHED_GENERIC *item);
typedef void (*cache_free)(const struct CACHED_GENERIC *cached);
typedef int (*cache_hash)(const struct CACHED_GENERIC *cached);
typedef int ( *cache_compare )( const struct CACHED_GENERIC *cached,
const struct CACHED_GENERIC *item );
typedef void ( *cache_free )( const struct CACHED_GENERIC *cached );
typedef int ( *cache_hash )( const struct CACHED_GENERIC *cached );
struct HASH_ENTRY {
struct HASH_ENTRY *next;
struct CACHED_GENERIC *entry;
struct HASH_ENTRY
{
struct HASH_ENTRY *next;
struct CACHED_GENERIC *entry;
} ;
struct CACHE_HEADER {
const char *name;
struct CACHED_GENERIC *most_recent_entry;
struct CACHED_GENERIC *oldest_entry;
struct CACHED_GENERIC *free_entry;
struct HASH_ENTRY *free_hash;
struct HASH_ENTRY **first_hash;
cache_free dofree;
cache_hash dohash;
unsigned long reads;
unsigned long writes;
unsigned long hits;
int fixed_size;
int max_hash;
struct CACHED_GENERIC entry[0];
struct CACHE_HEADER
{
const char *name;
struct CACHED_GENERIC *most_recent_entry;
struct CACHED_GENERIC *oldest_entry;
struct CACHED_GENERIC *free_entry;
struct HASH_ENTRY *free_hash;
struct HASH_ENTRY **first_hash;
cache_free dofree;
cache_hash dohash;
unsigned long reads;
unsigned long writes;
unsigned long hits;
int fixed_size;
int max_hash;
struct CACHED_GENERIC entry[0];
} ;
/* cast to generic, avoiding gcc warnings */
/* cast to generic, avoiding gcc warnings */
#define GENERIC(pstr) ((const struct CACHED_GENERIC*)(const void*)(pstr))
struct CACHED_GENERIC *ntfs_fetch_cache(struct CACHE_HEADER *cache,
const struct CACHED_GENERIC *wanted,
cache_compare compare);
struct CACHED_GENERIC *ntfs_enter_cache(struct CACHE_HEADER *cache,
const struct CACHED_GENERIC *item,
cache_compare compare);
int ntfs_invalidate_cache(struct CACHE_HEADER *cache,
const struct CACHED_GENERIC *item,
cache_compare compare, int flags);
int ntfs_remove_cache(struct CACHE_HEADER *cache,
struct CACHED_GENERIC *item, int flags);
struct CACHED_GENERIC *ntfs_fetch_cache( struct CACHE_HEADER *cache,
const struct CACHED_GENERIC *wanted,
cache_compare compare );
struct CACHED_GENERIC *ntfs_enter_cache( struct CACHE_HEADER *cache,
const struct CACHED_GENERIC *item,
cache_compare compare );
int ntfs_invalidate_cache( struct CACHE_HEADER *cache,
const struct CACHED_GENERIC *item,
cache_compare compare, int flags );
int ntfs_remove_cache( struct CACHE_HEADER *cache,
struct CACHED_GENERIC *item, int flags );
void ntfs_create_lru_caches(ntfs_volume *vol);
void ntfs_free_lru_caches(ntfs_volume *vol);
void ntfs_create_lru_caches( ntfs_volume *vol );
void ntfs_free_lru_caches( ntfs_volume *vol );
#endif /* _NTFS_CACHE_H_ */

View File

@ -45,330 +45,365 @@
#define CACHE_FREE UINT_MAX
NTFS_CACHE* _NTFS_cache_constructor (unsigned int numberOfPages, unsigned int sectorsPerPage, const DISC_INTERFACE* discInterface, sec_t endOfPartition, sec_t sectorSize) {
NTFS_CACHE* cache;
unsigned int i;
NTFS_CACHE_ENTRY* cacheEntries;
NTFS_CACHE* _NTFS_cache_constructor ( unsigned int numberOfPages, unsigned int sectorsPerPage, const DISC_INTERFACE* discInterface, sec_t endOfPartition, sec_t sectorSize )
{
NTFS_CACHE* cache;
unsigned int i;
NTFS_CACHE_ENTRY* cacheEntries;
if(numberOfPages==0 || sectorsPerPage==0) return NULL;
if ( numberOfPages == 0 || sectorsPerPage == 0 ) return NULL;
if (numberOfPages < 4) {
numberOfPages = 4;
}
if ( numberOfPages < 4 )
{
numberOfPages = 4;
}
if (sectorsPerPage < 32) {
sectorsPerPage = 32;
}
if ( sectorsPerPage < 32 )
{
sectorsPerPage = 32;
}
cache = (NTFS_CACHE*) ntfs_alloc (sizeof(NTFS_CACHE));
if (cache == NULL) {
return NULL;
}
cache = ( NTFS_CACHE* ) ntfs_alloc ( sizeof( NTFS_CACHE ) );
if ( cache == NULL )
{
return NULL;
}
cache->disc = discInterface;
cache->endOfPartition = endOfPartition;
cache->numberOfPages = numberOfPages;
cache->sectorsPerPage = sectorsPerPage;
cache->sectorSize = sectorSize;
cache->disc = discInterface;
cache->endOfPartition = endOfPartition;
cache->numberOfPages = numberOfPages;
cache->sectorsPerPage = sectorsPerPage;
cache->sectorSize = sectorSize;
cacheEntries = (NTFS_CACHE_ENTRY*) ntfs_alloc ( sizeof(NTFS_CACHE_ENTRY) * numberOfPages);
if (cacheEntries == NULL) {
ntfs_free (cache);
return NULL;
}
cacheEntries = ( NTFS_CACHE_ENTRY* ) ntfs_alloc ( sizeof( NTFS_CACHE_ENTRY ) * numberOfPages );
if ( cacheEntries == NULL )
{
ntfs_free ( cache );
return NULL;
}
for (i = 0; i < numberOfPages; i++) {
cacheEntries[i].sector = CACHE_FREE;
cacheEntries[i].count = 0;
cacheEntries[i].last_access = 0;
cacheEntries[i].dirty = false;
cacheEntries[i].cache = (uint8_t*) ntfs_align ( sectorsPerPage * cache->sectorSize );
}
for ( i = 0; i < numberOfPages; i++ )
{
cacheEntries[i].sector = CACHE_FREE;
cacheEntries[i].count = 0;
cacheEntries[i].last_access = 0;
cacheEntries[i].dirty = false;
cacheEntries[i].cache = ( uint8_t* ) ntfs_align ( sectorsPerPage * cache->sectorSize );
}
cache->cacheEntries = cacheEntries;
cache->cacheEntries = cacheEntries;
return cache;
return cache;
}
void _NTFS_cache_destructor (NTFS_CACHE* cache) {
unsigned int i;
void _NTFS_cache_destructor ( NTFS_CACHE* cache )
{
unsigned int i;
if(cache==NULL) return;
if ( cache == NULL ) return;
// Clear out cache before destroying it
_NTFS_cache_flush(cache);
// Clear out cache before destroying it
_NTFS_cache_flush( cache );
// Free memory in reverse allocation order
for (i = 0; i < cache->numberOfPages; i++) {
ntfs_free (cache->cacheEntries[i].cache);
}
ntfs_free (cache->cacheEntries);
ntfs_free (cache);
// Free memory in reverse allocation order
for ( i = 0; i < cache->numberOfPages; i++ )
{
ntfs_free ( cache->cacheEntries[i].cache );
}
ntfs_free ( cache->cacheEntries );
ntfs_free ( cache );
}
static u32 accessCounter = 0;
static u32 accessTime(){
accessCounter++;
return accessCounter;
}
static NTFS_CACHE_ENTRY* _NTFS_cache_getPage(NTFS_CACHE *cache,sec_t sector)
static u32 accessTime()
{
unsigned int i;
NTFS_CACHE_ENTRY* cacheEntries = cache->cacheEntries;
unsigned int numberOfPages = cache->numberOfPages;
unsigned int sectorsPerPage = cache->sectorsPerPage;
bool foundFree = false;
unsigned int oldUsed = 0;
unsigned int oldAccess = UINT_MAX;
for(i=0;i<numberOfPages;i++) {
if(sector>=cacheEntries[i].sector && sector<(cacheEntries[i].sector + cacheEntries[i].count)) {
cacheEntries[i].last_access = accessTime();
return &(cacheEntries[i]);
}
if(foundFree==false && (cacheEntries[i].sector==CACHE_FREE || cacheEntries[i].last_access<oldAccess)) {
if(cacheEntries[i].sector==CACHE_FREE) foundFree = true;
oldUsed = i;
oldAccess = cacheEntries[i].last_access;
}
}
if(foundFree==false && cacheEntries[oldUsed].dirty==true) {
if(!cache->disc->writeSectors(cacheEntries[oldUsed].sector,cacheEntries[oldUsed].count,cacheEntries[oldUsed].cache)) return NULL;
cacheEntries[oldUsed].dirty = false;
}
sector = (sector/sectorsPerPage)*sectorsPerPage; // align base sector to page size
sec_t next_page = sector + sectorsPerPage;
if(next_page > cache->endOfPartition) next_page = cache->endOfPartition;
if(!cache->disc->readSectors(sector,next_page-sector,cacheEntries[oldUsed].cache)) return NULL;
cacheEntries[oldUsed].sector = sector;
cacheEntries[oldUsed].count = next_page-sector;
cacheEntries[oldUsed].last_access = accessTime();
return &(cacheEntries[oldUsed]);
accessCounter++;
return accessCounter;
}
static NTFS_CACHE_ENTRY* _NTFS_cache_findPage(NTFS_CACHE *cache, sec_t sector, sec_t count) {
unsigned int i;
NTFS_CACHE_ENTRY* cacheEntries = cache->cacheEntries;
unsigned int numberOfPages = cache->numberOfPages;
NTFS_CACHE_ENTRY *entry = NULL;
sec_t lowest = UINT_MAX;
for(i=0;i<numberOfPages;i++) {
if (cacheEntries[i].sector != CACHE_FREE) {
bool intersect;
if (sector > cacheEntries[i].sector) {
intersect = sector - cacheEntries[i].sector < cacheEntries[i].count;
} else {
intersect = cacheEntries[i].sector - sector < count;
}
if ( intersect && (cacheEntries[i].sector < lowest)) {
lowest = cacheEntries[i].sector;
entry = &cacheEntries[i];
}
}
}
return entry;
}
bool _NTFS_cache_readSectors(NTFS_CACHE *cache,sec_t sector,sec_t numSectors,void *buffer)
static NTFS_CACHE_ENTRY* _NTFS_cache_getPage( NTFS_CACHE *cache, sec_t sector )
{
sec_t sec;
sec_t secs_to_read;
NTFS_CACHE_ENTRY *entry;
uint8_t *dest = buffer;
unsigned int i;
NTFS_CACHE_ENTRY* cacheEntries = cache->cacheEntries;
unsigned int numberOfPages = cache->numberOfPages;
unsigned int sectorsPerPage = cache->sectorsPerPage;
while(numSectors>0) {
entry = _NTFS_cache_getPage(cache,sector);
if(entry==NULL) return false;
bool foundFree = false;
unsigned int oldUsed = 0;
unsigned int oldAccess = UINT_MAX;
sec = sector - entry->sector;
secs_to_read = entry->count - sec;
if(secs_to_read>numSectors) secs_to_read = numSectors;
for ( i = 0; i < numberOfPages; i++ )
{
if ( sector >= cacheEntries[i].sector && sector < ( cacheEntries[i].sector + cacheEntries[i].count ) )
{
cacheEntries[i].last_access = accessTime();
return &( cacheEntries[i] );
}
memcpy(dest,entry->cache + (sec*cache->sectorSize),(secs_to_read*cache->sectorSize));
if ( foundFree == false && ( cacheEntries[i].sector == CACHE_FREE || cacheEntries[i].last_access < oldAccess ) )
{
if ( cacheEntries[i].sector == CACHE_FREE ) foundFree = true;
oldUsed = i;
oldAccess = cacheEntries[i].last_access;
}
}
dest += (secs_to_read*cache->sectorSize);
sector += secs_to_read;
numSectors -= secs_to_read;
}
if ( foundFree == false && cacheEntries[oldUsed].dirty == true )
{
if ( !cache->disc->writeSectors( cacheEntries[oldUsed].sector, cacheEntries[oldUsed].count, cacheEntries[oldUsed].cache ) ) return NULL;
cacheEntries[oldUsed].dirty = false;
}
sector = ( sector / sectorsPerPage ) * sectorsPerPage; // align base sector to page size
sec_t next_page = sector + sectorsPerPage;
if ( next_page > cache->endOfPartition ) next_page = cache->endOfPartition;
return true;
if ( !cache->disc->readSectors( sector, next_page - sector, cacheEntries[oldUsed].cache ) ) return NULL;
cacheEntries[oldUsed].sector = sector;
cacheEntries[oldUsed].count = next_page - sector;
cacheEntries[oldUsed].last_access = accessTime();
return &( cacheEntries[oldUsed] );
}
static NTFS_CACHE_ENTRY* _NTFS_cache_findPage( NTFS_CACHE *cache, sec_t sector, sec_t count )
{
unsigned int i;
NTFS_CACHE_ENTRY* cacheEntries = cache->cacheEntries;
unsigned int numberOfPages = cache->numberOfPages;
NTFS_CACHE_ENTRY *entry = NULL;
sec_t lowest = UINT_MAX;
for ( i = 0; i < numberOfPages; i++ )
{
if ( cacheEntries[i].sector != CACHE_FREE )
{
bool intersect;
if ( sector > cacheEntries[i].sector )
{
intersect = sector - cacheEntries[i].sector < cacheEntries[i].count;
}
else
{
intersect = cacheEntries[i].sector - sector < count;
}
if ( intersect && ( cacheEntries[i].sector < lowest ) )
{
lowest = cacheEntries[i].sector;
entry = &cacheEntries[i];
}
}
}
return entry;
}
bool _NTFS_cache_readSectors( NTFS_CACHE *cache, sec_t sector, sec_t numSectors, void *buffer )
{
sec_t sec;
sec_t secs_to_read;
NTFS_CACHE_ENTRY *entry;
uint8_t *dest = buffer;
while ( numSectors > 0 )
{
entry = _NTFS_cache_getPage( cache, sector );
if ( entry == NULL ) return false;
sec = sector - entry->sector;
secs_to_read = entry->count - sec;
if ( secs_to_read > numSectors ) secs_to_read = numSectors;
memcpy( dest, entry->cache + ( sec*cache->sectorSize ), ( secs_to_read*cache->sectorSize ) );
dest += ( secs_to_read * cache->sectorSize );
sector += secs_to_read;
numSectors -= secs_to_read;
}
return true;
}
/*
Reads some data from a cache page, determined by the sector number
*/
bool _NTFS_cache_readPartialSector (NTFS_CACHE* cache, void* buffer, sec_t sector, unsigned int offset, size_t size)
bool _NTFS_cache_readPartialSector ( NTFS_CACHE* cache, void* buffer, sec_t sector, unsigned int offset, size_t size )
{
sec_t sec;
NTFS_CACHE_ENTRY *entry;
sec_t sec;
NTFS_CACHE_ENTRY *entry;
if (offset + size > cache->sectorSize) return false;
if ( offset + size > cache->sectorSize ) return false;
entry = _NTFS_cache_getPage(cache,sector);
if(entry==NULL) return false;
entry = _NTFS_cache_getPage( cache, sector );
if ( entry == NULL ) return false;
sec = sector - entry->sector;
memcpy(buffer,entry->cache + ((sec*cache->sectorSize) + offset),size);
sec = sector - entry->sector;
memcpy( buffer, entry->cache + ( ( sec*cache->sectorSize ) + offset ), size );
return true;
return true;
}
bool _NTFS_cache_readLittleEndianValue (NTFS_CACHE* cache, uint32_t *value, sec_t sector, unsigned int offset, int num_bytes) {
uint8_t buf[4];
if (!_NTFS_cache_readPartialSector(cache, buf, sector, offset, num_bytes)) return false;
bool _NTFS_cache_readLittleEndianValue ( NTFS_CACHE* cache, uint32_t *value, sec_t sector, unsigned int offset, int num_bytes )
{
uint8_t buf[4];
if ( !_NTFS_cache_readPartialSector( cache, buf, sector, offset, num_bytes ) ) return false;
switch(num_bytes) {
case 1: *value = buf[0]; break;
case 2: *value = u8array_to_u16(buf,0); break;
case 4: *value = u8array_to_u32(buf,0); break;
default: return false;
}
return true;
switch ( num_bytes )
{
case 1: *value = buf[0]; break;
case 2: *value = u8array_to_u16( buf, 0 ); break;
case 4: *value = u8array_to_u32( buf, 0 ); break;
default: return false;
}
return true;
}
/*
Writes some data to a cache page, making sure it is loaded into memory first.
*/
bool _NTFS_cache_writePartialSector (NTFS_CACHE* cache, const void* buffer, sec_t sector, unsigned int offset, size_t size)
bool _NTFS_cache_writePartialSector ( NTFS_CACHE* cache, const void* buffer, sec_t sector, unsigned int offset, size_t size )
{
sec_t sec;
NTFS_CACHE_ENTRY *entry;
sec_t sec;
NTFS_CACHE_ENTRY *entry;
if (offset + size > cache->sectorSize) return false;
if ( offset + size > cache->sectorSize ) return false;
entry = _NTFS_cache_getPage(cache,sector);
if(entry==NULL) return false;
entry = _NTFS_cache_getPage( cache, sector );
if ( entry == NULL ) return false;
sec = sector - entry->sector;
memcpy(entry->cache + ((sec*cache->sectorSize) + offset),buffer,size);
sec = sector - entry->sector;
memcpy( entry->cache + ( ( sec*cache->sectorSize ) + offset ), buffer, size );
entry->dirty = true;
return true;
entry->dirty = true;
return true;
}
bool _NTFS_cache_writeLittleEndianValue (NTFS_CACHE* cache, const uint32_t value, sec_t sector, unsigned int offset, int size) {
uint8_t buf[4] = {0, 0, 0, 0};
bool _NTFS_cache_writeLittleEndianValue ( NTFS_CACHE* cache, const uint32_t value, sec_t sector, unsigned int offset, int size )
{
uint8_t buf[4] = {0, 0, 0, 0};
switch(size) {
case 1: buf[0] = value; break;
case 2: u16_to_u8array(buf, 0, value); break;
case 4: u32_to_u8array(buf, 0, value); break;
default: return false;
}
switch ( size )
{
case 1: buf[0] = value; break;
case 2: u16_to_u8array( buf, 0, value ); break;
case 4: u32_to_u8array( buf, 0, value ); break;
default: return false;
}
return _NTFS_cache_writePartialSector(cache, buf, sector, offset, size);
return _NTFS_cache_writePartialSector( cache, buf, sector, offset, size );
}
/*
Writes some data to a cache page, zeroing out the page first
*/
bool _NTFS_cache_eraseWritePartialSector (NTFS_CACHE* cache, const void* buffer, sec_t sector, unsigned int offset, size_t size)
bool _NTFS_cache_eraseWritePartialSector ( NTFS_CACHE* cache, const void* buffer, sec_t sector, unsigned int offset, size_t size )
{
sec_t sec;
NTFS_CACHE_ENTRY *entry;
sec_t sec;
NTFS_CACHE_ENTRY *entry;
if (offset + size > cache->sectorSize) return false;
if ( offset + size > cache->sectorSize ) return false;
entry = _NTFS_cache_getPage(cache,sector);
if(entry==NULL) return false;
entry = _NTFS_cache_getPage( cache, sector );
if ( entry == NULL ) return false;
sec = sector - entry->sector;
memset(entry->cache + (sec*cache->sectorSize),0,cache->sectorSize);
memcpy(entry->cache + ((sec*cache->sectorSize) + offset),buffer,size);
sec = sector - entry->sector;
memset( entry->cache + ( sec*cache->sectorSize ), 0, cache->sectorSize );
memcpy( entry->cache + ( ( sec*cache->sectorSize ) + offset ), buffer, size );
entry->dirty = true;
return true;
entry->dirty = true;
return true;
}
bool _NTFS_cache_writeSectors (NTFS_CACHE* cache, sec_t sector, sec_t numSectors, const void* buffer)
bool _NTFS_cache_writeSectors ( NTFS_CACHE* cache, sec_t sector, sec_t numSectors, const void* buffer )
{
sec_t sec;
sec_t secs_to_write;
NTFS_CACHE_ENTRY* entry;
const uint8_t *src = buffer;
sec_t sec;
sec_t secs_to_write;
NTFS_CACHE_ENTRY* entry;
const uint8_t *src = buffer;
while(numSectors>0)
{
entry = _NTFS_cache_findPage(cache,sector,numSectors);
while ( numSectors > 0 )
{
entry = _NTFS_cache_findPage( cache, sector, numSectors );
if(entry!=NULL) {
if ( entry != NULL )
{
if ( entry->sector > sector) {
if ( entry->sector > sector )
{
secs_to_write = entry->sector - sector;
secs_to_write = entry->sector - sector;
cache->disc->writeSectors(sector,secs_to_write,src);
src += (secs_to_write*cache->sectorSize);
sector += secs_to_write;
numSectors -= secs_to_write;
}
cache->disc->writeSectors( sector, secs_to_write, src );
src += ( secs_to_write * cache->sectorSize );
sector += secs_to_write;
numSectors -= secs_to_write;
}
sec = sector - entry->sector;
secs_to_write = entry->count - sec;
sec = sector - entry->sector;
secs_to_write = entry->count - sec;
if(secs_to_write>numSectors) secs_to_write = numSectors;
if ( secs_to_write > numSectors ) secs_to_write = numSectors;
memcpy(entry->cache + (sec*cache->sectorSize),src,(secs_to_write*cache->sectorSize));
memcpy( entry->cache + ( sec*cache->sectorSize ), src, ( secs_to_write*cache->sectorSize ) );
src += (secs_to_write*cache->sectorSize);
sector += secs_to_write;
numSectors -= secs_to_write;
src += ( secs_to_write * cache->sectorSize );
sector += secs_to_write;
numSectors -= secs_to_write;
entry->dirty = true;
entry->dirty = true;
} else {
cache->disc->writeSectors(sector,numSectors,src);
numSectors=0;
}
}
return true;
}
else
{
cache->disc->writeSectors( sector, numSectors, src );
numSectors = 0;
}
}
return true;
}
/*
Flushes all dirty pages to disc, clearing the dirty flag.
*/
bool _NTFS_cache_flush (NTFS_CACHE* cache) {
unsigned int i;
if(cache==NULL) return true;
bool _NTFS_cache_flush ( NTFS_CACHE* cache )
{
unsigned int i;
if ( cache == NULL ) return true;
for (i = 0; i < cache->numberOfPages; i++) {
if (cache->cacheEntries[i].dirty) {
if (!cache->disc->writeSectors (cache->cacheEntries[i].sector, cache->cacheEntries[i].count, cache->cacheEntries[i].cache)) {
return false;
}
}
cache->cacheEntries[i].dirty = false;
}
for ( i = 0; i < cache->numberOfPages; i++ )
{
if ( cache->cacheEntries[i].dirty )
{
if ( !cache->disc->writeSectors ( cache->cacheEntries[i].sector, cache->cacheEntries[i].count, cache->cacheEntries[i].cache ) )
{
return false;
}
}
cache->cacheEntries[i].dirty = false;
}
return true;
return true;
}
void _NTFS_cache_invalidate (NTFS_CACHE* cache) {
unsigned int i;
if(cache==NULL)
void _NTFS_cache_invalidate ( NTFS_CACHE* cache )
{
unsigned int i;
if ( cache == NULL )
return;
_NTFS_cache_flush(cache);
for (i = 0; i < cache->numberOfPages; i++) {
cache->cacheEntries[i].sector = CACHE_FREE;
cache->cacheEntries[i].last_access = 0;
cache->cacheEntries[i].count = 0;
cache->cacheEntries[i].dirty = false;
}
_NTFS_cache_flush( cache );
for ( i = 0; i < cache->numberOfPages; i++ )
{
cache->cacheEntries[i].sector = CACHE_FREE;
cache->cacheEntries[i].last_access = 0;
cache->cacheEntries[i].count = 0;
cache->cacheEntries[i].dirty = false;
}
}

View File

@ -46,21 +46,23 @@
#include <ogc/disc_io.h>
#include <gccore.h>
typedef struct {
sec_t sector;
unsigned int count;
u64 last_access;
bool dirty;
u8* cache;
typedef struct
{
sec_t sector;
unsigned int count;
u64 last_access;
bool dirty;
u8* cache;
} NTFS_CACHE_ENTRY;
typedef struct {
const DISC_INTERFACE* disc;
sec_t endOfPartition;
unsigned int numberOfPages;
unsigned int sectorsPerPage;
sec_t sectorSize;
NTFS_CACHE_ENTRY* cacheEntries;
typedef struct
{
const DISC_INTERFACE* disc;
sec_t endOfPartition;
unsigned int numberOfPages;
unsigned int sectorsPerPage;
sec_t sectorSize;
NTFS_CACHE_ENTRY* cacheEntries;
} NTFS_CACHE;
/*
@ -99,37 +101,37 @@ Precondition: offset + size <= BYTES_PER_READ
/*
Read several sectors from the NTFS_CACHE
*/
bool _NTFS_cache_readSectors (NTFS_CACHE* NTFS_CACHE, sec_t sector, sec_t numSectors, void* buffer);
bool _NTFS_cache_readSectors ( NTFS_CACHE* NTFS_CACHE, sec_t sector, sec_t numSectors, void* buffer );
/*
Read a full sector from the NTFS_CACHE
*/
//static inline bool _NTFS_cache_readSector (NTFS_CACHE* NTFS_CACHE, void* buffer, sec_t sector) {
// return _NTFS_cache_readPartialSector (NTFS_CACHE, buffer, sector, 0, BYTES_PER_READ);
// return _NTFS_cache_readPartialSector (NTFS_CACHE, buffer, sector, 0, BYTES_PER_READ);
//}
/*
Write a full sector to the NTFS_CACHE
*/
//static inline bool _NTFS_cache_writeSector (NTFS_CACHE* NTFS_CACHE, const void* buffer, sec_t sector) {
// return _NTFS_cache_writePartialSector (NTFS_CACHE, buffer, sector, 0, BYTES_PER_READ);
// return _NTFS_cache_writePartialSector (NTFS_CACHE, buffer, sector, 0, BYTES_PER_READ);
//}
bool _NTFS_cache_writeSectors (NTFS_CACHE* NTFS_CACHE, sec_t sector, sec_t numSectors, const void* buffer);
bool _NTFS_cache_writeSectors ( NTFS_CACHE* NTFS_CACHE, sec_t sector, sec_t numSectors, const void* buffer );
/*
Write any dirty sectors back to disc and clear out the contents of the NTFS_CACHE
*/
bool _NTFS_cache_flush (NTFS_CACHE* NTFS_CACHE);
bool _NTFS_cache_flush ( NTFS_CACHE* NTFS_CACHE );
/*
Clear out the contents of the NTFS_CACHE without writing any dirty sectors first
*/
void _NTFS_cache_invalidate (NTFS_CACHE* NTFS_CACHE);
void _NTFS_cache_invalidate ( NTFS_CACHE* NTFS_CACHE );
NTFS_CACHE* _NTFS_cache_constructor (unsigned int numberOfPages, unsigned int sectorsPerPage, const DISC_INTERFACE* discInterface, sec_t endOfPartition, sec_t sectorSize);
NTFS_CACHE* _NTFS_cache_constructor ( unsigned int numberOfPages, unsigned int sectorsPerPage, const DISC_INTERFACE* discInterface, sec_t endOfPartition, sec_t sectorSize );
void _NTFS_cache_destructor (NTFS_CACHE* NTFS_CACHE);
void _NTFS_cache_destructor ( NTFS_CACHE* NTFS_CACHE );
#endif // _CACHE_H

View File

@ -52,22 +52,23 @@
*
* Returns:
*/
static int ntfs_collate_binary(ntfs_volume *vol __attribute__((unused)),
const void *data1, const int data1_len,
const void *data2, const int data2_len)
static int ntfs_collate_binary( ntfs_volume *vol __attribute__( ( unused ) ),
const void *data1, const int data1_len,
const void *data2, const int data2_len )
{
int rc;
int rc;
ntfs_log_trace("Entering.\n");
rc = memcmp(data1, data2, min(data1_len, data2_len));
if (!rc && (data1_len != data2_len)) {
if (data1_len < data2_len)
rc = -1;
else
rc = 1;
}
ntfs_log_trace("Done, returning %i.\n", rc);
return rc;
ntfs_log_trace( "Entering.\n" );
rc = memcmp( data1, data2, min( data1_len, data2_len ) );
if ( !rc && ( data1_len != data2_len ) )
{
if ( data1_len < data2_len )
rc = -1;
else
rc = 1;
}
ntfs_log_trace( "Done, returning %i.\n", rc );
return rc;
}
/**
@ -82,30 +83,32 @@ static int ntfs_collate_binary(ntfs_volume *vol __attribute__((unused)),
*
* Returns:
*/
static int ntfs_collate_ntofs_ulong(ntfs_volume *vol __attribute__((unused)),
const void *data1, const int data1_len,
const void *data2, const int data2_len)
static int ntfs_collate_ntofs_ulong( ntfs_volume *vol __attribute__( ( unused ) ),
const void *data1, const int data1_len,
const void *data2, const int data2_len )
{
int rc;
u32 d1, d2;
int rc;
u32 d1, d2;
ntfs_log_trace("Entering.\n");
if (data1_len != data2_len || data1_len != 4) {
ntfs_log_error("data1_len or/and data2_len not equal to 4.\n");
return NTFS_COLLATION_ERROR;
}
d1 = le32_to_cpup(data1);
d2 = le32_to_cpup(data2);
if (d1 < d2)
rc = -1;
else {
if (d1 == d2)
rc = 0;
else
rc = 1;
}
ntfs_log_trace("Done, returning %i.\n", rc);
return rc;
ntfs_log_trace( "Entering.\n" );
if ( data1_len != data2_len || data1_len != 4 )
{
ntfs_log_error( "data1_len or/and data2_len not equal to 4.\n" );
return NTFS_COLLATION_ERROR;
}
d1 = le32_to_cpup( data1 );
d2 = le32_to_cpup( data2 );
if ( d1 < d2 )
rc = -1;
else
{
if ( d1 == d2 )
rc = 0;
else
rc = 1;
}
ntfs_log_trace( "Done, returning %i.\n", rc );
return rc;
}
/**
@ -114,39 +117,43 @@ static int ntfs_collate_ntofs_ulong(ntfs_volume *vol __attribute__((unused)),
* Returns: -1, 0 or 1 depending of how the arrays compare
*/
static int ntfs_collate_ntofs_ulongs(ntfs_volume *vol __attribute__((unused)),
const void *data1, const int data1_len,
const void *data2, const int data2_len)
static int ntfs_collate_ntofs_ulongs( ntfs_volume *vol __attribute__( ( unused ) ),
const void *data1, const int data1_len,
const void *data2, const int data2_len )
{
int rc;
int len;
const le32 *p1, *p2;
u32 d1, d2;
int rc;
int len;
const le32 *p1, *p2;
u32 d1, d2;
ntfs_log_trace("Entering.\n");
if ((data1_len != data2_len) || (data1_len <= 0) || (data1_len & 3)) {
ntfs_log_error("data1_len or data2_len not valid\n");
return NTFS_COLLATION_ERROR;
}
p1 = (const le32*)data1;
p2 = (const le32*)data2;
len = data1_len;
do {
d1 = le32_to_cpup(p1);
p1++;
d2 = le32_to_cpup(p2);
p2++;
} while ((d1 == d2) && ((len -= 4) > 0));
if (d1 < d2)
rc = -1;
else {
if (d1 == d2)
rc = 0;
else
rc = 1;
}
ntfs_log_trace("Done, returning %i.\n", rc);
return rc;
ntfs_log_trace( "Entering.\n" );
if ( ( data1_len != data2_len ) || ( data1_len <= 0 ) || ( data1_len & 3 ) )
{
ntfs_log_error( "data1_len or data2_len not valid\n" );
return NTFS_COLLATION_ERROR;
}
p1 = ( const le32* )data1;
p2 = ( const le32* )data2;
len = data1_len;
do
{
d1 = le32_to_cpup( p1 );
p1++;
d2 = le32_to_cpup( p2 );
p2++;
}
while ( ( d1 == d2 ) && ( ( len -= 4 ) > 0 ) );
if ( d1 < d2 )
rc = -1;
else
{
if ( d1 == d2 )
rc = 0;
else
rc = 1;
}
ntfs_log_trace( "Done, returning %i.\n", rc );
return rc;
}
/**
@ -162,45 +169,49 @@ static int ntfs_collate_ntofs_ulongs(ntfs_volume *vol __attribute__((unused)),
*
* Returns: -1, 0 or 1 depending of how the keys compare
*/
static int ntfs_collate_ntofs_security_hash(ntfs_volume *vol __attribute__((unused)),
const void *data1, const int data1_len,
const void *data2, const int data2_len)
static int ntfs_collate_ntofs_security_hash( ntfs_volume *vol __attribute__( ( unused ) ),
const void *data1, const int data1_len,
const void *data2, const int data2_len )
{
int rc;
u32 d1, d2;
const le32 *p1, *p2;
int rc;
u32 d1, d2;
const le32 *p1, *p2;
ntfs_log_trace("Entering.\n");
if (data1_len != data2_len || data1_len != 8) {
ntfs_log_error("data1_len or/and data2_len not equal to 8.\n");
return NTFS_COLLATION_ERROR;
}
p1 = (const le32*)data1;
p2 = (const le32*)data2;
d1 = le32_to_cpup(p1);
d2 = le32_to_cpup(p2);
if (d1 < d2)
rc = -1;
else {
if (d1 > d2)
rc = 1;
else {
p1++;
p2++;
d1 = le32_to_cpup(p1);
d2 = le32_to_cpup(p2);
if (d1 < d2)
rc = -1;
else {
if (d1 > d2)
rc = 1;
else
rc = 0;
}
}
}
ntfs_log_trace("Done, returning %i.\n", rc);
return rc;
ntfs_log_trace( "Entering.\n" );
if ( data1_len != data2_len || data1_len != 8 )
{
ntfs_log_error( "data1_len or/and data2_len not equal to 8.\n" );
return NTFS_COLLATION_ERROR;
}
p1 = ( const le32* )data1;
p2 = ( const le32* )data2;
d1 = le32_to_cpup( p1 );
d2 = le32_to_cpup( p2 );
if ( d1 < d2 )
rc = -1;
else
{
if ( d1 > d2 )
rc = 1;
else
{
p1++;
p2++;
d1 = le32_to_cpup( p1 );
d2 = le32_to_cpup( p2 );
if ( d1 < d2 )
rc = -1;
else
{
if ( d1 > d2 )
rc = 1;
else
rc = 0;
}
}
}
ntfs_log_trace( "Done, returning %i.\n", rc );
return rc;
}
/**
@ -215,57 +226,58 @@ static int ntfs_collate_ntofs_security_hash(ntfs_volume *vol __attribute__((unus
*
* Returns:
*/
static int ntfs_collate_file_name(ntfs_volume *vol,
const void *data1, const int data1_len __attribute__((unused)),
const void *data2, const int data2_len __attribute__((unused)))
static int ntfs_collate_file_name( ntfs_volume *vol,
const void *data1, const int data1_len __attribute__( ( unused ) ),
const void *data2, const int data2_len __attribute__( ( unused ) ) )
{
const FILE_NAME_ATTR *file_name_attr1;
const FILE_NAME_ATTR *file_name_attr2;
int rc;
const FILE_NAME_ATTR *file_name_attr1;
const FILE_NAME_ATTR *file_name_attr2;
int rc;
ntfs_log_trace("Entering.\n");
file_name_attr1 = (const FILE_NAME_ATTR*)data1;
file_name_attr2 = (const FILE_NAME_ATTR*)data2;
rc = ntfs_names_full_collate(
(ntfschar*)&file_name_attr1->file_name,
file_name_attr1->file_name_length,
(ntfschar*)&file_name_attr2->file_name,
file_name_attr2->file_name_length,
CASE_SENSITIVE, vol->upcase, vol->upcase_len);
ntfs_log_trace("Done, returning %i.\n", rc);
return rc;
ntfs_log_trace( "Entering.\n" );
file_name_attr1 = ( const FILE_NAME_ATTR* )data1;
file_name_attr2 = ( const FILE_NAME_ATTR* )data2;
rc = ntfs_names_full_collate(
( ntfschar* ) & file_name_attr1->file_name,
file_name_attr1->file_name_length,
( ntfschar* ) & file_name_attr2->file_name,
file_name_attr2->file_name_length,
CASE_SENSITIVE, vol->upcase, vol->upcase_len );
ntfs_log_trace( "Done, returning %i.\n", rc );
return rc;
}
/*
* Get a pointer to appropriate collation function.
* Get a pointer to appropriate collation function.
*
* Returns NULL if the needed function is not implemented
* Returns NULL if the needed function is not implemented
*/
COLLATE ntfs_get_collate_function(COLLATION_RULES cr)
COLLATE ntfs_get_collate_function( COLLATION_RULES cr )
{
COLLATE collate;
COLLATE collate;
switch (cr) {
case COLLATION_BINARY :
collate = ntfs_collate_binary;
break;
case COLLATION_FILE_NAME :
collate = ntfs_collate_file_name;
break;
case COLLATION_NTOFS_SECURITY_HASH :
collate = ntfs_collate_ntofs_security_hash;
break;
case COLLATION_NTOFS_ULONG :
collate = ntfs_collate_ntofs_ulong;
break;
case COLLATION_NTOFS_ULONGS :
collate = ntfs_collate_ntofs_ulongs;
break;
default :
errno = EOPNOTSUPP;
collate = (COLLATE)NULL;
break;
}
return (collate);
switch ( cr )
{
case COLLATION_BINARY :
collate = ntfs_collate_binary;
break;
case COLLATION_FILE_NAME :
collate = ntfs_collate_file_name;
break;
case COLLATION_NTOFS_SECURITY_HASH :
collate = ntfs_collate_ntofs_security_hash;
break;
case COLLATION_NTOFS_ULONG :
collate = ntfs_collate_ntofs_ulong;
break;
case COLLATION_NTOFS_ULONGS :
collate = ntfs_collate_ntofs_ulongs;
break;
default :
errno = EOPNOTSUPP;
collate = ( COLLATE )NULL;
break;
}
return ( collate );
}

View File

@ -29,6 +29,6 @@
#define NTFS_COLLATION_ERROR -2
extern COLLATE ntfs_get_collate_function(COLLATION_RULES);
extern COLLATE ntfs_get_collate_function( COLLATION_RULES );
#endif /* _NTFS_COLLATE_H */

View File

@ -35,33 +35,38 @@
*
* Returns:
*/
int ffs(int x)
int ffs( int x )
{
int r = 1;
int r = 1;
if (!x)
return 0;
if (!(x & 0xffff)) {
x >>= 16;
r += 16;
}
if (!(x & 0xff)) {
x >>= 8;
r += 8;
}
if (!(x & 0xf)) {
x >>= 4;
r += 4;
}
if (!(x & 3)) {
x >>= 2;
r += 2;
}
if (!(x & 1)) {
x >>= 1;
r += 1;
}
return r;
if ( !x )
return 0;
if ( !( x & 0xffff ) )
{
x >>= 16;
r += 16;
}
if ( !( x & 0xff ) )
{
x >>= 8;
r += 8;
}
if ( !( x & 0xf ) )
{
x >>= 4;
r += 4;
}
if ( !( x & 3 ) )
{
x >>= 2;
r += 2;
}
if ( !( x & 1 ) )
{
x >>= 1;
r += 1;
}
return r;
}
#endif /* HAVE_FFS */
@ -82,7 +87,7 @@ static const char rcsid[] = "$Id: compat.c,v 1.1.1.1.2.1 2008-08-16 15:17:44 jpa
/*
* Copyright (c) 1990, 1993
* The Regents of the University of California. All rights reserved.
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
@ -94,8 +99,8 @@ static const char rcsid[] = "$Id: compat.c,v 1.1.1.1.2.1 2008-08-16 15:17:44 jpa
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
@ -120,32 +125,35 @@ static const char rcsid[] = "$Id: compat.c,v 1.1.1.1.2.1 2008-08-16 15:17:44 jpa
#include <unistd.h>
#endif
int daemon(int nochdir, int noclose) {
int fd;
int daemon( int nochdir, int noclose )
{
int fd;
switch (fork()) {
case -1:
return (-1);
case 0:
break;
default:
_exit(0);
}
switch ( fork() )
{
case -1:
return ( -1 );
case 0:
break;
default:
_exit( 0 );
}
if (setsid() == -1)
return (-1);
if ( setsid() == -1 )
return ( -1 );
if (!nochdir)
(void)chdir("/");
if ( !nochdir )
( void )chdir( "/" );
if (!noclose && (fd = open("/dev/null", O_RDWR, 0)) != -1) {
(void)dup2(fd, 0);
(void)dup2(fd, 1);
(void)dup2(fd, 2);
if (fd > 2)
(void)close (fd);
}
return (0);
if ( !noclose && ( fd = open( "/dev/null", O_RDWR, 0 ) ) != -1 )
{
( void )dup2( fd, 0 );
( void )dup2( fd, 1 );
( void )dup2( fd, 2 );
if ( fd > 2 )
( void )close ( fd );
}
return ( 0 );
}
/*
* End: src/lib/libresolv2/common/bsd/daemon.c
@ -169,7 +177,7 @@ static const char rcsid[] = "$Id: compat.c,v 1.1.1.1.2.1 2008-08-16 15:17:44 jpa
/*
* Copyright (c) 1990, 1993
* The Regents of the University of California. All rights reserved.
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
@ -181,8 +189,8 @@ static const char rcsid[] = "$Id: compat.c,v 1.1.1.1.2.1 2008-08-16 15:17:44 jpa
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
@ -218,29 +226,34 @@ static const char rcsid[] = "$Id: compat.c,v 1.1.1.1.2.1 2008-08-16 15:17:44 jpa
*
* If *stringp is NULL, strsep returns NULL.
*/
char *strsep(char **stringp, const char *delim) {
char *s;
const char *spanp;
int c, sc;
char *tok;
char *strsep( char **stringp, const char *delim )
{
char *s;
const char *spanp;
int c, sc;
char *tok;
if ((s = *stringp) == NULL)
return (NULL);
for (tok = s;;) {
c = *s++;
spanp = delim;
do {
if ((sc = *spanp++) == c) {
if (c == 0)
s = NULL;
else
s[-1] = 0;
*stringp = s;
return (tok);
}
} while (sc != 0);
}
/* NOTREACHED */
if ( ( s = *stringp ) == NULL )
return ( NULL );
for ( tok = s;; )
{
c = *s++;
spanp = delim;
do
{
if ( ( sc = *spanp++ ) == c )
{
if ( c == 0 )
s = NULL;
else
s[-1] = 0;
*stringp = s;
return ( tok );
}
}
while ( sc != 0 );
}
/* NOTREACHED */
}
/*

View File

@ -36,31 +36,31 @@
#endif
#ifndef HAVE_FFS
extern int ffs(int i);
extern int ffs( int i );
#endif /* HAVE_FFS */
#ifndef HAVE_DAEMON
extern int daemon(int nochdir, int noclose);
extern int daemon( int nochdir, int noclose );
#endif /* HAVE_DAEMON */
#ifndef HAVE_STRSEP
extern char *strsep(char **stringp, const char *delim);
extern char *strsep( char **stringp, const char *delim );
#endif /* HAVE_STRSEP */
#ifdef WINDOWS
#define HAVE_STDIO_H /* mimic config.h */
#define HAVE_STDIO_H /* mimic config.h */
#define HAVE_STDARG_H
#define atoll _atoi64
#define fdatasync commit
#define __inline__ inline
#define __attribute__(X) /*nothing*/
#define atoll _atoi64
#define fdatasync commit
#define __inline__ inline
#define __attribute__(X) /*nothing*/
#else /* !defined WINDOWS */
#ifndef O_BINARY
#define O_BINARY 0 /* unix is binary by default */
#define O_BINARY 0 /* unix is binary by default */
#endif
#ifdef GEKKO

File diff suppressed because it is too large Load Diff

View File

@ -1,6 +1,6 @@
/*
* compress.h - Exports for compressed attribute handling.
* Originated from the Linux-NTFS project.
* Originated from the Linux-NTFS project.
*
* Copyright (c) 2004 Anton Altaparmakov
*
@ -26,16 +26,16 @@
#include "types.h"
#include "attrib.h"
extern s64 ntfs_compressed_attr_pread(ntfs_attr *na, s64 pos, s64 count,
void *b);
extern s64 ntfs_compressed_attr_pread( ntfs_attr *na, s64 pos, s64 count,
void *b );
extern s64 ntfs_compressed_pwrite(ntfs_attr *na, runlist_element *brl, s64 wpos,
s64 offs, s64 to_write, s64 rounded,
const void *b, int compressed_part,
VCN *update_from);
extern s64 ntfs_compressed_pwrite( ntfs_attr *na, runlist_element *brl, s64 wpos,
s64 offs, s64 to_write, s64 rounded,
const void *b, int compressed_part,
VCN *update_from );
extern int ntfs_compressed_close(ntfs_attr *na, runlist_element *brl,
s64 offs, VCN *update_from);
extern int ntfs_compressed_close( ntfs_attr *na, runlist_element *brl,
s64 offs, VCN *update_from );
#endif /* defined _NTFS_COMPRESS_H */

View File

@ -42,37 +42,43 @@
*
* Returns:
*/
void ntfs_debug_runlist_dump(const runlist_element *rl)
void ntfs_debug_runlist_dump( const runlist_element *rl )
{
int i = 0;
const char *lcn_str[5] = { "LCN_HOLE ", "LCN_RL_NOT_MAPPED",
"LCN_ENOENT ", "LCN_EINVAL ",
"LCN_unknown " };
int i = 0;
const char *lcn_str[5] = { "LCN_HOLE ", "LCN_RL_NOT_MAPPED",
"LCN_ENOENT ", "LCN_EINVAL ",
"LCN_unknown "
};
ntfs_log_debug("NTFS-fs DEBUG: Dumping runlist (values in hex):\n");
if (!rl) {
ntfs_log_debug("Run list not present.\n");
return;
}
ntfs_log_debug("VCN LCN Run length\n");
do {
LCN lcn = (rl + i)->lcn;
ntfs_log_debug( "NTFS-fs DEBUG: Dumping runlist (values in hex):\n" );
if ( !rl )
{
ntfs_log_debug( "Run list not present.\n" );
return;
}
ntfs_log_debug( "VCN LCN Run length\n" );
do
{
LCN lcn = ( rl + i )->lcn;
if (lcn < (LCN)0) {
int idx = -lcn - 1;
if ( lcn < ( LCN )0 )
{
int idx = -lcn - 1;
if (idx > -LCN_EINVAL - 1)
idx = 4;
ntfs_log_debug("%-16lld %s %-16lld%s\n",
(long long)rl[i].vcn, lcn_str[idx],
(long long)rl[i].length,
rl[i].length ? "" : " (runlist end)");
} else
ntfs_log_debug("%-16lld %-16lld %-16lld%s\n",
(long long)rl[i].vcn, (long long)rl[i].lcn,
(long long)rl[i].length,
rl[i].length ? "" : " (runlist end)");
} while (rl[i++].length);
if ( idx > -LCN_EINVAL - 1 )
idx = 4;
ntfs_log_debug( "%-16lld %s %-16lld%s\n",
( long long )rl[i].vcn, lcn_str[idx],
( long long )rl[i].length,
rl[i].length ? "" : " (runlist end)" );
}
else
ntfs_log_debug( "%-16lld %-16lld %-16lld%s\n",
( long long )rl[i].vcn, ( long long )rl[i].lcn,
( long long )rl[i].length,
rl[i].length ? "" : " (runlist end)" );
}
while ( rl[i++].length );
}
#endif

View File

@ -31,17 +31,17 @@
struct _runlist_element;
#ifdef DEBUG
extern void ntfs_debug_runlist_dump(const struct _runlist_element *rl);
extern void ntfs_debug_runlist_dump( const struct _runlist_element *rl );
#else
static __inline__ void ntfs_debug_runlist_dump(const struct _runlist_element *rl __attribute__((unused))) {}
static __inline__ void ntfs_debug_runlist_dump( const struct _runlist_element *rl __attribute__( ( unused ) ) ) {}
#endif
#define NTFS_BUG(msg) \
{ \
int ___i; \
ntfs_log_critical("Bug in %s(): %s\n", __FUNCTION__, msg); \
ntfs_log_debug("Forcing segmentation fault!"); \
___i = ((int*)NULL)[1]; \
#define NTFS_BUG(msg) \
{ \
int ___i; \
ntfs_log_critical("Bug in %s(): %s\n", __FUNCTION__, msg); \
ntfs_log_debug("Forcing segmentation fault!"); \
___i = ((int*)NULL)[1]; \
}
#endif /* defined _NTFS_DEBUG_H */

File diff suppressed because it is too large Load Diff

View File

@ -36,32 +36,33 @@
*
* Defined bits for the state field in the ntfs_device structure.
*/
typedef enum {
ND_Open, /* 1: Device is open. */
ND_ReadOnly, /* 1: Device is read-only. */
ND_Dirty, /* 1: Device is dirty, needs sync. */
ND_Block, /* 1: Device is a block device. */
typedef enum
{
ND_Open, /* 1: Device is open. */
ND_ReadOnly, /* 1: Device is read-only. */
ND_Dirty, /* 1: Device is dirty, needs sync. */
ND_Block, /* 1: Device is a block device. */
} ntfs_device_state_bits;
#define test_ndev_flag(nd, flag) test_bit(ND_##flag, (nd)->d_state)
#define set_ndev_flag(nd, flag) set_bit(ND_##flag, (nd)->d_state)
#define clear_ndev_flag(nd, flag) clear_bit(ND_##flag, (nd)->d_state)
#define test_ndev_flag(nd, flag) test_bit(ND_##flag, (nd)->d_state)
#define set_ndev_flag(nd, flag) set_bit(ND_##flag, (nd)->d_state)
#define clear_ndev_flag(nd, flag) clear_bit(ND_##flag, (nd)->d_state)
#define NDevOpen(nd) test_ndev_flag(nd, Open)
#define NDevSetOpen(nd) set_ndev_flag(nd, Open)
#define NDevClearOpen(nd) clear_ndev_flag(nd, Open)
#define NDevOpen(nd) test_ndev_flag(nd, Open)
#define NDevSetOpen(nd) set_ndev_flag(nd, Open)
#define NDevClearOpen(nd) clear_ndev_flag(nd, Open)
#define NDevReadOnly(nd) test_ndev_flag(nd, ReadOnly)
#define NDevSetReadOnly(nd) set_ndev_flag(nd, ReadOnly)
#define NDevClearReadOnly(nd) clear_ndev_flag(nd, ReadOnly)
#define NDevReadOnly(nd) test_ndev_flag(nd, ReadOnly)
#define NDevSetReadOnly(nd) set_ndev_flag(nd, ReadOnly)
#define NDevClearReadOnly(nd) clear_ndev_flag(nd, ReadOnly)
#define NDevDirty(nd) test_ndev_flag(nd, Dirty)
#define NDevSetDirty(nd) set_ndev_flag(nd, Dirty)
#define NDevClearDirty(nd) clear_ndev_flag(nd, Dirty)
#define NDevDirty(nd) test_ndev_flag(nd, Dirty)
#define NDevSetDirty(nd) set_ndev_flag(nd, Dirty)
#define NDevClearDirty(nd) clear_ndev_flag(nd, Dirty)
#define NDevBlock(nd) test_ndev_flag(nd, Block)
#define NDevSetBlock(nd) set_ndev_flag(nd, Block)
#define NDevClearBlock(nd) clear_ndev_flag(nd, Block)
#define NDevBlock(nd) test_ndev_flag(nd, Block)
#define NDevSetBlock(nd) set_ndev_flag(nd, Block)
#define NDevClearBlock(nd) clear_ndev_flag(nd, Block)
/**
* struct ntfs_device -
@ -69,12 +70,13 @@ typedef enum {
* The ntfs device structure defining all operations needed to access the low
* level device underlying the ntfs volume.
*/
struct ntfs_device {
struct ntfs_device_operations *d_ops; /* Device operations. */
unsigned long d_state; /* State of the device. */
char *d_name; /* Name of device. */
void *d_private; /* Private data used by the
device operations. */
struct ntfs_device
{
struct ntfs_device_operations *d_ops; /* Device operations. */
unsigned long d_state; /* State of the device. */
char *d_name; /* Name of device. */
void *d_private; /* Private data used by the
device operations. */
};
struct stat;
@ -85,44 +87,45 @@ struct stat;
* The ntfs device operations defining all operations that can be performed on
* the low level device described by an ntfs device structure.
*/
struct ntfs_device_operations {
int (*open)(struct ntfs_device *dev, int flags);
int (*close)(struct ntfs_device *dev);
s64 (*seek)(struct ntfs_device *dev, s64 offset, int whence);
s64 (*read)(struct ntfs_device *dev, void *buf, s64 count);
s64 (*write)(struct ntfs_device *dev, const void *buf, s64 count);
s64 (*pread)(struct ntfs_device *dev, void *buf, s64 count, s64 offset);
s64 (*pwrite)(struct ntfs_device *dev, const void *buf, s64 count,
s64 offset);
int (*sync)(struct ntfs_device *dev);
int (*stat)(struct ntfs_device *dev, struct stat *buf);
int (*ioctl)(struct ntfs_device *dev, int request, void *argp);
struct ntfs_device_operations
{
int ( *open )( struct ntfs_device *dev, int flags );
int ( *close )( struct ntfs_device *dev );
s64 ( *seek )( struct ntfs_device *dev, s64 offset, int whence );
s64 ( *read )( struct ntfs_device *dev, void *buf, s64 count );
s64 ( *write )( struct ntfs_device *dev, const void *buf, s64 count );
s64 ( *pread )( struct ntfs_device *dev, void *buf, s64 count, s64 offset );
s64 ( *pwrite )( struct ntfs_device *dev, const void *buf, s64 count,
s64 offset );
int ( *sync )( struct ntfs_device *dev );
int ( *stat )( struct ntfs_device *dev, struct stat *buf );
int ( *ioctl )( struct ntfs_device *dev, int request, void *argp );
};
extern struct ntfs_device *ntfs_device_alloc(const char *name, const long state,
struct ntfs_device_operations *dops, void *priv_data);
extern int ntfs_device_free(struct ntfs_device *dev);
extern struct ntfs_device *ntfs_device_alloc( const char *name, const long state,
struct ntfs_device_operations *dops, void *priv_data );
extern int ntfs_device_free( struct ntfs_device *dev );
extern s64 ntfs_pread(struct ntfs_device *dev, const s64 pos, s64 count,
void *b);
extern s64 ntfs_pwrite(struct ntfs_device *dev, const s64 pos, s64 count,
const void *b);
extern s64 ntfs_pread( struct ntfs_device *dev, const s64 pos, s64 count,
void *b );
extern s64 ntfs_pwrite( struct ntfs_device *dev, const s64 pos, s64 count,
const void *b );
extern s64 ntfs_mst_pread(struct ntfs_device *dev, const s64 pos, s64 count,
const u32 bksize, void *b);
extern s64 ntfs_mst_pwrite(struct ntfs_device *dev, const s64 pos, s64 count,
const u32 bksize, void *b);
extern s64 ntfs_mst_pread( struct ntfs_device *dev, const s64 pos, s64 count,
const u32 bksize, void *b );
extern s64 ntfs_mst_pwrite( struct ntfs_device *dev, const s64 pos, s64 count,
const u32 bksize, void *b );
extern s64 ntfs_cluster_read(const ntfs_volume *vol, const s64 lcn,
const s64 count, void *b);
extern s64 ntfs_cluster_write(const ntfs_volume *vol, const s64 lcn,
const s64 count, const void *b);
extern s64 ntfs_cluster_read( const ntfs_volume *vol, const s64 lcn,
const s64 count, void *b );
extern s64 ntfs_cluster_write( const ntfs_volume *vol, const s64 lcn,
const s64 count, const void *b );
extern s64 ntfs_device_size_get(struct ntfs_device *dev, int block_size);
extern s64 ntfs_device_partition_start_sector_get(struct ntfs_device *dev);
extern int ntfs_device_heads_get(struct ntfs_device *dev);
extern int ntfs_device_sectors_per_track_get(struct ntfs_device *dev);
extern int ntfs_device_sector_size_get(struct ntfs_device *dev);
extern int ntfs_device_block_size_set(struct ntfs_device *dev, int block_size);
extern s64 ntfs_device_size_get( struct ntfs_device *dev, int block_size );
extern s64 ntfs_device_partition_start_sector_get( struct ntfs_device *dev );
extern int ntfs_device_heads_get( struct ntfs_device *dev );
extern int ntfs_device_sectors_per_track_get( struct ntfs_device *dev );
extern int ntfs_device_sector_size_get( struct ntfs_device *dev );
extern int ntfs_device_block_size_set( struct ntfs_device *dev, int block_size );
#endif /* defined _NTFS_DEVICE_H */

View File

@ -41,28 +41,29 @@
#else /* __CYGWIN32__ */
#ifndef HDIO_GETGEO
# define HDIO_GETGEO 0x301
# define HDIO_GETGEO 0x301
/**
* struct hd_geometry -
*/
struct hd_geometry {
unsigned char heads;
unsigned char sectors;
unsigned short cylinders;
unsigned long start;
struct hd_geometry
{
unsigned char heads;
unsigned char sectors;
unsigned short cylinders;
unsigned long start;
};
#endif
#ifndef BLKGETSIZE
# define BLKGETSIZE 0x1260
# define BLKGETSIZE 0x1260
#endif
#ifndef BLKSSZGET
# define BLKSSZGET 0x1268
# define BLKSSZGET 0x1268
#endif
#ifndef BLKGETSIZE64
# define BLKGETSIZE64 0x80041272
# define BLKGETSIZE64 0x80041272
#endif
#ifndef BLKBSZSET
# define BLKBSZSET 0x40041271
# define BLKBSZSET 0x40041271
#endif
/* On Cygwin; use Win32 low level device operations. */

File diff suppressed because it is too large Load Diff

View File

@ -59,40 +59,40 @@ extern ntfschar NTFS_INDEX_O[3];
extern ntfschar NTFS_INDEX_Q[3];
extern ntfschar NTFS_INDEX_R[3];
extern u64 ntfs_inode_lookup_by_name(ntfs_inode *dir_ni,
const ntfschar *uname, const int uname_len);
extern u64 ntfs_inode_lookup_by_mbsname(ntfs_inode *dir_ni, const char *name);
extern void ntfs_inode_update_mbsname(ntfs_inode *dir_ni, const char *name,
u64 inum);
extern u64 ntfs_inode_lookup_by_name( ntfs_inode *dir_ni,
const ntfschar *uname, const int uname_len );
extern u64 ntfs_inode_lookup_by_mbsname( ntfs_inode *dir_ni, const char *name );
extern void ntfs_inode_update_mbsname( ntfs_inode *dir_ni, const char *name,
u64 inum );
extern ntfs_inode *ntfs_pathname_to_inode(ntfs_volume *vol, ntfs_inode *parent,
const char *pathname);
extern ntfs_inode *ntfs_create(ntfs_inode *dir_ni, le32 securid,
ntfschar *name, u8 name_len, mode_t type);
extern ntfs_inode *ntfs_create_device(ntfs_inode *dir_ni, le32 securid,
ntfschar *name, u8 name_len, mode_t type, dev_t dev);
extern ntfs_inode *ntfs_create_symlink(ntfs_inode *dir_ni, le32 securid,
ntfschar *name, u8 name_len, ntfschar *target, int target_len);
extern int ntfs_check_empty_dir(ntfs_inode *ni);
extern int ntfs_delete(ntfs_volume *vol, const char *path,
ntfs_inode *ni, ntfs_inode *dir_ni, ntfschar *name,
u8 name_len);
extern ntfs_inode *ntfs_pathname_to_inode( ntfs_volume *vol, ntfs_inode *parent,
const char *pathname );
extern ntfs_inode *ntfs_create( ntfs_inode *dir_ni, le32 securid,
ntfschar *name, u8 name_len, mode_t type );
extern ntfs_inode *ntfs_create_device( ntfs_inode *dir_ni, le32 securid,
ntfschar *name, u8 name_len, mode_t type, dev_t dev );
extern ntfs_inode *ntfs_create_symlink( ntfs_inode *dir_ni, le32 securid,
ntfschar *name, u8 name_len, ntfschar *target, int target_len );
extern int ntfs_check_empty_dir( ntfs_inode *ni );
extern int ntfs_delete( ntfs_volume *vol, const char *path,
ntfs_inode *ni, ntfs_inode *dir_ni, ntfschar *name,
u8 name_len );
extern int ntfs_link(ntfs_inode *ni, ntfs_inode *dir_ni, ntfschar *name,
u8 name_len);
extern int ntfs_link( ntfs_inode *ni, ntfs_inode *dir_ni, ntfschar *name,
u8 name_len );
/*
* File types (adapted from include <linux/fs.h>)
*/
#define NTFS_DT_UNKNOWN 0
#define NTFS_DT_FIFO 1
#define NTFS_DT_CHR 2
#define NTFS_DT_DIR 4
#define NTFS_DT_BLK 6
#define NTFS_DT_REG 8
#define NTFS_DT_LNK 10
#define NTFS_DT_SOCK 12
#define NTFS_DT_WHT 14
#define NTFS_DT_UNKNOWN 0
#define NTFS_DT_FIFO 1
#define NTFS_DT_CHR 2
#define NTFS_DT_DIR 4
#define NTFS_DT_BLK 6
#define NTFS_DT_REG 8
#define NTFS_DT_LNK 10
#define NTFS_DT_SOCK 12
#define NTFS_DT_WHT 14
/*
* This is the "ntfs_filldir" function type, used by ntfs_readdir() to let
@ -100,27 +100,27 @@ extern int ntfs_link(ntfs_inode *ni, ntfs_inode *dir_ni, ntfschar *name,
* This allows the caller to read directories into their application or
* to have different dirent layouts depending on the binary type.
*/
typedef int (*ntfs_filldir_t)(void *dirent, const ntfschar *name,
const int name_len, const int name_type, const s64 pos,
const MFT_REF mref, const unsigned dt_type);
typedef int ( *ntfs_filldir_t )( void *dirent, const ntfschar *name,
const int name_len, const int name_type, const s64 pos,
const MFT_REF mref, const unsigned dt_type );
extern int ntfs_readdir(ntfs_inode *dir_ni, s64 *pos,
void *dirent, ntfs_filldir_t filldir);
extern int ntfs_readdir( ntfs_inode *dir_ni, s64 *pos,
void *dirent, ntfs_filldir_t filldir );
ntfs_inode *ntfs_dir_parent_inode(ntfs_inode *ni);
ntfs_inode *ntfs_dir_parent_inode( ntfs_inode *ni );
int ntfs_get_ntfs_dos_name(ntfs_inode *ni, ntfs_inode *dir_ni,
char *value, size_t size);
int ntfs_set_ntfs_dos_name(ntfs_inode *ni, ntfs_inode *dir_ni,
const char *value, size_t size, int flags);
int ntfs_remove_ntfs_dos_name(ntfs_inode *ni, ntfs_inode *dir_ni);
int ntfs_get_ntfs_dos_name( ntfs_inode *ni, ntfs_inode *dir_ni,
char *value, size_t size );
int ntfs_set_ntfs_dos_name( ntfs_inode *ni, ntfs_inode *dir_ni,
const char *value, size_t size, int flags );
int ntfs_remove_ntfs_dos_name( ntfs_inode *ni, ntfs_inode *dir_ni );
#if CACHE_INODE_SIZE
struct CACHED_GENERIC;
extern int ntfs_dir_inode_hash(const struct CACHED_GENERIC *cached);
extern int ntfs_dir_lookup_hash(const struct CACHED_GENERIC *cached);
extern int ntfs_dir_inode_hash( const struct CACHED_GENERIC *cached );
extern int ntfs_dir_lookup_hash( const struct CACHED_GENERIC *cached );
#endif

View File

@ -1,7 +1,7 @@
/**
* efs.c - Limited processing of encrypted files
*
* This module is part of ntfs-3g library
* This module is part of ntfs-3g library
*
* Copyright (c) 2009 Martin Bene
* Copyright (c) 2009-2010 Jean-Pierre Andre
@ -58,256 +58,305 @@
#include "misc.h"
#include "efs.h"
#ifdef HAVE_SETXATTR /* extended attributes interface required */
#ifdef HAVE_SETXATTR /* extended attributes interface required */
static ntfschar logged_utility_stream_name[] = {
const_cpu_to_le16('$'),
const_cpu_to_le16('E'),
const_cpu_to_le16('F'),
const_cpu_to_le16('S'),
const_cpu_to_le16(0)
static ntfschar logged_utility_stream_name[] =
{
const_cpu_to_le16( '$' ),
const_cpu_to_le16( 'E' ),
const_cpu_to_le16( 'F' ),
const_cpu_to_le16( 'S' ),
const_cpu_to_le16( 0 )
} ;
/*
* Get the ntfs EFS info into an extended attribute
* Get the ntfs EFS info into an extended attribute
*/
int ntfs_get_efs_info(ntfs_inode *ni, char *value, size_t size)
int ntfs_get_efs_info( ntfs_inode *ni, char *value, size_t size )
{
EFS_ATTR_HEADER *efs_info;
s64 attr_size = 0;
EFS_ATTR_HEADER *efs_info;
s64 attr_size = 0;
if (ni) {
if (ni->flags & FILE_ATTR_ENCRYPTED) {
efs_info = (EFS_ATTR_HEADER*)ntfs_attr_readall(ni,
AT_LOGGED_UTILITY_STREAM,(ntfschar*)NULL, 0,
&attr_size);
if (efs_info
&& (le32_to_cpu(efs_info->length) == attr_size)) {
if (attr_size <= (s64)size) {
if (value)
memcpy(value,efs_info,attr_size);
else {
errno = EFAULT;
attr_size = 0;
}
} else
if (size) {
errno = ERANGE;
attr_size = 0;
}
free (efs_info);
} else {
if (efs_info) {
free(efs_info);
ntfs_log_error("Bad efs_info for inode %lld\n",
(long long)ni->mft_no);
} else {
ntfs_log_error("Could not get efsinfo"
" for inode %lld\n",
(long long)ni->mft_no);
}
errno = EIO;
attr_size = 0;
}
} else {
errno = ENODATA;
ntfs_log_trace("Inode %lld is not encrypted\n",
(long long)ni->mft_no);
}
}
return (attr_size ? (int)attr_size : -errno);
if ( ni )
{
if ( ni->flags & FILE_ATTR_ENCRYPTED )
{
efs_info = ( EFS_ATTR_HEADER* )ntfs_attr_readall( ni,
AT_LOGGED_UTILITY_STREAM, ( ntfschar* )NULL, 0,
&attr_size );
if ( efs_info
&& ( le32_to_cpu( efs_info->length ) == attr_size ) )
{
if ( attr_size <= ( s64 )size )
{
if ( value )
memcpy( value, efs_info, attr_size );
else
{
errno = EFAULT;
attr_size = 0;
}
}
else if ( size )
{
errno = ERANGE;
attr_size = 0;
}
free ( efs_info );
}
else
{
if ( efs_info )
{
free( efs_info );
ntfs_log_error( "Bad efs_info for inode %lld\n",
( long long )ni->mft_no );
}
else
{
ntfs_log_error( "Could not get efsinfo"
" for inode %lld\n",
( long long )ni->mft_no );
}
errno = EIO;
attr_size = 0;
}
}
else
{
errno = ENODATA;
ntfs_log_trace( "Inode %lld is not encrypted\n",
( long long )ni->mft_no );
}
}
return ( attr_size ? ( int )attr_size : -errno );
}
/*
* Fix all encrypted AT_DATA attributes of an inode
* Fix all encrypted AT_DATA attributes of an inode
*
* The fix may require making an attribute non resident, which
* requires more space in the MFT record, and may cause some
* attribute to be expelled and the full record to be reorganized.
* When this happens, the search for data attributes has to be
* reinitialized.
* The fix may require making an attribute non resident, which
* requires more space in the MFT record, and may cause some
* attribute to be expelled and the full record to be reorganized.
* When this happens, the search for data attributes has to be
* reinitialized.
*
* Returns zero if successful.
* -1 if there is a problem.
* Returns zero if successful.
* -1 if there is a problem.
*/
static int fixup_loop(ntfs_inode *ni)
static int fixup_loop( ntfs_inode *ni )
{
ntfs_attr_search_ctx *ctx;
ntfs_attr *na;
ATTR_RECORD *a;
BOOL restart;
BOOL first;
int cnt;
int maxcnt;
int res = 0;
ntfs_attr_search_ctx *ctx;
ntfs_attr *na;
ATTR_RECORD *a;
BOOL restart;
BOOL first;
int cnt;
int maxcnt;
int res = 0;
maxcnt = 0;
do {
restart = FALSE;
ctx = ntfs_attr_get_search_ctx(ni, NULL);
if (!ctx) {
ntfs_log_error("Failed to get ctx for efs\n");
res = -1;
}
cnt = 0;
while (!restart && !res
&& !ntfs_attr_lookup(AT_DATA, NULL, 0,
CASE_SENSITIVE, 0, NULL, 0, ctx)) {
cnt++;
a = ctx->attr;
na = ntfs_attr_open(ctx->ntfs_ino, AT_DATA,
(ntfschar*)((u8*)a + le16_to_cpu(a->name_offset)),
a->name_length);
if (!na) {
ntfs_log_error("can't open DATA Attribute\n");
res = -1;
}
if (na && !(ctx->attr->flags & ATTR_IS_ENCRYPTED)) {
if (!NAttrNonResident(na)
&& ntfs_attr_make_non_resident(na, ctx)) {
/*
* ntfs_attr_make_non_resident fails if there
* is not enough space in the MFT record.
* When this happens, force making non-resident
* so that some other attribute is expelled.
*/
if (ntfs_attr_force_non_resident(na)) {
res = -1;
} else {
/* make sure there is some progress */
if (cnt <= maxcnt) {
errno = EIO;
ntfs_log_error("Multiple failure"
" making non resident\n");
res = -1;
} else {
ntfs_attr_put_search_ctx(ctx);
ctx = (ntfs_attr_search_ctx*)NULL;
restart = TRUE;
maxcnt = cnt;
}
}
}
if (!restart && !res
&& ntfs_efs_fixup_attribute(ctx, na)) {
ntfs_log_error("Error in efs fixup of AT_DATA Attribute\n");
res = -1;
}
}
if (na)
ntfs_attr_close(na);
}
first = FALSE;
} while (restart && !res);
if (ctx)
ntfs_attr_put_search_ctx(ctx);
return (res);
maxcnt = 0;
do
{
restart = FALSE;
ctx = ntfs_attr_get_search_ctx( ni, NULL );
if ( !ctx )
{
ntfs_log_error( "Failed to get ctx for efs\n" );
res = -1;
}
cnt = 0;
while ( !restart && !res
&& !ntfs_attr_lookup( AT_DATA, NULL, 0,
CASE_SENSITIVE, 0, NULL, 0, ctx ) )
{
cnt++;
a = ctx->attr;
na = ntfs_attr_open( ctx->ntfs_ino, AT_DATA,
( ntfschar* )( ( u8* )a + le16_to_cpu( a->name_offset ) ),
a->name_length );
if ( !na )
{
ntfs_log_error( "can't open DATA Attribute\n" );
res = -1;
}
if ( na && !( ctx->attr->flags & ATTR_IS_ENCRYPTED ) )
{
if ( !NAttrNonResident( na )
&& ntfs_attr_make_non_resident( na, ctx ) )
{
/*
* ntfs_attr_make_non_resident fails if there
* is not enough space in the MFT record.
* When this happens, force making non-resident
* so that some other attribute is expelled.
*/
if ( ntfs_attr_force_non_resident( na ) )
{
res = -1;
}
else
{
/* make sure there is some progress */
if ( cnt <= maxcnt )
{
errno = EIO;
ntfs_log_error( "Multiple failure"
" making non resident\n" );
res = -1;
}
else
{
ntfs_attr_put_search_ctx( ctx );
ctx = ( ntfs_attr_search_ctx* )NULL;
restart = TRUE;
maxcnt = cnt;
}
}
}
if ( !restart && !res
&& ntfs_efs_fixup_attribute( ctx, na ) )
{
ntfs_log_error( "Error in efs fixup of AT_DATA Attribute\n" );
res = -1;
}
}
if ( na )
ntfs_attr_close( na );
}
first = FALSE;
}
while ( restart && !res );
if ( ctx )
ntfs_attr_put_search_ctx( ctx );
return ( res );
}
/*
* Set the efs data from an extended attribute
* Warning : the new data is not checked
* Returns 0, or -1 if there is a problem
* Set the efs data from an extended attribute
* Warning : the new data is not checked
* Returns 0, or -1 if there is a problem
*/
int ntfs_set_efs_info(ntfs_inode *ni, const char *value, size_t size,
int flags)
int ntfs_set_efs_info( ntfs_inode *ni, const char *value, size_t size,
int flags )
{
int res;
int written;
ntfs_attr *na;
const EFS_ATTR_HEADER *info_header;
int res;
int written;
ntfs_attr *na;
const EFS_ATTR_HEADER *info_header;
res = 0;
if (ni && value && size) {
if (ni->flags & (FILE_ATTR_ENCRYPTED | FILE_ATTR_COMPRESSED)) {
if (ni->flags & FILE_ATTR_ENCRYPTED) {
ntfs_log_trace("Inode %lld already encrypted\n",
(long long)ni->mft_no);
errno = EEXIST;
} else {
/*
* Possible problem : if encrypted file was
* restored in a compressed directory, it was
* restored as compressed.
* TODO : decompress first.
*/
ntfs_log_error("Inode %lld cannot be encrypted and compressed\n",
(long long)ni->mft_no);
errno = EIO;
}
return -1;
}
info_header = (const EFS_ATTR_HEADER*)value;
/* make sure we get a likely efsinfo */
if (le32_to_cpu(info_header->length) != size) {
errno = EINVAL;
return (-1);
}
if (!ntfs_attr_exist(ni,AT_LOGGED_UTILITY_STREAM,
(ntfschar*)NULL,0)) {
if (!(flags & XATTR_REPLACE)) {
/*
* no logged_utility_stream attribute : add one,
* apparently, this does not feed the new value in
*/
res = ntfs_attr_add(ni,AT_LOGGED_UTILITY_STREAM,
logged_utility_stream_name,4,
(u8*)NULL,(s64)size);
} else {
errno = ENODATA;
res = -1;
}
} else {
errno = EEXIST;
res = -1;
}
if (!res) {
/*
* open and update the existing efs data
*/
na = ntfs_attr_open(ni, AT_LOGGED_UTILITY_STREAM,
logged_utility_stream_name, 4);
if (na) {
/* resize attribute */
res = ntfs_attr_truncate(na, (s64)size);
/* overwrite value if any */
if (!res && value) {
written = (int)ntfs_attr_pwrite(na,
(s64)0, (s64)size, value);
if (written != (s64)size) {
ntfs_log_error("Failed to "
"update efs data\n");
errno = EIO;
res = -1;
}
}
ntfs_attr_close(na);
} else
res = -1;
}
if (!res) {
/* Don't handle AT_DATA Attribute(s) if inode is a directory */
if (!(ni->mrec->flags & MFT_RECORD_IS_DIRECTORY)) {
/* iterate over AT_DATA attributes */
/* set encrypted flag, truncate attribute to match padding bytes */
res = 0;
if ( ni && value && size )
{
if ( ni->flags & ( FILE_ATTR_ENCRYPTED | FILE_ATTR_COMPRESSED ) )
{
if ( ni->flags & FILE_ATTR_ENCRYPTED )
{
ntfs_log_trace( "Inode %lld already encrypted\n",
( long long )ni->mft_no );
errno = EEXIST;
}
else
{
/*
* Possible problem : if encrypted file was
* restored in a compressed directory, it was
* restored as compressed.
* TODO : decompress first.
*/
ntfs_log_error( "Inode %lld cannot be encrypted and compressed\n",
( long long )ni->mft_no );
errno = EIO;
}
return -1;
}
info_header = ( const EFS_ATTR_HEADER* )value;
/* make sure we get a likely efsinfo */
if ( le32_to_cpu( info_header->length ) != size )
{
errno = EINVAL;
return ( -1 );
}
if ( !ntfs_attr_exist( ni, AT_LOGGED_UTILITY_STREAM,
( ntfschar* )NULL, 0 ) )
{
if ( !( flags & XATTR_REPLACE ) )
{
/*
* no logged_utility_stream attribute : add one,
* apparently, this does not feed the new value in
*/
res = ntfs_attr_add( ni, AT_LOGGED_UTILITY_STREAM,
logged_utility_stream_name, 4,
( u8* )NULL, ( s64 )size );
}
else
{
errno = ENODATA;
res = -1;
}
}
else
{
errno = EEXIST;
res = -1;
}
if ( !res )
{
/*
* open and update the existing efs data
*/
na = ntfs_attr_open( ni, AT_LOGGED_UTILITY_STREAM,
logged_utility_stream_name, 4 );
if ( na )
{
/* resize attribute */
res = ntfs_attr_truncate( na, ( s64 )size );
/* overwrite value if any */
if ( !res && value )
{
written = ( int )ntfs_attr_pwrite( na,
( s64 )0, ( s64 )size, value );
if ( written != ( s64 )size )
{
ntfs_log_error( "Failed to "
"update efs data\n" );
errno = EIO;
res = -1;
}
}
ntfs_attr_close( na );
}
else
res = -1;
}
if ( !res )
{
/* Don't handle AT_DATA Attribute(s) if inode is a directory */
if ( !( ni->mrec->flags & MFT_RECORD_IS_DIRECTORY ) )
{
/* iterate over AT_DATA attributes */
/* set encrypted flag, truncate attribute to match padding bytes */
if (fixup_loop(ni))
return -1;
}
ni->flags |= FILE_ATTR_ENCRYPTED;
NInoSetDirty(ni);
NInoFileNameSetDirty(ni);
}
} else {
errno = EINVAL;
res = -1;
}
return (res ? -1 : 0);
if ( fixup_loop( ni ) )
return -1;
}
ni->flags |= FILE_ATTR_ENCRYPTED;
NInoSetDirty( ni );
NInoFileNameSetDirty( ni );
}
}
else
{
errno = EINVAL;
res = -1;
}
return ( res ? -1 : 0 );
}
/*
@ -317,123 +366,142 @@ int ntfs_set_efs_info(ntfs_inode *ni, const char *value, size_t size,
* set data size to match padding length
* set ATTR_IS_ENCRYPTED flag on attribute
*
* Return 0 if successful
* -1 if failed (errno tells why)
* Return 0 if successful
* -1 if failed (errno tells why)
*/
int ntfs_efs_fixup_attribute(ntfs_attr_search_ctx *ctx, ntfs_attr *na)
int ntfs_efs_fixup_attribute( ntfs_attr_search_ctx *ctx, ntfs_attr *na )
{
u64 newsize;
u64 oldsize;
le16 appended_bytes;
u16 padding_length;
ntfs_inode *ni;
BOOL close_ctx = FALSE;
u64 newsize;
u64 oldsize;
le16 appended_bytes;
u16 padding_length;
ntfs_inode *ni;
BOOL close_ctx = FALSE;
if (!na) {
ntfs_log_error("no na specified for efs_fixup_attribute\n");
goto err_out;
}
if (!ctx) {
ctx = ntfs_attr_get_search_ctx(na->ni, NULL);
if (!ctx) {
ntfs_log_error("Failed to get ctx for efs\n");
goto err_out;
}
close_ctx = TRUE;
if (ntfs_attr_lookup(AT_DATA, na->name, na->name_len,
CASE_SENSITIVE, 0, NULL, 0, ctx)) {
ntfs_log_error("attr lookup for AT_DATA attribute failed in efs fixup\n");
goto err_out;
}
} else {
if (!NAttrNonResident(na)) {
ntfs_log_error("Cannot make non resident"
" when a context has been allocated\n");
goto err_out;
}
}
if ( !na )
{
ntfs_log_error( "no na specified for efs_fixup_attribute\n" );
goto err_out;
}
if ( !ctx )
{
ctx = ntfs_attr_get_search_ctx( na->ni, NULL );
if ( !ctx )
{
ntfs_log_error( "Failed to get ctx for efs\n" );
goto err_out;
}
close_ctx = TRUE;
if ( ntfs_attr_lookup( AT_DATA, na->name, na->name_len,
CASE_SENSITIVE, 0, NULL, 0, ctx ) )
{
ntfs_log_error( "attr lookup for AT_DATA attribute failed in efs fixup\n" );
goto err_out;
}
}
else
{
if ( !NAttrNonResident( na ) )
{
ntfs_log_error( "Cannot make non resident"
" when a context has been allocated\n" );
goto err_out;
}
}
/* no extra bytes are added to void attributes */
oldsize = na->data_size;
if (oldsize) {
/* make sure size is valid for a raw encrypted stream */
if ((oldsize & 511) != 2) {
ntfs_log_error("Bad raw encrypted stream\n");
goto err_out;
}
/* read padding length from last two bytes of attribute */
if (ntfs_attr_pread(na, oldsize - 2, 2, &appended_bytes) != 2) {
ntfs_log_error("Error reading padding length\n");
goto err_out;
}
padding_length = le16_to_cpu(appended_bytes);
if (padding_length > 511 || padding_length > na->data_size-2) {
errno = EINVAL;
ntfs_log_error("invalid padding length %d for data_size %lld\n",
padding_length, (long long)oldsize);
goto err_out;
}
newsize = oldsize - padding_length - 2;
/*
* truncate attribute to possibly free clusters allocated
* for the last two bytes, but do not truncate to new size
* to avoid losing useful data
*/
if (ntfs_attr_truncate(na, oldsize - 2)) {
ntfs_log_error("Error truncating attribute\n");
goto err_out;
}
} else
newsize = 0;
/* no extra bytes are added to void attributes */
oldsize = na->data_size;
if ( oldsize )
{
/* make sure size is valid for a raw encrypted stream */
if ( ( oldsize & 511 ) != 2 )
{
ntfs_log_error( "Bad raw encrypted stream\n" );
goto err_out;
}
/* read padding length from last two bytes of attribute */
if ( ntfs_attr_pread( na, oldsize - 2, 2, &appended_bytes ) != 2 )
{
ntfs_log_error( "Error reading padding length\n" );
goto err_out;
}
padding_length = le16_to_cpu( appended_bytes );
if ( padding_length > 511 || padding_length > na->data_size - 2 )
{
errno = EINVAL;
ntfs_log_error( "invalid padding length %d for data_size %lld\n",
padding_length, ( long long )oldsize );
goto err_out;
}
newsize = oldsize - padding_length - 2;
/*
* truncate attribute to possibly free clusters allocated
* for the last two bytes, but do not truncate to new size
* to avoid losing useful data
*/
if ( ntfs_attr_truncate( na, oldsize - 2 ) )
{
ntfs_log_error( "Error truncating attribute\n" );
goto err_out;
}
}
else
newsize = 0;
/*
* Encrypted AT_DATA Attributes MUST be non-resident
* This has to be done after the attribute is resized, as
* resizing down to zero may cause the attribute to be made
* resident.
*/
if (!NAttrNonResident(na)
&& ntfs_attr_make_non_resident(na, ctx)) {
if (!close_ctx
|| ntfs_attr_force_non_resident(na)) {
ntfs_log_error("Error making DATA attribute non-resident\n");
goto err_out;
} else {
/*
* must reinitialize context after forcing
* non-resident. We need a context for updating
* the state, and at this point, we are sure
* the context is not used elsewhere.
*/
ntfs_attr_reinit_search_ctx(ctx);
if (ntfs_attr_lookup(AT_DATA, na->name, na->name_len,
CASE_SENSITIVE, 0, NULL, 0, ctx)) {
ntfs_log_error("attr lookup for AT_DATA attribute failed in efs fixup\n");
goto err_out;
}
}
}
ni = na->ni;
if (!na->name_len) {
ni->data_size = newsize;
ni->allocated_size = na->allocated_size;
}
NInoSetDirty(ni);
NInoFileNameSetDirty(ni);
/*
* Encrypted AT_DATA Attributes MUST be non-resident
* This has to be done after the attribute is resized, as
* resizing down to zero may cause the attribute to be made
* resident.
*/
if ( !NAttrNonResident( na )
&& ntfs_attr_make_non_resident( na, ctx ) )
{
if ( !close_ctx
|| ntfs_attr_force_non_resident( na ) )
{
ntfs_log_error( "Error making DATA attribute non-resident\n" );
goto err_out;
}
else
{
/*
* must reinitialize context after forcing
* non-resident. We need a context for updating
* the state, and at this point, we are sure
* the context is not used elsewhere.
*/
ntfs_attr_reinit_search_ctx( ctx );
if ( ntfs_attr_lookup( AT_DATA, na->name, na->name_len,
CASE_SENSITIVE, 0, NULL, 0, ctx ) )
{
ntfs_log_error( "attr lookup for AT_DATA attribute failed in efs fixup\n" );
goto err_out;
}
}
}
ni = na->ni;
if ( !na->name_len )
{
ni->data_size = newsize;
ni->allocated_size = na->allocated_size;
}
NInoSetDirty( ni );
NInoFileNameSetDirty( ni );
ctx->attr->data_size = cpu_to_le64(newsize);
if (le64_to_cpu(ctx->attr->initialized_size) > newsize)
ctx->attr->initialized_size = ctx->attr->data_size;
ctx->attr->flags |= ATTR_IS_ENCRYPTED;
if (close_ctx)
ntfs_attr_put_search_ctx(ctx);
ctx->attr->data_size = cpu_to_le64( newsize );
if ( le64_to_cpu( ctx->attr->initialized_size ) > newsize )
ctx->attr->initialized_size = ctx->attr->data_size;
ctx->attr->flags |= ATTR_IS_ENCRYPTED;
if ( close_ctx )
ntfs_attr_put_search_ctx( ctx );
return (0);
return ( 0 );
err_out:
if (close_ctx && ctx)
ntfs_attr_put_search_ctx(ctx);
return (-1);
if ( close_ctx && ctx )
ntfs_attr_put_search_ctx( ctx );
return ( -1 );
}
#endif /* HAVE_SETXATTR */

View File

@ -21,10 +21,10 @@
#ifndef EFS_H
#define EFS_H
int ntfs_get_efs_info(ntfs_inode *ni, char *value, size_t size);
int ntfs_get_efs_info( ntfs_inode *ni, char *value, size_t size );
int ntfs_set_efs_info(ntfs_inode *ni,
const char *value, size_t size, int flags);
int ntfs_efs_fixup_attribute(ntfs_attr_search_ctx *ctx, ntfs_attr *na);
int ntfs_set_efs_info( ntfs_inode *ni,
const char *value, size_t size, int flags );
int ntfs_efs_fixup_attribute( ntfs_attr_search_ctx *ctx, ntfs_attr *na );
#endif /* EFS_H */

View File

@ -29,9 +29,9 @@
/*
* Notes:
* We define the conversion functions including typecasts since the
* We define the conversion functions including typecasts since the
* defaults don't necessarily perform appropriate typecasts.
* Also, using our own functions means that we can change them if it
* Also, using our own functions means that we can change them if it
* turns out that we do need to use the unaligned access macros on
* architectures requiring aligned memory accesses...
*/
@ -53,59 +53,59 @@
#endif
#ifndef __BYTE_ORDER
# if defined(_BYTE_ORDER)
# define __BYTE_ORDER _BYTE_ORDER
# define __LITTLE_ENDIAN _LITTLE_ENDIAN
# define __BIG_ENDIAN _BIG_ENDIAN
# elif defined(BYTE_ORDER)
# define __BYTE_ORDER BYTE_ORDER
# define __LITTLE_ENDIAN LITTLE_ENDIAN
# define __BIG_ENDIAN BIG_ENDIAN
# elif defined(__BYTE_ORDER__)
# define __BYTE_ORDER __BYTE_ORDER__
# define __LITTLE_ENDIAN __LITTLE_ENDIAN__
# define __BIG_ENDIAN __BIG_ENDIAN__
# elif (defined(_LITTLE_ENDIAN) && !defined(_BIG_ENDIAN)) || \
defined(WORDS_LITTLEENDIAN)
# define __BYTE_ORDER 1
# define __LITTLE_ENDIAN 1
# define __BIG_ENDIAN 0
# elif (!defined(_LITTLE_ENDIAN) && defined(_BIG_ENDIAN)) || \
defined(WORDS_BIGENDIAN)
# define __BYTE_ORDER 0
# define __LITTLE_ENDIAN 1
# define __BIG_ENDIAN 0
# else
# error "__BYTE_ORDER is not defined."
# endif
# if defined(_BYTE_ORDER)
# define __BYTE_ORDER _BYTE_ORDER
# define __LITTLE_ENDIAN _LITTLE_ENDIAN
# define __BIG_ENDIAN _BIG_ENDIAN
# elif defined(BYTE_ORDER)
# define __BYTE_ORDER BYTE_ORDER
# define __LITTLE_ENDIAN LITTLE_ENDIAN
# define __BIG_ENDIAN BIG_ENDIAN
# elif defined(__BYTE_ORDER__)
# define __BYTE_ORDER __BYTE_ORDER__
# define __LITTLE_ENDIAN __LITTLE_ENDIAN__
# define __BIG_ENDIAN __BIG_ENDIAN__
# elif (defined(_LITTLE_ENDIAN) && !defined(_BIG_ENDIAN)) || \
defined(WORDS_LITTLEENDIAN)
# define __BYTE_ORDER 1
# define __LITTLE_ENDIAN 1
# define __BIG_ENDIAN 0
# elif (!defined(_LITTLE_ENDIAN) && defined(_BIG_ENDIAN)) || \
defined(WORDS_BIGENDIAN)
# define __BYTE_ORDER 0
# define __LITTLE_ENDIAN 1
# define __BIG_ENDIAN 0
# else
# error "__BYTE_ORDER is not defined."
# endif
#endif
#define __ntfs_bswap_constant_16(x) \
(u16)((((u16)(x) & 0xff00) >> 8) | \
(((u16)(x) & 0x00ff) << 8))
#define __ntfs_bswap_constant_16(x) \
(u16)((((u16)(x) & 0xff00) >> 8) | \
(((u16)(x) & 0x00ff) << 8))
#define __ntfs_bswap_constant_32(x) \
(u32)((((u32)(x) & 0xff000000u) >> 24) | \
(((u32)(x) & 0x00ff0000u) >> 8) | \
(((u32)(x) & 0x0000ff00u) << 8) | \
(((u32)(x) & 0x000000ffu) << 24))
#define __ntfs_bswap_constant_32(x) \
(u32)((((u32)(x) & 0xff000000u) >> 24) | \
(((u32)(x) & 0x00ff0000u) >> 8) | \
(((u32)(x) & 0x0000ff00u) << 8) | \
(((u32)(x) & 0x000000ffu) << 24))
#define __ntfs_bswap_constant_64(x) \
(u64)((((u64)(x) & 0xff00000000000000ull) >> 56) | \
(((u64)(x) & 0x00ff000000000000ull) >> 40) | \
(((u64)(x) & 0x0000ff0000000000ull) >> 24) | \
(((u64)(x) & 0x000000ff00000000ull) >> 8) | \
(((u64)(x) & 0x00000000ff000000ull) << 8) | \
(((u64)(x) & 0x0000000000ff0000ull) << 24) | \
(((u64)(x) & 0x000000000000ff00ull) << 40) | \
(((u64)(x) & 0x00000000000000ffull) << 56))
#define __ntfs_bswap_constant_64(x) \
(u64)((((u64)(x) & 0xff00000000000000ull) >> 56) | \
(((u64)(x) & 0x00ff000000000000ull) >> 40) | \
(((u64)(x) & 0x0000ff0000000000ull) >> 24) | \
(((u64)(x) & 0x000000ff00000000ull) >> 8) | \
(((u64)(x) & 0x00000000ff000000ull) << 8) | \
(((u64)(x) & 0x0000000000ff0000ull) << 24) | \
(((u64)(x) & 0x000000000000ff00ull) << 40) | \
(((u64)(x) & 0x00000000000000ffull) << 56))
#ifdef HAVE_BYTESWAP_H
# include <byteswap.h>
# include <byteswap.h>
#else
# define bswap_16(x) __ntfs_bswap_constant_16(x)
# define bswap_32(x) __ntfs_bswap_constant_32(x)
# define bswap_64(x) __ntfs_bswap_constant_64(x)
# define bswap_16(x) __ntfs_bswap_constant_16(x)
# define bswap_32(x) __ntfs_bswap_constant_32(x)
# define bswap_64(x) __ntfs_bswap_constant_64(x)
#endif
#if defined(__LITTLE_ENDIAN) && (__BYTE_ORDER == __LITTLE_ENDIAN)
@ -152,52 +152,52 @@
/* Unsigned from LE to CPU conversion. */
#define le16_to_cpu(x) (u16)__le16_to_cpu((u16)(x))
#define le32_to_cpu(x) (u32)__le32_to_cpu((u32)(x))
#define le64_to_cpu(x) (u64)__le64_to_cpu((u64)(x))
#define le16_to_cpu(x) (u16)__le16_to_cpu((u16)(x))
#define le32_to_cpu(x) (u32)__le32_to_cpu((u32)(x))
#define le64_to_cpu(x) (u64)__le64_to_cpu((u64)(x))
#define le16_to_cpup(x) (u16)__le16_to_cpu(*(const u16*)(x))
#define le32_to_cpup(x) (u32)__le32_to_cpu(*(const u32*)(x))
#define le64_to_cpup(x) (u64)__le64_to_cpu(*(const u64*)(x))
#define le16_to_cpup(x) (u16)__le16_to_cpu(*(const u16*)(x))
#define le32_to_cpup(x) (u32)__le32_to_cpu(*(const u32*)(x))
#define le64_to_cpup(x) (u64)__le64_to_cpu(*(const u64*)(x))
/* Signed from LE to CPU conversion. */
#define sle16_to_cpu(x) (s16)__le16_to_cpu((s16)(x))
#define sle32_to_cpu(x) (s32)__le32_to_cpu((s32)(x))
#define sle64_to_cpu(x) (s64)__le64_to_cpu((s64)(x))
#define sle16_to_cpu(x) (s16)__le16_to_cpu((s16)(x))
#define sle32_to_cpu(x) (s32)__le32_to_cpu((s32)(x))
#define sle64_to_cpu(x) (s64)__le64_to_cpu((s64)(x))
#define sle16_to_cpup(x) (s16)__le16_to_cpu(*(s16*)(x))
#define sle32_to_cpup(x) (s32)__le32_to_cpu(*(s32*)(x))
#define sle64_to_cpup(x) (s64)__le64_to_cpu(*(s64*)(x))
#define sle16_to_cpup(x) (s16)__le16_to_cpu(*(s16*)(x))
#define sle32_to_cpup(x) (s32)__le32_to_cpu(*(s32*)(x))
#define sle64_to_cpup(x) (s64)__le64_to_cpu(*(s64*)(x))
/* Unsigned from CPU to LE conversion. */
#define cpu_to_le16(x) (u16)__cpu_to_le16((u16)(x))
#define cpu_to_le32(x) (u32)__cpu_to_le32((u32)(x))
#define cpu_to_le64(x) (u64)__cpu_to_le64((u64)(x))
#define cpu_to_le16(x) (u16)__cpu_to_le16((u16)(x))
#define cpu_to_le32(x) (u32)__cpu_to_le32((u32)(x))
#define cpu_to_le64(x) (u64)__cpu_to_le64((u64)(x))
#define cpu_to_le16p(x) (u16)__cpu_to_le16(*(u16*)(x))
#define cpu_to_le32p(x) (u32)__cpu_to_le32(*(u32*)(x))
#define cpu_to_le64p(x) (u64)__cpu_to_le64(*(u64*)(x))
#define cpu_to_le16p(x) (u16)__cpu_to_le16(*(u16*)(x))
#define cpu_to_le32p(x) (u32)__cpu_to_le32(*(u32*)(x))
#define cpu_to_le64p(x) (u64)__cpu_to_le64(*(u64*)(x))
/* Signed from CPU to LE conversion. */
#define cpu_to_sle16(x) (s16)__cpu_to_le16((s16)(x))
#define cpu_to_sle32(x) (s32)__cpu_to_le32((s32)(x))
#define cpu_to_sle64(x) (s64)__cpu_to_le64((s64)(x))
#define cpu_to_sle16(x) (s16)__cpu_to_le16((s16)(x))
#define cpu_to_sle32(x) (s32)__cpu_to_le32((s32)(x))
#define cpu_to_sle64(x) (s64)__cpu_to_le64((s64)(x))
#define cpu_to_sle16p(x) (s16)__cpu_to_le16(*(s16*)(x))
#define cpu_to_sle32p(x) (s32)__cpu_to_le32(*(s32*)(x))
#define cpu_to_sle64p(x) (s64)__cpu_to_le64(*(s64*)(x))
#define cpu_to_sle16p(x) (s16)__cpu_to_le16(*(s16*)(x))
#define cpu_to_sle32p(x) (s32)__cpu_to_le32(*(s32*)(x))
#define cpu_to_sle64p(x) (s64)__cpu_to_le64(*(s64*)(x))
/* Constant endianness conversion defines. */
#define const_le16_to_cpu(x) __constant_le16_to_cpu(x)
#define const_le32_to_cpu(x) __constant_le32_to_cpu(x)
#define const_le64_to_cpu(x) __constant_le64_to_cpu(x)
#define const_le16_to_cpu(x) __constant_le16_to_cpu(x)
#define const_le32_to_cpu(x) __constant_le32_to_cpu(x)
#define const_le64_to_cpu(x) __constant_le64_to_cpu(x)
#define const_cpu_to_le16(x) __constant_cpu_to_le16(x)
#define const_cpu_to_le32(x) __constant_cpu_to_le32(x)
#define const_cpu_to_le64(x) __constant_cpu_to_le64(x)
#define const_cpu_to_le16(x) __constant_cpu_to_le16(x)
#define const_cpu_to_le32(x) __constant_cpu_to_le32(x)
#define const_cpu_to_le64(x) __constant_cpu_to_le64(x)
#endif /* defined _NTFS_ENDIANS_H */

View File

@ -66,83 +66,93 @@
#define DEV_FD(dev) ((gekko_fd *)dev->d_private)
/* Prototypes */
static s64 ntfs_device_gekko_io_readbytes(struct ntfs_device *dev, s64 offset, s64 count, void *buf);
static bool ntfs_device_gekko_io_readsectors(struct ntfs_device *dev, sec_t sector, sec_t numSectors, void* buffer);
static s64 ntfs_device_gekko_io_writebytes(struct ntfs_device *dev, s64 offset, s64 count, const void *buf);
static bool ntfs_device_gekko_io_writesectors(struct ntfs_device *dev, sec_t sector, sec_t numSectors, const void* buffer);
static s64 ntfs_device_gekko_io_readbytes( struct ntfs_device *dev, s64 offset, s64 count, void *buf );
static bool ntfs_device_gekko_io_readsectors( struct ntfs_device *dev, sec_t sector, sec_t numSectors, void* buffer );
static s64 ntfs_device_gekko_io_writebytes( struct ntfs_device *dev, s64 offset, s64 count, const void *buf );
static bool ntfs_device_gekko_io_writesectors( struct ntfs_device *dev, sec_t sector, sec_t numSectors, const void* buffer );
/**
*
*/
static int ntfs_device_gekko_io_open(struct ntfs_device *dev, int flags)
static int ntfs_device_gekko_io_open( struct ntfs_device *dev, int flags )
{
ntfs_log_trace("dev %p, flags %i\n", dev, flags);
ntfs_log_trace( "dev %p, flags %i\n", dev, flags );
// Get the device driver descriptor
gekko_fd *fd = DEV_FD(dev);
if (!fd) {
gekko_fd *fd = DEV_FD( dev );
if ( !fd )
{
errno = EBADF;
return -1;
}
// Get the device interface
const DISC_INTERFACE* interface = fd->interface;
if (!interface) {
if ( !interface )
{
errno = ENODEV;
return -1;
}
// Start the device interface and ensure that it is inserted
if (!interface->startup()) {
ntfs_log_perror("device failed to start\n");
if ( !interface->startup() )
{
ntfs_log_perror( "device failed to start\n" );
errno = EIO;
return -1;
}
if (!interface->isInserted()) {
ntfs_log_perror("device media is not inserted\n");
if ( !interface->isInserted() )
{
ntfs_log_perror( "device media is not inserted\n" );
errno = EIO;
return -1;
}
// Check that the device isn't already open (used by another volume?)
if (NDevOpen(dev)) {
ntfs_log_perror("device is busy (already open)\n");
if ( NDevOpen( dev ) )
{
ntfs_log_perror( "device is busy (already open)\n" );
errno = EBUSY;
return -1;
}
// Check that there is a valid NTFS boot sector at the start of the device
NTFS_BOOT_SECTOR boot;
if (interface->readSectors(fd->startSector, 1, &boot)) {
if (!ntfs_boot_sector_is_ntfs(&boot)) {
if ( interface->readSectors( fd->startSector, 1, &boot ) )
{
if ( !ntfs_boot_sector_is_ntfs( &boot ) )
{
errno = EINVALPART;
return -1;
}
} else {
ntfs_log_perror("read failure @ sector %d\n", fd->startSector);
}
else
{
ntfs_log_perror( "read failure @ sector %d\n", fd->startSector );
errno = EIO;
return -1;
}
// Parse the boot sector
fd->hiddenSectors = le32_to_cpu(boot.bpb.hidden_sectors);
fd->sectorSize = le16_to_cpu(boot.bpb.bytes_per_sector);
fd->sectorCount = sle64_to_cpu(boot.number_of_sectors);
fd->hiddenSectors = le32_to_cpu( boot.bpb.hidden_sectors );
fd->sectorSize = le16_to_cpu( boot.bpb.bytes_per_sector );
fd->sectorCount = sle64_to_cpu( boot.number_of_sectors );
fd->pos = 0;
fd->len = (fd->sectorCount * fd->sectorSize);
fd->ino = le64_to_cpu(boot.volume_serial_number);
fd->len = ( fd->sectorCount * fd->sectorSize );
fd->ino = le64_to_cpu( boot.volume_serial_number );
// Mark the device as read-only (if required)
if (flags & O_RDONLY) {
NDevSetReadOnly(dev);
if ( flags & O_RDONLY )
{
NDevSetReadOnly( dev );
}
// Create the cache
fd->cache = _NTFS_cache_constructor(fd->cachePageCount, fd->cachePageSize, interface, fd->startSector + fd->sectorCount, fd->sectorSize);
fd->cache = _NTFS_cache_constructor( fd->cachePageCount, fd->cachePageSize, interface, fd->startSector + fd->sectorCount, fd->sectorSize );
// Mark the device as open
NDevSetBlock(dev);
NDevSetOpen(dev);
NDevSetBlock( dev );
NDevSetOpen( dev );
return 0;
}
@ -150,43 +160,47 @@ static int ntfs_device_gekko_io_open(struct ntfs_device *dev, int flags)
/**
*
*/
static int ntfs_device_gekko_io_close(struct ntfs_device *dev)
static int ntfs_device_gekko_io_close( struct ntfs_device *dev )
{
ntfs_log_trace("dev %p\n", dev);
ntfs_log_trace( "dev %p\n", dev );
// Get the device driver descriptor
gekko_fd *fd = DEV_FD(dev);
if (!fd) {
gekko_fd *fd = DEV_FD( dev );
if ( !fd )
{
errno = EBADF;
return -1;
}
// Check that the device is actually open
if (!NDevOpen(dev)) {
ntfs_log_perror("device is not open\n");
if ( !NDevOpen( dev ) )
{
ntfs_log_perror( "device is not open\n" );
errno = EIO;
return -1;
}
// Mark the device as closed
NDevClearOpen(dev);
NDevClearBlock(dev);
NDevClearOpen( dev );
NDevClearBlock( dev );
// Flush the device (if dirty and not read-only)
if (NDevDirty(dev) && !NDevReadOnly(dev)) {
ntfs_log_debug("device is dirty, will now sync\n");
if ( NDevDirty( dev ) && !NDevReadOnly( dev ) )
{
ntfs_log_debug( "device is dirty, will now sync\n" );
// ...?
// Mark the device as clean
NDevClearDirty(dev);
NDevClearDirty( dev );
}
// Flush and destroy the cache (if required)
if (fd->cache) {
_NTFS_cache_flush(fd->cache);
_NTFS_cache_destructor(fd->cache);
if ( fd->cache )
{
_NTFS_cache_flush( fd->cache );
_NTFS_cache_destructor( fd->cache );
}
// Shutdown the device interface
@ -196,7 +210,7 @@ static int ntfs_device_gekko_io_close(struct ntfs_device *dev)
}*/
// Free the device driver private data
ntfs_free(dev->d_private);
ntfs_free( dev->d_private );
dev->d_private = NULL;
return 0;
@ -205,22 +219,24 @@ static int ntfs_device_gekko_io_close(struct ntfs_device *dev)
/**
*
*/
static s64 ntfs_device_gekko_io_seek(struct ntfs_device *dev, s64 offset, int whence)
static s64 ntfs_device_gekko_io_seek( struct ntfs_device *dev, s64 offset, int whence )
{
ntfs_log_trace("dev %p, offset %Li, whence %i\n", dev, offset, whence);
ntfs_log_trace( "dev %p, offset %Li, whence %i\n", dev, offset, whence );
// Get the device driver descriptor
gekko_fd *fd = DEV_FD(dev);
if (!fd) {
gekko_fd *fd = DEV_FD( dev );
if ( !fd )
{
errno = EBADF;
return -1;
}
// Set the current position on the device (in bytes)
switch(whence) {
case SEEK_SET: fd->pos = MIN(MAX(offset, 0), fd->len); break;
case SEEK_CUR: fd->pos = MIN(MAX(fd->pos + offset, 0), fd->len); break;
case SEEK_END: fd->pos = MIN(MAX(fd->len + offset, 0), fd->len); break;
switch ( whence )
{
case SEEK_SET: fd->pos = MIN( MAX( offset, 0 ), fd->len ); break;
case SEEK_CUR: fd->pos = MIN( MAX( fd->pos + offset, 0 ), fd->len ); break;
case SEEK_END: fd->pos = MIN( MAX( fd->len + offset, 0 ), fd->len ); break;
}
return 0;
@ -229,115 +245,123 @@ static s64 ntfs_device_gekko_io_seek(struct ntfs_device *dev, s64 offset, int wh
/**
*
*/
static s64 ntfs_device_gekko_io_read(struct ntfs_device *dev, void *buf, s64 count)
static s64 ntfs_device_gekko_io_read( struct ntfs_device *dev, void *buf, s64 count )
{
return ntfs_device_gekko_io_readbytes(dev, DEV_FD(dev)->pos, count, buf);
return ntfs_device_gekko_io_readbytes( dev, DEV_FD( dev )->pos, count, buf );
}
/**
*
*/
static s64 ntfs_device_gekko_io_write(struct ntfs_device *dev, const void *buf, s64 count)
static s64 ntfs_device_gekko_io_write( struct ntfs_device *dev, const void *buf, s64 count )
{
return ntfs_device_gekko_io_writebytes(dev, DEV_FD(dev)->pos, count, buf);
return ntfs_device_gekko_io_writebytes( dev, DEV_FD( dev )->pos, count, buf );
}
/**
*
*/
static s64 ntfs_device_gekko_io_pread(struct ntfs_device *dev, void *buf, s64 count, s64 offset)
static s64 ntfs_device_gekko_io_pread( struct ntfs_device *dev, void *buf, s64 count, s64 offset )
{
return ntfs_device_gekko_io_readbytes(dev, offset, count, buf);
return ntfs_device_gekko_io_readbytes( dev, offset, count, buf );
}
/**
*
*/
static s64 ntfs_device_gekko_io_pwrite(struct ntfs_device *dev, const void *buf, s64 count, s64 offset)
static s64 ntfs_device_gekko_io_pwrite( struct ntfs_device *dev, const void *buf, s64 count, s64 offset )
{
return ntfs_device_gekko_io_writebytes(dev, offset, count, buf);
return ntfs_device_gekko_io_writebytes( dev, offset, count, buf );
}
/**
*
*/
static s64 ntfs_device_gekko_io_readbytes(struct ntfs_device *dev, s64 offset, s64 count, void *buf)
static s64 ntfs_device_gekko_io_readbytes( struct ntfs_device *dev, s64 offset, s64 count, void *buf )
{
ntfs_log_trace("dev %p, offset %Li, count %Li\n", dev, offset, count);
ntfs_log_trace( "dev %p, offset %Li, count %Li\n", dev, offset, count );
// Get the device driver descriptor
gekko_fd *fd = DEV_FD(dev);
if (!fd) {
gekko_fd *fd = DEV_FD( dev );
if ( !fd )
{
errno = EBADF;
return -1;
}
// Get the device interface
const DISC_INTERFACE* interface = fd->interface;
if (!interface) {
if ( !interface )
{
errno = ENODEV;
return -1;
}
if(offset < 0)
if ( offset < 0 )
{
errno = EROFS;
return -1;
}
if(!count)
if ( !count )
return 0;
sec_t sec_start = (sec_t) fd->startSector;
sec_t sec_start = ( sec_t ) fd->startSector;
sec_t sec_count = 1;
u32 buffer_offset = (u32) (offset % fd->sectorSize);
u32 buffer_offset = ( u32 ) ( offset % fd->sectorSize );
u8 *buffer = NULL;
// Determine the range of sectors required for this read
if (offset > 0) {
sec_start += (sec_t) floor((f64) offset / (f64) fd->sectorSize);
if ( offset > 0 )
{
sec_start += ( sec_t ) floor( ( f64 ) offset / ( f64 ) fd->sectorSize );
}
if (buffer_offset+count > fd->sectorSize) {
sec_count = (sec_t) ceil((f64) (buffer_offset+count) / (f64) fd->sectorSize);
if ( buffer_offset + count > fd->sectorSize )
{
sec_count = ( sec_t ) ceil( ( f64 ) ( buffer_offset + count ) / ( f64 ) fd->sectorSize );
}
// If this read happens to be on the sector boundaries then do the read straight into the destination buffer
if((buffer_offset == 0) && (count % fd->sectorSize == 0)) {
if ( ( buffer_offset == 0 ) && ( count % fd->sectorSize == 0 ) )
{
// Read from the device
ntfs_log_trace("direct read from sector %d (%d sector(s) long)\n", sec_start, sec_count);
if (!ntfs_device_gekko_io_readsectors(dev, sec_start, sec_count, buf)) {
ntfs_log_perror("direct read failure @ sector %d (%d sector(s) long)\n", sec_start, sec_count);
ntfs_log_trace( "direct read from sector %d (%d sector(s) long)\n", sec_start, sec_count );
if ( !ntfs_device_gekko_io_readsectors( dev, sec_start, sec_count, buf ) )
{
ntfs_log_perror( "direct read failure @ sector %d (%d sector(s) long)\n", sec_start, sec_count );
errno = EIO;
return -1;
}
// Else read into a buffer and copy over only what was requested
// Else read into a buffer and copy over only what was requested
}
else
{
{
// Allocate a buffer to hold the read data
buffer = (u8*)ntfs_alloc(sec_count * fd->sectorSize);
if (!buffer) {
buffer = ( u8* )ntfs_alloc( sec_count * fd->sectorSize );
if ( !buffer )
{
errno = ENOMEM;
return -1;
}
// Read from the device
ntfs_log_trace("buffered read from sector %d (%d sector(s) long)\n", sec_start, sec_count);
ntfs_log_trace("count: %d sec_count:%d fd->sectorSize: %d )\n", (u32)count, (u32)sec_count,(u32)fd->sectorSize);
if (!ntfs_device_gekko_io_readsectors(dev, sec_start, sec_count, buffer)) {
ntfs_log_perror("buffered read failure @ sector %d (%d sector(s) long)\n", sec_start, sec_count);
ntfs_free(buffer);
ntfs_log_trace( "buffered read from sector %d (%d sector(s) long)\n", sec_start, sec_count );
ntfs_log_trace( "count: %d sec_count:%d fd->sectorSize: %d )\n", ( u32 )count, ( u32 )sec_count, ( u32 )fd->sectorSize );
if ( !ntfs_device_gekko_io_readsectors( dev, sec_start, sec_count, buffer ) )
{
ntfs_log_perror( "buffered read failure @ sector %d (%d sector(s) long)\n", sec_start, sec_count );
ntfs_free( buffer );
errno = EIO;
return -1;
}
// Copy what was requested to the destination buffer
memcpy(buf, buffer + buffer_offset, count);
ntfs_free(buffer);
memcpy( buf, buffer + buffer_offset, count );
ntfs_free( buffer );
}
@ -347,146 +371,159 @@ static s64 ntfs_device_gekko_io_readbytes(struct ntfs_device *dev, s64 offset, s
/**
*
*/
static s64 ntfs_device_gekko_io_writebytes(struct ntfs_device *dev, s64 offset, s64 count, const void *buf)
static s64 ntfs_device_gekko_io_writebytes( struct ntfs_device *dev, s64 offset, s64 count, const void *buf )
{
ntfs_log_trace("dev %p, offset %lli, count %lli\n", dev, offset, count);
ntfs_log_trace( "dev %p, offset %lli, count %lli\n", dev, offset, count );
// Get the device driver descriptor
gekko_fd *fd = DEV_FD(dev);
if (!fd) {
gekko_fd *fd = DEV_FD( dev );
if ( !fd )
{
errno = EBADF;
return -1;
}
// Get the device interface
const DISC_INTERFACE* interface = fd->interface;
if (!interface) {
if ( !interface )
{
errno = ENODEV;
return -1;
}
// Check that the device can be written to
if (NDevReadOnly(dev)) {
if ( NDevReadOnly( dev ) )
{
errno = EROFS;
return -1;
}
if(count < 0 || offset < 0) {
if ( count < 0 || offset < 0 )
{
errno = EROFS;
return -1;
}
if(count == 0)
if ( count == 0 )
return 0;
sec_t sec_start = (sec_t) fd->startSector;
sec_t sec_start = ( sec_t ) fd->startSector;
sec_t sec_count = 1;
u32 buffer_offset = (u32) (offset % fd->sectorSize);
u32 buffer_offset = ( u32 ) ( offset % fd->sectorSize );
u8 *buffer = NULL;
// Determine the range of sectors required for this write
if (offset > 0) {
sec_start += (sec_t) floor((f64) offset / (f64) fd->sectorSize);
if ( offset > 0 )
{
sec_start += ( sec_t ) floor( ( f64 ) offset / ( f64 ) fd->sectorSize );
}
if ((buffer_offset+count) > fd->sectorSize) {
sec_count = (sec_t) ceil((f64) (buffer_offset+count) / (f64) fd->sectorSize);
if ( ( buffer_offset + count ) > fd->sectorSize )
{
sec_count = ( sec_t ) ceil( ( f64 ) ( buffer_offset + count ) / ( f64 ) fd->sectorSize );
}
// If this write happens to be on the sector boundaries then do the write straight to disc
if((buffer_offset == 0) && (count % fd->sectorSize == 0))
if ( ( buffer_offset == 0 ) && ( count % fd->sectorSize == 0 ) )
{
// Write to the device
ntfs_log_trace("direct write to sector %d (%d sector(s) long)\n", sec_start, sec_count);
if (!ntfs_device_gekko_io_writesectors(dev, sec_start, sec_count, buf)) {
ntfs_log_perror("direct write failure @ sector %d (%d sector(s) long)\n", sec_start, sec_count);
ntfs_log_trace( "direct write to sector %d (%d sector(s) long)\n", sec_start, sec_count );
if ( !ntfs_device_gekko_io_writesectors( dev, sec_start, sec_count, buf ) )
{
ntfs_log_perror( "direct write failure @ sector %d (%d sector(s) long)\n", sec_start, sec_count );
errno = EIO;
return -1;
}
// Else write from a buffer aligned to the sector boundaries
// Else write from a buffer aligned to the sector boundaries
}
else
{
// Allocate a buffer to hold the write data
buffer = (u8 *) ntfs_alloc(sec_count * fd->sectorSize);
if (!buffer) {
buffer = ( u8 * ) ntfs_alloc( sec_count * fd->sectorSize );
if ( !buffer )
{
errno = ENOMEM;
return -1;
}
// Read the first and last sectors of the buffer from disc (if required)
// NOTE: This is done because the data does not line up with the sector boundaries,
// we just read in the buffer edges where the data overlaps with the rest of the disc
if(buffer_offset != 0)
if ( buffer_offset != 0 )
{
if (!ntfs_device_gekko_io_readsectors(dev, sec_start, 1, buffer)) {
ntfs_log_perror("read failure @ sector %d\n", sec_start);
ntfs_free(buffer);
if ( !ntfs_device_gekko_io_readsectors( dev, sec_start, 1, buffer ) )
{
ntfs_log_perror( "read failure @ sector %d\n", sec_start );
ntfs_free( buffer );
errno = EIO;
return -1;
}
}
if((buffer_offset+count) % fd->sectorSize != 0)
if ( ( buffer_offset + count ) % fd->sectorSize != 0 )
{
if (!ntfs_device_gekko_io_readsectors(dev, sec_start + sec_count - 1, 1, buffer + ((sec_count-1) * fd->sectorSize))) {
ntfs_log_perror("read failure @ sector %d\n", sec_start + sec_count - 1);
ntfs_free(buffer);
if ( !ntfs_device_gekko_io_readsectors( dev, sec_start + sec_count - 1, 1, buffer + ( ( sec_count - 1 ) * fd->sectorSize ) ) )
{
ntfs_log_perror( "read failure @ sector %d\n", sec_start + sec_count - 1 );
ntfs_free( buffer );
errno = EIO;
return -1;
}
}
// Copy the data into the write buffer
memcpy(buffer + buffer_offset, buf, count);
memcpy( buffer + buffer_offset, buf, count );
// Write to the device
ntfs_log_trace("buffered write to sector %d (%d sector(s) long)\n", sec_start, sec_count);
if (!ntfs_device_gekko_io_writesectors(dev, sec_start, sec_count, buffer)) {
ntfs_log_perror("buffered write failure @ sector %d\n", sec_start);
ntfs_free(buffer);
ntfs_log_trace( "buffered write to sector %d (%d sector(s) long)\n", sec_start, sec_count );
if ( !ntfs_device_gekko_io_writesectors( dev, sec_start, sec_count, buffer ) )
{
ntfs_log_perror( "buffered write failure @ sector %d\n", sec_start );
ntfs_free( buffer );
errno = EIO;
return -1;
}
// Free the buffer
ntfs_free(buffer);
ntfs_free( buffer );
}
// Mark the device as dirty (if we actually wrote anything)
NDevSetDirty(dev);
NDevSetDirty( dev );
return count;
}
static bool ntfs_device_gekko_io_readsectors(struct ntfs_device *dev, sec_t sector, sec_t numSectors, void* buffer)
static bool ntfs_device_gekko_io_readsectors( struct ntfs_device *dev, sec_t sector, sec_t numSectors, void* buffer )
{
// Get the device driver descriptor
gekko_fd *fd = DEV_FD(dev);
if (!fd) {
gekko_fd *fd = DEV_FD( dev );
if ( !fd )
{
errno = EBADF;
return false;
}
// Read the sectors from disc (or cache, if enabled)
if (fd->cache)
return _NTFS_cache_readSectors(fd->cache, sector, numSectors, buffer);
if ( fd->cache )
return _NTFS_cache_readSectors( fd->cache, sector, numSectors, buffer );
else
return fd->interface->readSectors(sector, numSectors, buffer);
return fd->interface->readSectors( sector, numSectors, buffer );
return false;
}
static bool ntfs_device_gekko_io_writesectors(struct ntfs_device *dev, sec_t sector, sec_t numSectors, const void* buffer)
static bool ntfs_device_gekko_io_writesectors( struct ntfs_device *dev, sec_t sector, sec_t numSectors, const void* buffer )
{
// Get the device driver descriptor
gekko_fd *fd = DEV_FD(dev);
if (!fd) {
gekko_fd *fd = DEV_FD( dev );
if ( !fd )
{
errno = EBADF;
return false;
}
// Write the sectors to disc (or cache, if enabled)
if (fd->cache)
return _NTFS_cache_writeSectors(fd->cache, sector, numSectors, buffer);
if ( fd->cache )
return _NTFS_cache_writeSectors( fd->cache, sector, numSectors, buffer );
else
return fd->interface->writeSectors(sector, numSectors, buffer);
return fd->interface->writeSectors( sector, numSectors, buffer );
return false;
}
@ -494,23 +531,26 @@ static bool ntfs_device_gekko_io_writesectors(struct ntfs_device *dev, sec_t sec
/**
*
*/
static int ntfs_device_gekko_io_sync(struct ntfs_device *dev)
static int ntfs_device_gekko_io_sync( struct ntfs_device *dev )
{
gekko_fd *fd = DEV_FD(dev);
ntfs_log_trace("dev %p\n", dev);
gekko_fd *fd = DEV_FD( dev );
ntfs_log_trace( "dev %p\n", dev );
// Check that the device can be written to
if (NDevReadOnly(dev)) {
if ( NDevReadOnly( dev ) )
{
errno = EROFS;
return -1;
}
// Mark the device as clean
NDevClearDirty(dev);
NDevClearDirty( dev );
// Flush any sectors in the disc cache (if required)
if (fd->cache) {
if (!_NTFS_cache_flush(fd->cache)) {
if ( fd->cache )
{
if ( !_NTFS_cache_flush( fd->cache ) )
{
errno = EIO;
return -1;
}
@ -522,28 +562,29 @@ static int ntfs_device_gekko_io_sync(struct ntfs_device *dev)
/**
*
*/
static int ntfs_device_gekko_io_stat(struct ntfs_device *dev, struct stat *buf)
static int ntfs_device_gekko_io_stat( struct ntfs_device *dev, struct stat *buf )
{
ntfs_log_trace("dev %p, buf %p\n", dev, buf);
ntfs_log_trace( "dev %p, buf %p\n", dev, buf );
// Get the device driver descriptor
gekko_fd *fd = DEV_FD(dev);
if (!fd) {
gekko_fd *fd = DEV_FD( dev );
if ( !fd )
{
errno = EBADF;
return -1;
}
// Short circuit cases were we don't actually have to do anything
if (!buf)
if ( !buf )
return 0;
// Build the device mode
mode_t mode = (S_IFBLK) |
(S_IRUSR | S_IRGRP | S_IROTH) |
((!NDevReadOnly(dev)) ? (S_IWUSR | S_IWGRP | S_IWOTH) : 0);
mode_t mode = ( S_IFBLK ) |
( S_IRUSR | S_IRGRP | S_IROTH ) |
( ( !NDevReadOnly( dev ) ) ? ( S_IWUSR | S_IWGRP | S_IWOTH ) : 0 );
// Zero out the stat buffer
memset(buf, 0, sizeof(struct stat));
memset( buf, 0, sizeof( struct stat ) );
// Build the device stats
buf->st_dev = fd->interface->ioType;
@ -559,71 +600,79 @@ static int ntfs_device_gekko_io_stat(struct ntfs_device *dev, struct stat *buf)
/**
*
*/
static int ntfs_device_gekko_io_ioctl(struct ntfs_device *dev, int request, void *argp)
static int ntfs_device_gekko_io_ioctl( struct ntfs_device *dev, int request, void *argp )
{
ntfs_log_trace("dev %p, request %i, argp %p\n", dev, request, argp);
ntfs_log_trace( "dev %p, request %i, argp %p\n", dev, request, argp );
// Get the device driver descriptor
gekko_fd *fd = DEV_FD(dev);
if (!fd) {
gekko_fd *fd = DEV_FD( dev );
if ( !fd )
{
errno = EBADF;
return -1;
}
// Figure out which i/o control was requested
switch (request) {
switch ( request )
{
// Get block device size (sectors)
#if defined(BLKGETSIZE)
case BLKGETSIZE: {
*(u32*)argp = fd->sectorCount;
return 0;
}
#endif
// Get block device size (sectors)
#if defined(BLKGETSIZE)
case BLKGETSIZE:
{
*( u32* )argp = fd->sectorCount;
return 0;
}
#endif
// Get block device size (bytes)
#if defined(BLKGETSIZE64)
case BLKGETSIZE64: {
*(u64*)argp = (fd->sectorCount * fd->sectorSize);
return 0;
}
#endif
// Get block device size (bytes)
#if defined(BLKGETSIZE64)
case BLKGETSIZE64:
{
*( u64* )argp = ( fd->sectorCount * fd->sectorSize );
return 0;
}
#endif
// Get hard drive geometry
#if defined(HDIO_GETGEO)
case HDIO_GETGEO: {
struct hd_geometry *geo = (struct hd_geometry*)argp;
geo->sectors = 0;
geo->heads = 0;
geo->cylinders = 0;
geo->start = fd->hiddenSectors;
return -1;
}
#endif
// Get hard drive geometry
#if defined(HDIO_GETGEO)
case HDIO_GETGEO:
{
struct hd_geometry *geo = ( struct hd_geometry* )argp;
geo->sectors = 0;
geo->heads = 0;
geo->cylinders = 0;
geo->start = fd->hiddenSectors;
return -1;
}
#endif
// Get block device sector size (bytes)
#if defined(BLKSSZGET)
case BLKSSZGET: {
*(int*)argp = fd->sectorSize;
return 0;
}
#endif
// Get block device sector size (bytes)
#if defined(BLKSSZGET)
case BLKSSZGET:
{
*( int* )argp = fd->sectorSize;
return 0;
}
#endif
// Set block device block size (bytes)
#if defined(BLKBSZSET)
case BLKBSZSET: {
int sectorSize = *(int*)argp;
fd->sectorSize = sectorSize;
return 0;
}
#endif
// Set block device block size (bytes)
#if defined(BLKBSZSET)
case BLKBSZSET:
{
int sectorSize = *( int* )argp;
fd->sectorSize = sectorSize;
return 0;
}
#endif
// Unimplemented ioctrl
default: {
ntfs_log_perror("Unimplemented ioctrl %i\n", request);
errno = EOPNOTSUPP;
return -1;
}
// Unimplemented ioctrl
default:
{
ntfs_log_perror( "Unimplemented ioctrl %i\n", request );
errno = EOPNOTSUPP;
return -1;
}
}
@ -633,7 +682,8 @@ static int ntfs_device_gekko_io_ioctl(struct ntfs_device *dev, int request, void
/**
* Device operations for working with gekko style devices and files.
*/
struct ntfs_device_operations ntfs_device_gekko_io_ops = {
struct ntfs_device_operations ntfs_device_gekko_io_ops =
{
.open = ntfs_device_gekko_io_open,
.close = ntfs_device_gekko_io_close,
.seek = ntfs_device_gekko_io_seek,

Some files were not shown because too many files have changed in this diff Show More