vbagx/source/vba/gba/RTC.cpp

300 lines
8.2 KiB
C++
Raw Normal View History

2009-01-08 08:35:44 +01:00
#include "../System.h"
#include "GBA.h"
2008-09-23 01:00:10 +02:00
#include "Globals.h"
2009-01-08 08:35:44 +01:00
#include "../common/Port.h"
#include "../Util.h"
#include "../NLS.h"
2008-09-23 01:00:10 +02:00
#include "vmmem.h"
#include <time.h>
#include <string.h>
enum RTCSTATE
{
IDLE = 0,
COMMAND,
DATA,
READDATA
};
2009-03-04 07:53:25 +01:00
u8 systemGetSensorDarkness();
int systemGetSensorZ();
2008-09-23 01:00:10 +02:00
typedef struct {
u8 byte0;
u8 byte1;
u8 byte2;
u8 command;
int dataLen;
int bits;
RTCSTATE state;
u8 data[12];
// reserved variables for future
u8 reserved[12];
bool reserved2;
u32 reserved3;
} RTCCLOCKDATA;
static RTCCLOCKDATA rtcClockData;
static bool rtcEnabled = false;
static bool rtcWarioRumbleEnabled = false;
2009-03-04 07:53:25 +01:00
2008-09-23 01:00:10 +02:00
void rtcEnable(bool e)
{
rtcEnabled = e;
}
bool rtcIsEnabled()
{
return rtcEnabled;
}
void rtcEnableWarioRumble(bool e)
{
if (e) rtcEnable(true);
rtcWarioRumbleEnabled = e;
}
2008-09-23 01:00:10 +02:00
u16 rtcRead(u32 address)
{
if(rtcEnabled) {
switch(address){
case 0x80000c8:
return rtcClockData.byte2;
break;
case 0x80000c6:
return rtcClockData.byte1;
break;
case 0x80000c4:
2009-03-04 07:53:25 +01:00
// Boktai Solar Sensor
if (rtcClockData.byte1 == 7) {
if (rtcClockData.reserved[11] >= systemGetSensorDarkness()) {
rtcClockData.reserved[10] = 0;
rtcClockData.reserved[11] = 0;
return 8;
} else return 0;
// WarioWare Twisted Tilt Sensor
} else if (rtcClockData.byte1 == 0x0b) {
//sprintf(DebugStr, "Reading Twisted Sensor bit %d", rtcClockData.reserved[11]);
u16 v = systemGetSensorZ();
return ((v >> rtcClockData.reserved[11]) & 1) << 2;
// Real Time Clock
} else {
//sprintf(DebugStr, "Reading RTC %02x, %02x, %02x", rtcClockData.byte0, rtcClockData.byte1, rtcClockData.byte2);
return rtcClockData.byte0;
}
2008-09-23 01:00:10 +02:00
break;
}
}
2008-10-11 10:06:36 +02:00
#ifdef USE_VM
2008-09-23 01:00:10 +02:00
return VMRead16( address & 0x1FFFFFE );
2008-10-11 10:06:36 +02:00
#else
return READ16LE((&rom[address & 0x1FFFFFE]));
#endif
2008-09-23 01:00:10 +02:00
}
static u8 toBCD(u8 value)
{
value = value % 100;
int l = value % 10;
int h = value / 10;
return h * 16 + l;
}
bool rtcWrite(u32 address, u16 value)
{
if(!rtcEnabled)
return false;
if(address == 0x80000c8) {
2009-03-04 07:53:25 +01:00
rtcClockData.byte2 = (u8)value; // bit 0 = enable reading from 0x80000c4 c6 and c8
2008-09-23 01:00:10 +02:00
} else if(address == 0x80000c6) {
2009-03-04 07:53:25 +01:00
rtcClockData.byte1 = (u8)value; // 0=read/1=write (for each of 4 low bits)
// rumble is off when not writing to that pin
if (rtcWarioRumbleEnabled && !(value & 8)) systemCartridgeRumble(false);
2009-03-04 07:53:25 +01:00
} else if(address == 0x80000c4) { // 4 bits of I/O Port Data (upper bits not used)
// WarioWare Twisted rumble
if(rtcWarioRumbleEnabled && (rtcClockData.byte1 & 8)) {
systemCartridgeRumble(value & 8);
2009-03-04 07:53:25 +01:00
}
// Boktai solar sensor
if (rtcClockData.byte1 == 7) {
if (value & 2) {
// reset counter to 0
rtcClockData.reserved[11]=0;
rtcClockData.reserved[10]=0;
}
if ((value & 1) && (!(rtcClockData.reserved[10] & 1))) {
// increase counter, ready to do another read
if (rtcClockData.reserved[11]<255) rtcClockData.reserved[11]++;
}
rtcClockData.reserved[10] = value & rtcClockData.byte1;
}
// WarioWare Twisted rotation sensor
if (rtcClockData.byte1 == 0xb) {
if (value & 2) {
// clock goes high in preperation for reading a bit
rtcClockData.reserved[11]--;
}
if (value & 1) {
// start ADC conversion
rtcClockData.reserved[11] = 15;
}
rtcClockData.byte0 = value & rtcClockData.byte1;
// Real Time Clock
}
/**/
if(rtcClockData.byte2 & 1) { // if reading is enabled
if(rtcClockData.state == IDLE && rtcClockData.byte0 == 1 && value == 5) {
2008-09-23 01:00:10 +02:00
rtcClockData.state = COMMAND;
rtcClockData.bits = 0;
rtcClockData.command = 0;
} else if(!(rtcClockData.byte0 & 1) && (value & 1)) { // bit transfer
rtcClockData.byte0 = (u8)value;
switch(rtcClockData.state) {
case COMMAND:
rtcClockData.command |= ((value & 2) >> 1) << (7-rtcClockData.bits);
rtcClockData.bits++;
if(rtcClockData.bits == 8) {
rtcClockData.bits = 0;
switch(rtcClockData.command) {
case 0x60:
// not sure what this command does but it doesn't take parameters
// maybe it is a reset or stop
rtcClockData.state = IDLE;
rtcClockData.bits = 0;
break;
case 0x62:
// this sets the control state but not sure what those values are
rtcClockData.state = READDATA;
rtcClockData.dataLen = 1;
break;
case 0x63:
rtcClockData.dataLen = 1;
rtcClockData.data[0] = 0x40;
rtcClockData.state = DATA;
break;
case 0x64:
break;
case 0x65:
{
struct tm *newtime;
time_t long_time;
time( &long_time ); /* Get time as long integer. */
newtime = localtime( &long_time ); /* Convert to local time. */
rtcClockData.dataLen = 7;
rtcClockData.data[0] = toBCD(newtime->tm_year);
rtcClockData.data[1] = toBCD(newtime->tm_mon+1);
rtcClockData.data[2] = toBCD(newtime->tm_mday);
rtcClockData.data[3] = toBCD(newtime->tm_wday);
rtcClockData.data[4] = toBCD(newtime->tm_hour);
rtcClockData.data[5] = toBCD(newtime->tm_min);
rtcClockData.data[6] = toBCD(newtime->tm_sec);
rtcClockData.state = DATA;
}
break;
case 0x67:
{
struct tm *newtime;
time_t long_time;
time( &long_time ); /* Get time as long integer. */
newtime = localtime( &long_time ); /* Convert to local time. */
rtcClockData.dataLen = 3;
rtcClockData.data[0] = toBCD(newtime->tm_hour);
rtcClockData.data[1] = toBCD(newtime->tm_min);
rtcClockData.data[2] = toBCD(newtime->tm_sec);
rtcClockData.state = DATA;
}
break;
default:
systemMessage(0, N_("Unknown RTC command %02x"), rtcClockData.command);
rtcClockData.state = IDLE;
break;
}
}
break;
case DATA:
if(rtcClockData.byte1 & 2) {
} else {
rtcClockData.byte0 = (rtcClockData.byte0 & ~2) |
((rtcClockData.data[rtcClockData.bits >> 3] >>
(rtcClockData.bits & 7)) & 1)*2;
rtcClockData.bits++;
if(rtcClockData.bits == 8*rtcClockData.dataLen) {
rtcClockData.bits = 0;
rtcClockData.state = IDLE;
}
}
break;
case READDATA:
if(!(rtcClockData.byte1 & 2)) {
} else {
rtcClockData.data[rtcClockData.bits >> 3] =
(rtcClockData.data[rtcClockData.bits >> 3] >> 1) |
((value << 6) & 128);
rtcClockData.bits++;
if(rtcClockData.bits == 8*rtcClockData.dataLen) {
rtcClockData.bits = 0;
rtcClockData.state = IDLE;
}
}
break;
2009-03-04 07:53:25 +01:00
default:
2008-09-23 01:00:10 +02:00
break;
}
} else
rtcClockData.byte0 = (u8)value;
}
}
return true;
}
void rtcReset()
{
memset(&rtcClockData, 0, sizeof(rtcClockData));
rtcClockData.byte0 = 0;
rtcClockData.byte1 = 0;
rtcClockData.byte2 = 0;
rtcClockData.command = 0;
rtcClockData.dataLen = 0;
rtcClockData.bits = 0;
rtcClockData.state = IDLE;
2009-03-04 07:53:25 +01:00
rtcClockData.reserved[11] = 0;
2008-09-23 01:00:10 +02:00
}
#ifdef __LIBRETRO__
void rtcSaveGame(u8 *&data)
{
utilWriteMem(data, &rtcClockData, sizeof(rtcClockData));
}
void rtcReadGame(const u8 *&data)
{
utilReadMem(&rtcClockData, data, sizeof(rtcClockData));
}
#else
2008-09-23 01:00:10 +02:00
void rtcSaveGame(gzFile gzFile)
{
utilGzWrite(gzFile, &rtcClockData, sizeof(rtcClockData));
}
void rtcReadGame(gzFile gzFile)
{
utilGzRead(gzFile, &rtcClockData, sizeof(rtcClockData));
}
#endif