mirror of
https://github.com/ekeeke/Genesis-Plus-GX.git
synced 2025-01-23 16:41:11 +01:00
929 lines
26 KiB
C
929 lines
26 KiB
C
/***************************************************************************************
|
|
* Genesis Plus 1.2a
|
|
* Video Display Processor (memory handlers)
|
|
*
|
|
* Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003 Charles Mac Donald (original code)
|
|
* modified by Eke-Eke (compatibility fixes & additional code), GC/Wii port
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*
|
|
****************************************************************************************/
|
|
|
|
#include "shared.h"
|
|
#include "hvc.h"
|
|
|
|
/* Pack and unpack CRAM data */
|
|
#define PACK_CRAM(d) ((((d)&0xE00)>>9)|(((d)&0x0E0)>>2)|(((d)&0x00E)<<5))
|
|
#define UNPACK_CRAM(d) ((((d)&0x1C0)>>5)|((d)&0x038)<<2|(((d)&0x007)<<9))
|
|
|
|
/* Mark a pattern as dirty */
|
|
#define MARK_BG_DIRTY(addr) \
|
|
{ \
|
|
name = (addr >> 5) & 0x7FF; \
|
|
if(bg_name_dirty[name] == 0) bg_name_list[bg_list_index++] = name; \
|
|
bg_name_dirty[name] |= (1 << ((addr >> 2) & 0x07)); \
|
|
}
|
|
|
|
/* VDP context */
|
|
uint8 sat[0x400]; /* Internal copy of sprite attribute table */
|
|
uint8 vram[0x10000]; /* Video RAM (64Kx8) */
|
|
uint8 cram[0x80]; /* On-chip color RAM (64x9) */
|
|
uint8 vsram[0x80]; /* On-chip vertical scroll RAM (40x11) */
|
|
uint8 reg[0x20]; /* Internal VDP registers (23x8) */
|
|
uint16 addr; /* Address register */
|
|
uint16 addr_latch; /* Latched A15, A14 of address */
|
|
uint8 code; /* Code register */
|
|
uint8 pending; /* Pending write flag */
|
|
uint16 status; /* VDP status flags */
|
|
uint8 dmafill; /* next VDP Write is DMA Fill */
|
|
uint8 hint_pending; /* 0= Line interrupt is pending */
|
|
uint8 vint_pending; /* 1= Frame interrupt is pending */
|
|
uint16 irq_status; /* Interrupt lines updated */
|
|
|
|
/* Global variables */
|
|
uint16 ntab; /* Name table A base address */
|
|
uint16 ntbb; /* Name table B base address */
|
|
uint16 ntwb; /* Name table W base address */
|
|
uint16 satb; /* Sprite attribute table base address */
|
|
uint16 hscb; /* Horizontal scroll table base address */
|
|
uint8 border; /* Border color index */
|
|
uint8 bg_name_dirty[0x800]; /* 1= This pattern is dirty */
|
|
uint16 bg_name_list[0x800]; /* List of modified pattern indices */
|
|
uint16 bg_list_index; /* # of modified patterns in list */
|
|
uint8 bg_pattern_cache[0x80000]; /* Cached and flipped patterns */
|
|
uint8 playfield_shift; /* Width of planes A, B (in bits) */
|
|
uint8 playfield_col_mask; /* Vertical scroll mask */
|
|
uint16 playfield_row_mask; /* Horizontal scroll mask */
|
|
uint32 y_mask; /* Name table Y-index bits mask */
|
|
uint16 hc_latch; /* latched HCounter (INT2) */
|
|
uint16 v_counter; /* VDP scanline counter */
|
|
uint32 dma_length; /* Current DMA remaining bytes */
|
|
int32 fifo_write_cnt; /* VDP writes fifo count */
|
|
uint32 fifo_lastwrite; /* last VDP write cycle */
|
|
uint8 fifo_latency; /* VDP write cycles latency */
|
|
uint8 odd_frame; /* 1: odd field, 0: even field */
|
|
uint8 im2_flag; /* 1= Interlace mode 2 is being used */
|
|
uint8 interlaced; /* 1: Interlaced mode 1 or 2 */
|
|
uint8 vdp_pal = 0; /* 1: PAL , 0: NTSC (default) */
|
|
uint8 vdp_rate; /* PAL: 50hz, NTSC: 60hz */
|
|
uint16 lines_per_frame; /* PAL: 313 lines, NTSC: 262 lines */
|
|
|
|
|
|
/* Tables that define the playfield layout */
|
|
static const uint8 shift_table[] = { 6, 7, 0, 8 };
|
|
static const uint8 col_mask_table[] = { 0x0F, 0x1F, 0x0F, 0x3F };
|
|
static const uint16 row_mask_table[] = { 0x0FF, 0x1FF, 0x2FF, 0x3FF };
|
|
static const uint32 y_mask_table[] = { 0x1FC0, 0x1F80, 0x1FC0, 0x1F00 };
|
|
|
|
static uint16 sat_base_mask; /* Base bits of SAT */
|
|
static uint16 sat_addr_mask; /* Index bits of SAT */
|
|
static uint32 dma_endCycles; /* 68k cycles to DMA end */
|
|
static uint8 dma_type; /* Type of DMA */
|
|
|
|
/* DMA Timings
|
|
|
|
According to the manual, here's a table that describes the transfer
|
|
rates of each of the three DMA types:
|
|
|
|
DMA Mode Width Display Transfer Count
|
|
-----------------------------------------------------
|
|
68K > VDP 32-cell Active 16
|
|
Blanking 167
|
|
40-cell Active 18
|
|
Blanking 205
|
|
VRAM Fill 32-cell Active 15
|
|
Blanking 166
|
|
40-cell Active 17
|
|
Blanking 204
|
|
VRAM Copy 32-cell Active 8
|
|
Blanking 83
|
|
40-cell Active 9
|
|
Blanking 102
|
|
|
|
'Active' is the active display period, 'Blanking' is either the vertical
|
|
blanking period or when the display is forcibly blanked via register #1.
|
|
|
|
The above transfer counts are all in bytes, unless the destination is
|
|
CRAM or VSRAM for a 68K > VDP transfer, in which case it is in words.
|
|
|
|
*/
|
|
static const uint32 dma_rates[16] = {
|
|
8, 83, 9, 102, /* 68K to VRAM (1 word = 2 bytes) */
|
|
16, 167, 18, 205, /* 68K to CRAM or VSRAM */
|
|
15, 166, 17, 204, /* DMA fill */
|
|
8, 83, 9, 102, /* DMA Copy */
|
|
};
|
|
|
|
/* Function prototypes */
|
|
static inline void data_write(unsigned int data);
|
|
static inline void vdp_reg_w(unsigned int r, unsigned int d);
|
|
|
|
/*--------------------------------------------------------------------------*/
|
|
/* Init, reset, shutdown functions */
|
|
/*--------------------------------------------------------------------------*/
|
|
void vdp_init(void)
|
|
{
|
|
/* PAL/NTSC timings */
|
|
vdp_rate = vdp_pal ? 50 : 60;
|
|
lines_per_frame = vdp_pal ? 313 : 262;
|
|
}
|
|
|
|
void vdp_reset(void)
|
|
{
|
|
memset ((char *) sat, 0, sizeof (sat));
|
|
memset ((char *) vram, 0, sizeof (vram));
|
|
memset ((char *) cram, 0, sizeof (cram));
|
|
memset ((char *) vsram, 0, sizeof (vsram));
|
|
memset ((char *) reg, 0, sizeof (reg));
|
|
|
|
addr = 0;
|
|
addr_latch = 0;
|
|
code = 0;
|
|
pending = 0;
|
|
|
|
status = 0x200; /* fifo empty */
|
|
status |= vdp_pal;
|
|
|
|
ntab = 0;
|
|
ntbb = 0;
|
|
ntwb = 0;
|
|
satb = 0;
|
|
hscb = 0;
|
|
|
|
sat_base_mask = 0xFE00;
|
|
sat_addr_mask = 0x01FF;
|
|
|
|
border = 0x00;
|
|
|
|
memset ((char *) bg_name_dirty, 0, sizeof (bg_name_dirty));
|
|
memset ((char *) bg_name_list, 0, sizeof (bg_name_list));
|
|
bg_list_index = 0;
|
|
memset ((char *) bg_pattern_cache, 0, sizeof (bg_pattern_cache));
|
|
|
|
playfield_shift = 6;
|
|
playfield_col_mask = 0x0F;
|
|
playfield_row_mask = 0x0FF;
|
|
y_mask = 0x1FC0;
|
|
|
|
hint_pending = 0;
|
|
vint_pending = 0;
|
|
irq_status = 0;
|
|
|
|
hc_latch = 0;
|
|
v_counter = 0;
|
|
|
|
dmafill = 0;
|
|
dma_length = 0;
|
|
dma_endCycles = 0;
|
|
|
|
im2_flag = 0;
|
|
interlaced = 0;
|
|
odd_frame = 0;
|
|
|
|
fifo_write_cnt = 0;
|
|
|
|
/* reset HVC tables */
|
|
vctab = (vdp_pal) ? vc_pal_224 : vc_ntsc_224;
|
|
hctab = cycle2hc32;
|
|
|
|
/* reset display area */
|
|
bitmap.viewport.w = 256;
|
|
bitmap.viewport.h = 224;
|
|
bitmap.viewport.oh = 256;
|
|
bitmap.viewport.ow = 224;
|
|
|
|
/* reset border area */
|
|
bitmap.viewport.x = config.overscan ? 12 : 0;
|
|
bitmap.viewport.y = config.overscan ? (vdp_pal ? 32 : 8) : 0;
|
|
bitmap.viewport.changed = 1;
|
|
|
|
/* initialize some registers (normally set by BIOS) */
|
|
if (config.bios_enabled != 3)
|
|
{
|
|
vdp_reg_w(1 , 0x04); /* Mode 5 enabled */
|
|
vdp_reg_w(10, 0xff); /* HINT disabled */
|
|
vdp_reg_w(12, 0x81); /* H40 mode */
|
|
vdp_reg_w(15, 0x02); /* auto increment */
|
|
window_clip(1,0);
|
|
}
|
|
|
|
/* default latency */
|
|
fifo_latency = 27;
|
|
}
|
|
|
|
void vdp_shutdown(void)
|
|
{}
|
|
|
|
void vdp_restore(uint8 *vdp_regs)
|
|
{
|
|
int i;
|
|
|
|
for (i=0;i<0x20;i++)
|
|
{
|
|
vdp_reg_w(i, vdp_regs[i]);
|
|
}
|
|
|
|
/* reinitialize HVC tables */
|
|
vctab = (vdp_pal) ? ((reg[1] & 8) ? vc_pal_240 : vc_pal_224) : vc_ntsc_224;
|
|
hctab = (reg[12] & 1) ? cycle2hc40 : cycle2hc32;
|
|
|
|
/* reinitialize overscan area */
|
|
bitmap.viewport.x = config.overscan ? ((reg[12] & 1) ? 16 : 12) : 0;
|
|
bitmap.viewport.y = config.overscan ? (((reg[1] & 8) ? 0 : 8) + (vdp_pal ? 24 : 0)) : 0;
|
|
bitmap.viewport.changed = 1;
|
|
|
|
/* restore VDP timings */
|
|
fifo_latency = (reg[12] & 1) ? 27 : 30;
|
|
if ((code & 0x0F) == 0x01) fifo_latency = fifo_latency * 2;
|
|
|
|
/* remake cache */
|
|
for (i=0;i<0x800;i++)
|
|
{
|
|
bg_name_list[i]=i;
|
|
bg_name_dirty[i]=0xFF;
|
|
}
|
|
bg_list_index=0x800;
|
|
|
|
/* reinitialize palette */
|
|
for(i = 0; i < 0x40; i += 1) color_update(i, *(uint16 *)&cram[i << 1]);
|
|
color_update(0x00, *(uint16 *)&cram[border << 1]);
|
|
}
|
|
|
|
/*--------------------------------------------------------------------------*/
|
|
/* DMA Operations */
|
|
/*--------------------------------------------------------------------------*/
|
|
|
|
/* Update DMA timings (this is call on start of DMA and then at the start of each scanline) */
|
|
void dma_update()
|
|
{
|
|
int dma_cycles = 0;
|
|
|
|
/* DMA timings table index */
|
|
int index = (4 * dma_type) + ((reg[12] & 1)*2);
|
|
if ((status&8) || !(reg[1] & 0x40)) index++;
|
|
|
|
/* DMA transfer rate */
|
|
int rate = dma_rates[index];
|
|
|
|
/* 68k cycles left */
|
|
int left_cycles = (line_m68k + m68cycles_per_line) - count_m68k;
|
|
if (left_cycles < 0) left_cycles = 0;
|
|
|
|
/* DMA bytes left */
|
|
int dma_bytes = (left_cycles * rate) / m68cycles_per_line;
|
|
|
|
/* determinate DMA length in CPU cycles */
|
|
if (dma_length < dma_bytes)
|
|
{
|
|
/* DMA will be finished during this line */
|
|
dma_cycles = (dma_length * m68cycles_per_line) / rate;
|
|
dma_length = 0;
|
|
}
|
|
else
|
|
{
|
|
/* DMA can not be finished until next scanline */
|
|
dma_cycles = left_cycles;
|
|
dma_length -= dma_bytes;
|
|
}
|
|
|
|
/* update 68k cycles counter */
|
|
if (dma_type < 2)
|
|
{
|
|
/* 68K COPY to V-RAM */
|
|
/* 68K is frozen during DMA operation */
|
|
count_m68k += dma_cycles;
|
|
}
|
|
else
|
|
{
|
|
/* VRAM Fill or VRAM Copy */
|
|
/* set DMA end cyles count */
|
|
dma_endCycles = count_m68k + dma_cycles;
|
|
|
|
/* set DMA Busy flag */
|
|
status |= 0x0002;
|
|
}
|
|
}
|
|
|
|
/* DMA Copy
|
|
Read byte from VRAM (source), write to VRAM (addr),
|
|
bump source and add r15 to addr.
|
|
|
|
- see how source addr is affected
|
|
(can it make high source byte inc?)
|
|
*/
|
|
static inline void dma_copy(void)
|
|
{
|
|
int name;
|
|
int length = (reg[20] << 8 | reg[19]) & 0xFFFF;
|
|
int source = (reg[22] << 8 | reg[21]) & 0xFFFF;
|
|
if (!length) length = 0x10000;
|
|
|
|
dma_type = 3;
|
|
dma_length = length;
|
|
dma_update();
|
|
|
|
/* proceed DMA */
|
|
do
|
|
{
|
|
vram[addr] = vram[source];
|
|
MARK_BG_DIRTY(addr);
|
|
source = (source + 1) & 0xFFFF;
|
|
addr += reg[15];
|
|
} while (--length);
|
|
|
|
/* update length & source address registers */
|
|
reg[19] = length & 0xFF;
|
|
reg[20] = (length >> 8) & 0xFF;
|
|
reg[21] = source & 0xFF; /* not sure */
|
|
reg[22] = (source >> 8) & 0xFF;
|
|
}
|
|
|
|
|
|
/* 68K Copy to VRAM, VSRAM or CRAM */
|
|
static inline void dma_vbus (void)
|
|
{
|
|
uint32 base, source = ((reg[23] & 0x7F) << 17 | reg[22] << 9 | reg[21] << 1) & 0xFFFFFE;
|
|
uint32 length = (reg[20] << 8 | reg[19]) & 0xFFFF;
|
|
uint32 temp;
|
|
|
|
if (!length) length = 0x10000;
|
|
base = source;
|
|
|
|
/* DMA timings */
|
|
dma_type = (code & 0x06) ? 1 : 0;
|
|
dma_length = length;
|
|
dma_update();
|
|
|
|
/* DMA source */
|
|
if ((source >> 17) == 0x50)
|
|
{
|
|
/* Z80 & I/O area */
|
|
do
|
|
{
|
|
/* Return $FFFF only when the Z80 isn't hogging the Z-bus.
|
|
(e.g. Z80 isn't reset and 68000 has the bus) */
|
|
if (source <= 0xa0ffff) temp = (zbusack ? *(uint16 *)(work_ram + (source & 0xffff)) : 0xffff);
|
|
|
|
/* The I/O chip and work RAM try to drive the data bus which results
|
|
in both values being combined in random ways when read.
|
|
We return the I/O chip values which seem to have precedence, */
|
|
else if (source <= 0xa1001f)
|
|
{
|
|
temp = io_read((source >> 1) & 0x0f);
|
|
temp = (temp << 8 | temp);
|
|
}
|
|
|
|
/* All remaining locations access work RAM */
|
|
else temp = *(uint16 *)(work_ram + (source & 0xffff));
|
|
|
|
source += 2;
|
|
source = ((base & 0xFE0000) | (source & 0x1FFFF));
|
|
data_write (temp);
|
|
}
|
|
while (--length);
|
|
}
|
|
else
|
|
{
|
|
/* SVP latency */
|
|
if (svp && (source < 0x400000))
|
|
{
|
|
source = (source - 2);
|
|
}
|
|
|
|
/* ROM & RAM */
|
|
do
|
|
{
|
|
temp = *(uint16 *)(m68k_memory_map[source>>16].base + (source & 0xffff));
|
|
source += 2;
|
|
source = ((base & 0xFE0000) | (source & 0x1FFFF));
|
|
data_write (temp);
|
|
}
|
|
while (--length);
|
|
}
|
|
|
|
/* update length & source address registers */
|
|
reg[19] = length & 0xFF;
|
|
reg[20] = (length >> 8) & 0xFF;
|
|
reg[21] = (source >> 1) & 0xFF;
|
|
reg[22] = (source >> 9) & 0xFF;
|
|
reg[23] = (reg[23] & 0x80) | ((source >> 17) & 0x7F);
|
|
}
|
|
|
|
/* VRAM FILL */
|
|
static inline void dma_fill(unsigned int data)
|
|
{
|
|
int name;
|
|
int length = (reg[20] << 8 | reg[19]) & 0xFFFF;
|
|
if (!length) length = 0x10000;
|
|
|
|
/* DMA timings */
|
|
dma_type = 2;
|
|
dma_length = length;
|
|
dma_update();
|
|
|
|
/* proceed DMA */
|
|
data_write(data);
|
|
|
|
/* write MSB */
|
|
data = (data >> 8) & 0xff;
|
|
|
|
/* detect internal SAT modification */
|
|
if ((addr & sat_base_mask) == satb)
|
|
{
|
|
do
|
|
{
|
|
/* update internal SAT (fix Battletech) */
|
|
WRITE_BYTE(sat, (addr & sat_addr_mask)^1, data);
|
|
WRITE_BYTE(vram, addr^1, data);
|
|
MARK_BG_DIRTY (addr);
|
|
addr += reg[15];
|
|
}
|
|
while (--length);
|
|
}
|
|
else
|
|
{
|
|
do
|
|
{
|
|
WRITE_BYTE(vram, addr^1, data);
|
|
MARK_BG_DIRTY (addr);
|
|
addr += reg[15];
|
|
}
|
|
while (--length);
|
|
}
|
|
|
|
/* update length register */
|
|
reg[19] = length & 0xFF;
|
|
reg[20] = (length >> 8) & 0xFF;
|
|
dmafill = 0;
|
|
}
|
|
|
|
/*--------------------------------------------------------------------------*/
|
|
/* FIFO emulation */
|
|
/*--------------------------------------------------------------------------*/
|
|
static inline void fifo_update()
|
|
{
|
|
if (fifo_write_cnt > 0)
|
|
{
|
|
/* update FIFO reads */
|
|
uint32 fifo_read = ((count_m68k - fifo_lastwrite) / fifo_latency);
|
|
if (fifo_read > 0)
|
|
{
|
|
fifo_write_cnt -= fifo_read;
|
|
if (fifo_write_cnt < 0) fifo_write_cnt = 0;
|
|
|
|
/* update cycle count */
|
|
fifo_lastwrite += fifo_read*fifo_latency;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*--------------------------------------------------------------------------*/
|
|
/* Memory access functions */
|
|
/*--------------------------------------------------------------------------*/
|
|
static inline void data_write (unsigned int data)
|
|
{
|
|
switch (code & 0x0F)
|
|
{
|
|
case 0x01: /* VRAM */
|
|
|
|
/* Byte-swap data if A0 is set */
|
|
if (addr & 1) data = (data >> 8) | (data << 8);
|
|
|
|
/* Copy SAT data to the internal SAT */
|
|
if ((addr & sat_base_mask) == satb)
|
|
{
|
|
*(uint16 *) &sat[addr & sat_addr_mask & 0xFFFE] = data;
|
|
}
|
|
|
|
/* Only write unique data to VRAM */
|
|
if (data != *(uint16 *) &vram[addr & 0xFFFE])
|
|
{
|
|
/* Write data to VRAM */
|
|
*(uint16 *) &vram[addr & 0xFFFE] = data;
|
|
|
|
/* Update the pattern cache */
|
|
int name;
|
|
MARK_BG_DIRTY (addr);
|
|
}
|
|
break;
|
|
|
|
case 0x03: /* CRAM */
|
|
{
|
|
uint16 *p = (uint16 *) &cram[(addr & 0x7E)];
|
|
data = PACK_CRAM (data & 0x0EEE);
|
|
if (data != *p)
|
|
{
|
|
int index = (addr >> 1) & 0x3F;
|
|
*p = data;
|
|
color_update (index, *p);
|
|
color_update (0x00, *(uint16 *)&cram[border << 1]);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case 0x05: /* VSRAM */
|
|
*(uint16 *) &vsram[(addr & 0x7E)] = data;
|
|
break;
|
|
}
|
|
|
|
/* Increment address register */
|
|
addr += reg[15];
|
|
}
|
|
|
|
|
|
void vdp_ctrl_w(unsigned int data)
|
|
{
|
|
if (pending == 0)
|
|
{
|
|
if ((data & 0xC000) == 0x8000)
|
|
{
|
|
/* VDP register write */
|
|
uint8 r = (data >> 8) & 0x1F;
|
|
uint8 d = data & 0xFF;
|
|
vdp_reg_w (r, d);
|
|
}
|
|
else pending = 1;
|
|
|
|
addr = ((addr_latch & 0xC000) | (data & 0x3FFF));
|
|
code = ((code & 0x3C) | ((data >> 14) & 0x03));
|
|
}
|
|
else
|
|
{
|
|
/* Clear pending flag */
|
|
pending = 0;
|
|
|
|
/* Update address and code registers */
|
|
addr = ((addr & 0x3FFF) | ((data & 3) << 14));
|
|
code = ((code & 0x03) | ((data >> 2) & 0x3C));
|
|
|
|
/* Save address bits A15 and A14 */
|
|
addr_latch = (addr & 0xC000);
|
|
|
|
/* DMA operation */
|
|
if ((code & 0x20) && (reg[1] & 0x10))
|
|
{
|
|
switch (reg[23] & 0xC0)
|
|
{
|
|
case 0x00: /* V bus to VDP DMA */
|
|
case 0x40: /* V bus to VDP DMA */
|
|
dma_vbus();
|
|
break;
|
|
|
|
case 0x80: /* VRAM fill */
|
|
dmafill = 1;
|
|
break;
|
|
|
|
case 0xC0: /* VRAM copy */
|
|
dma_copy();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* FIFO emulation:
|
|
---------------
|
|
HDISP is 256*10/7 = approx. 366 cycles (same for both modes)
|
|
this gives:
|
|
H32: 16 accesses --> 366/16 = 23 cycles per access
|
|
H40: 20 accesses --> 366/20 = 18 cycles per access
|
|
|
|
VRAM access are byte wide --> VRAM writes takes 2x CPU cycles
|
|
Memory access requires some additional cyles, the following values
|
|
seems to work fine (see Chaos Engine/Soldier of Fortune)
|
|
*/
|
|
fifo_latency = (reg[12] & 1) ? 27 : 30;
|
|
if ((code & 0x0F) == 0x01) fifo_latency = fifo_latency * 2;
|
|
}
|
|
|
|
|
|
/*
|
|
The reg[] array is updated at the *end* of this function, so the new
|
|
register data can be compared with the previous data.
|
|
*/
|
|
static inline void vdp_reg_w(unsigned int r, unsigned int d)
|
|
{
|
|
/* Check if Mode 4 (SMS mode) has been activated
|
|
According to official doc, VDP registers #11 to #23 can not be written unless bit2 in register #1 is set
|
|
Fix Captain Planet & Avengers (Alt version), Bass Master Classic Pro Edition (they incidentally activate Mode 4)
|
|
*/
|
|
if (!(reg[1] & 4) && (r > 10)) return;
|
|
|
|
switch(r)
|
|
{
|
|
case 0x00: /* CTRL #1 */
|
|
if (hint_pending && ((d&0x10) != (reg[0]&0x10)))
|
|
{
|
|
/* update IRQ status */
|
|
irq_status &= 0x20;
|
|
irq_status |= 0x10;
|
|
if (vint_pending && (reg[1] & 0x20)) irq_status |= 6;
|
|
else if (d & 0x10) irq_status |= 4;
|
|
}
|
|
break;
|
|
|
|
case 0x01: /* CTRL #2 */
|
|
if (vint_pending && ((d&0x20) != (reg[1]&0x20)))
|
|
{
|
|
/* update IRQ status */
|
|
irq_status &= 0x20;
|
|
irq_status |= 0x110;
|
|
if (d & 0x20) irq_status |= 6;
|
|
else if (hint_pending && (reg[0] & 0x10)) irq_status |= 4;
|
|
}
|
|
|
|
/* Check if the viewport height has actually been changed */
|
|
if((reg[1] & 8) != (d & 8))
|
|
{
|
|
/* Update the height of the viewport */
|
|
bitmap.viewport.h = (d & 8) ? 240 : 224;
|
|
if (config.overscan) bitmap.viewport.y = ((vdp_pal ? 288 : 240) - bitmap.viewport.h) / 2;
|
|
bitmap.viewport.changed = 1;
|
|
|
|
/* update VC table */
|
|
if (vdp_pal) vctab = (d & 8) ? vc_pal_240 : vc_pal_224;
|
|
}
|
|
|
|
/* DISPLAY switched ON/OFF during HBLANK */
|
|
if ((v_counter < bitmap.viewport.h) && ((d&0x40) != (reg[1]&0x40)))
|
|
{
|
|
if (count_m68k <= (hint_m68k + 120))
|
|
{
|
|
/* Redraw the current line :
|
|
- Legend of Galahad, Lemmings 2, Nigel Mansell's World Championship Racing (set display OFF)
|
|
- Deadly Moves aka Power Athlete (set display ON)
|
|
*/
|
|
reg[1] = d;
|
|
render_line(v_counter, 0);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case 0x02: /* NTAB */
|
|
ntab = (d << 10) & 0xE000;
|
|
break;
|
|
|
|
case 0x03: /* NTWB */
|
|
ntwb = (d << 10) & 0xF800;
|
|
if(reg[12] & 1) ntwb &= 0xF000;
|
|
break;
|
|
|
|
case 0x04: /* NTBB */
|
|
ntbb = (d << 13) & 0xE000;
|
|
break;
|
|
|
|
case 0x05: /* SATB */
|
|
sat_base_mask = (reg[12] & 1) ? 0xFC00 : 0xFE00;
|
|
sat_addr_mask = (reg[12] & 1) ? 0x03FF : 0x01FF;
|
|
satb = (d << 9) & sat_base_mask;
|
|
break;
|
|
|
|
case 0x07: /* Border Color index */
|
|
/* Check if the border color has actually changed */
|
|
d &= 0x3F;
|
|
if(border != d)
|
|
{
|
|
/* Mark the border color as modified */
|
|
border = d;
|
|
color_update(0x00, *(uint16 *)&cram[(border << 1)]);
|
|
|
|
/* background color modified during HBLANK */
|
|
if ((v_counter < bitmap.viewport.h) && (count_m68k <= (line_m68k + 84)))
|
|
{
|
|
/* remap current line (see Road Rash I,II,III) */
|
|
reg[7] = d;
|
|
remap_buffer(v_counter,bitmap.viewport.w + 2*bitmap.viewport.x);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case 0x0C:
|
|
/* Check if the viewport width has actually been changed */
|
|
if((reg[0x0C] & 1) != (d & 1))
|
|
{
|
|
/* Update the width of the viewport */
|
|
bitmap.viewport.w = (d & 1) ? 320 : 256;
|
|
if (config.overscan) bitmap.viewport.x = (d & 1) ? 16 : 12;
|
|
bitmap.viewport.changed = 1;
|
|
|
|
/* update HC table */
|
|
hctab = (d & 1) ? cycle2hc40 : cycle2hc32;
|
|
|
|
/* update clipping */
|
|
window_clip(d,reg[17]);
|
|
}
|
|
|
|
/* See if the S/TE mode bit has changed */
|
|
if((reg[0x0C] & 8) != (d & 8))
|
|
{
|
|
int i;
|
|
|
|
/* The following color update check this value */
|
|
reg[0x0C] = d;
|
|
|
|
/* Update colors */
|
|
for (i = 0; i < 0x40; i += 1) color_update (i, *(uint16 *) & cram[i << 1]);
|
|
color_update (0x00, *(uint16 *) & cram[border << 1]);
|
|
}
|
|
|
|
/* The following register updates check this value */
|
|
reg[0x0C] = d;
|
|
|
|
/* Update display-dependant registers */
|
|
vdp_reg_w(0x03, reg[0x03]);
|
|
vdp_reg_w(0x05, reg[0x05]);
|
|
break;
|
|
|
|
case 0x0D: /* HSCB */
|
|
hscb = (d << 10) & 0xFC00;
|
|
break;
|
|
|
|
case 0x10: /* Playfield size */
|
|
playfield_shift = shift_table[(d & 3)];
|
|
playfield_col_mask = col_mask_table[(d & 3)];
|
|
playfield_row_mask = row_mask_table[(d >> 4) & 3];
|
|
y_mask = y_mask_table[(d & 3)];
|
|
break;
|
|
|
|
case 0x11: /* update clipping */
|
|
window_clip(reg[12],d);
|
|
break;
|
|
}
|
|
|
|
/* Write new register value */
|
|
reg[r] = d;
|
|
}
|
|
|
|
/*
|
|
* Return VDP status
|
|
*
|
|
* Bits are
|
|
* 0 0:1 ntsc:pal
|
|
* 1 DMA Busy
|
|
* 2 During HBlank
|
|
* 3 During VBlank
|
|
* 4 Frame Interlace 0:even 1:odd
|
|
* 5 Sprite collision
|
|
* 6 Too many sprites per line
|
|
* 7 v interrupt occurred
|
|
* 8 Write FIFO full
|
|
* 9 Write FIFO empty
|
|
* 10 - 15 Next word on bus
|
|
*/
|
|
unsigned int vdp_ctrl_r(void)
|
|
{
|
|
|
|
/* update FIFO flags */
|
|
fifo_update();
|
|
if (fifo_write_cnt < 4)
|
|
{
|
|
status &= 0xFEFF;
|
|
if (fifo_write_cnt == 0) status |= 0x200;
|
|
}
|
|
else status ^= 0x200;
|
|
|
|
/* update DMA Busy flag */
|
|
if ((status & 2) && !dma_length && (count_m68k >= dma_endCycles))
|
|
{
|
|
status &= 0xFFFD;
|
|
}
|
|
|
|
unsigned int temp = status;
|
|
|
|
/* display OFF: VBLANK flag is set */
|
|
if (!(reg[1] & 0x40)) temp |= 0x8;
|
|
|
|
/* HBLANK flag (Sonic 3 and Sonic 2 "VS Modes", Lemmings 2) */
|
|
if ((count_m68k <= (line_m68k + 84)) || (count_m68k > (line_m68k + m68cycles_per_line))) temp |= 0x4;
|
|
|
|
/* clear pending flag */
|
|
pending = 0;
|
|
|
|
/* clear SPR/SCOL flags */
|
|
status &= 0xFF9F;
|
|
|
|
return (temp);
|
|
}
|
|
|
|
void vdp_data_w(unsigned int data)
|
|
{
|
|
/* Clear pending flag */
|
|
pending = 0;
|
|
|
|
if (dmafill)
|
|
{
|
|
dma_fill(data);
|
|
return;
|
|
}
|
|
|
|
/* update VDP FIFO (during HDISPLAY only) */
|
|
if (!(status&8) && (reg[1]&0x40))
|
|
{
|
|
fifo_update();
|
|
if (fifo_write_cnt == 0)
|
|
{
|
|
/* reset cycle counter */
|
|
fifo_lastwrite = count_m68k;
|
|
|
|
/* FIFO is not empty anymore */
|
|
status &= 0xFDFF;
|
|
}
|
|
|
|
/* increase write counter */
|
|
fifo_write_cnt ++;
|
|
|
|
/* is FIFO full ? */
|
|
if (fifo_write_cnt >= 4)
|
|
{
|
|
status |= 0x100;
|
|
|
|
/* VDP latency (Chaos Engine, Soldiers of Fortune, Double Clutch) */
|
|
if (fifo_write_cnt > 4) count_m68k = fifo_lastwrite + fifo_latency;
|
|
}
|
|
}
|
|
|
|
/* write data */
|
|
data_write(data);
|
|
}
|
|
|
|
unsigned int vdp_data_r(void)
|
|
{
|
|
uint16 temp = 0;
|
|
|
|
/* Clear pending flag */
|
|
pending = 0;
|
|
|
|
switch (code & 0x0F)
|
|
{
|
|
case 0x00: /* VRAM */
|
|
temp = *(uint16 *) & vram[(addr & 0xFFFE)];
|
|
break;
|
|
|
|
case 0x08: /* CRAM */
|
|
temp = *(uint16 *) & cram[(addr & 0x7E)];
|
|
temp = UNPACK_CRAM (temp);
|
|
break;
|
|
|
|
case 0x04: /* VSRAM */
|
|
temp = *(uint16 *) & vsram[(addr & 0x7E)];
|
|
break;
|
|
}
|
|
|
|
/* Increment address register */
|
|
addr += reg[15];
|
|
|
|
/* return data */
|
|
return (temp);
|
|
}
|
|
|
|
unsigned int vdp_hvc_r(void)
|
|
{
|
|
uint8 hc = (hc_latch & 0x100) ? (hc_latch & 0xFF) : hctab[count_m68k % m68cycles_per_line];
|
|
uint8 vc = vctab[v_counter];
|
|
|
|
/* interlace mode 2 */
|
|
if (im2_flag) vc = (vc << 1) | ((vc >> 7) & 1);
|
|
|
|
return ((vc << 8) | hc);
|
|
}
|
|
|
|
|
|
void vdp_test_w(unsigned int value)
|
|
{
|
|
#ifdef LOGERROR
|
|
error("Unused VDP Write 0x%x (%08x)\n", value, m68k_get_reg (NULL, M68K_REG_PC));
|
|
#endif
|
|
}
|
|
|
|
int vdp_int_ack_callback(int int_level)
|
|
{
|
|
/* VINT triggered ? */
|
|
if (irq_status&0x20)
|
|
{
|
|
vint_pending = 0;
|
|
status &= ~0x80; /* clear VINT flag */
|
|
}
|
|
else
|
|
{
|
|
hint_pending = 0;
|
|
}
|
|
|
|
/* update IRQ status */
|
|
irq_status = 0x10;
|
|
if (vint_pending && (reg[1] & 0x20)) irq_status |= 6;
|
|
else if (hint_pending && (reg[0] & 0x10)) irq_status |= 4;
|
|
|
|
return M68K_INT_ACK_AUTOVECTOR;
|
|
}
|