dolphin/Source/Core/Common/x64Emitter.cpp

3407 lines
81 KiB
C++
Raw Normal View History

// Copyright 2008 Dolphin Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
2013-10-26 11:55:41 +02:00
#include <cinttypes>
#include <cstring>
2013-10-26 11:55:41 +02:00
#include "Common/CPUDetect.h"
#include "Common/CommonTypes.h"
#include "Common/Logging/Log.h"
#include "Common/x64Emitter.h"
#include "Common/x64Reg.h"
namespace Gen
{
struct NormalOpDef
{
u8 toRm8, toRm32, fromRm8, fromRm32, imm8, imm32, simm8, eaximm8, eaximm32, ext;
};
// 0xCC is code for invalid combination of immediates
static const NormalOpDef normalops[11] = {
{0x00, 0x01, 0x02, 0x03, 0x80, 0x81, 0x83, 0x04, 0x05, 0}, // ADD
{0x10, 0x11, 0x12, 0x13, 0x80, 0x81, 0x83, 0x14, 0x15, 2}, // ADC
{0x28, 0x29, 0x2A, 0x2B, 0x80, 0x81, 0x83, 0x2C, 0x2D, 5}, // SUB
{0x18, 0x19, 0x1A, 0x1B, 0x80, 0x81, 0x83, 0x1C, 0x1D, 3}, // SBB
{0x20, 0x21, 0x22, 0x23, 0x80, 0x81, 0x83, 0x24, 0x25, 4}, // AND
{0x08, 0x09, 0x0A, 0x0B, 0x80, 0x81, 0x83, 0x0C, 0x0D, 1}, // OR
{0x30, 0x31, 0x32, 0x33, 0x80, 0x81, 0x83, 0x34, 0x35, 6}, // XOR
{0x88, 0x89, 0x8A, 0x8B, 0xC6, 0xC7, 0xCC, 0xCC, 0xCC, 0}, // MOV
{0x84, 0x85, 0x84, 0x85, 0xF6, 0xF7, 0xCC, 0xA8, 0xA9, 0}, // TEST (to == from)
{0x38, 0x39, 0x3A, 0x3B, 0x80, 0x81, 0x83, 0x3C, 0x3D, 7}, // CMP
{0x86, 0x87, 0x86, 0x87, 0xCC, 0xCC, 0xCC, 0xCC, 0xCC, 7}, // XCHG
};
enum NormalSSEOps
{
sseCMP = 0xC2,
sseADD = 0x58, // ADD
sseSUB = 0x5C, // SUB
sseAND = 0x54, // AND
sseANDN = 0x55, // ANDN
sseOR = 0x56,
sseXOR = 0x57,
sseMUL = 0x59, // MUL
sseDIV = 0x5E, // DIV
sseMIN = 0x5D, // MIN
sseMAX = 0x5F, // MAX
sseCOMIS = 0x2F, // COMIS
sseUCOMIS = 0x2E, // UCOMIS
sseSQRT = 0x51, // SQRT
sseRCP = 0x53, // RCP
sseRSQRT = 0x52, // RSQRT (NO DOUBLE PRECISION!!!)
sseMOVAPfromRM = 0x28, // MOVAP from RM
sseMOVAPtoRM = 0x29, // MOVAP to RM
sseMOVUPfromRM = 0x10, // MOVUP from RM
sseMOVUPtoRM = 0x11, // MOVUP to RM
sseMOVLPfromRM = 0x12,
sseMOVLPtoRM = 0x13,
sseMOVHPfromRM = 0x16,
sseMOVHPtoRM = 0x17,
sseMOVHLPS = 0x12,
sseMOVLHPS = 0x16,
sseMOVDQfromRM = 0x6F,
sseMOVDQtoRM = 0x7F,
sseMASKMOVDQU = 0xF7,
sseLDDQU = 0xF0,
sseSHUF = 0xC6,
sseMOVNTDQ = 0xE7,
sseMOVNTP = 0x2B,
};
enum class NormalOp
{
ADD,
ADC,
SUB,
SBB,
AND,
OR,
XOR,
MOV,
TEST,
CMP,
XCHG,
};
enum class FloatOp
{
LD = 0,
ST = 2,
STP = 3,
LD80 = 5,
STP80 = 7,
Invalid = -1,
};
void XEmitter::SetCodePtr(u8* ptr, u8* end, bool write_failed)
{
code = ptr;
m_code_end = end;
m_write_failed = write_failed;
}
const u8* XEmitter::GetCodePtr() const
{
return code;
}
u8* XEmitter::GetWritableCodePtr()
{
return code;
}
const u8* XEmitter::GetCodeEnd() const
{
return m_code_end;
}
u8* XEmitter::GetWritableCodeEnd()
{
return m_code_end;
}
void XEmitter::Write8(u8 value)
{
if (code >= m_code_end)
{
code = m_code_end;
m_write_failed = true;
return;
}
*code++ = value;
}
void XEmitter::Write16(u16 value)
{
if (code + sizeof(u16) > m_code_end)
{
code = m_code_end;
m_write_failed = true;
return;
}
std::memcpy(code, &value, sizeof(u16));
code += sizeof(u16);
}
void XEmitter::Write32(u32 value)
{
if (code + sizeof(u32) > m_code_end)
{
code = m_code_end;
m_write_failed = true;
return;
}
std::memcpy(code, &value, sizeof(u32));
code += sizeof(u32);
}
void XEmitter::Write64(u64 value)
{
if (code + sizeof(u64) > m_code_end)
{
code = m_code_end;
m_write_failed = true;
return;
}
std::memcpy(code, &value, sizeof(u64));
code += sizeof(u64);
}
void XEmitter::ReserveCodeSpace(int bytes)
{
if (code + bytes > m_code_end)
{
code = m_code_end;
m_write_failed = true;
return;
}
for (int i = 0; i < bytes; i++)
*code++ = 0xCC;
}
u8* XEmitter::AlignCodeTo(size_t alignment)
{
ASSERT_MSG(DYNA_REC, alignment != 0 && (alignment & (alignment - 1)) == 0,
"Alignment must be power of two");
u64 c = reinterpret_cast<u64>(code) & (alignment - 1);
if (c)
ReserveCodeSpace(static_cast<int>(alignment - c));
return code;
}
u8* XEmitter::AlignCode4()
{
return AlignCodeTo(4);
}
u8* XEmitter::AlignCode16()
{
return AlignCodeTo(16);
}
u8* XEmitter::AlignCodePage()
{
return AlignCodeTo(4096);
}
// This operation modifies flags; check to see the flags are locked.
// If the flags are locked, we should immediately and loudly fail before
// causing a subtle JIT bug.
void XEmitter::CheckFlags()
{
ASSERT_MSG(DYNA_REC, !flags_locked, "Attempt to modify flags while flags locked!");
}
void XEmitter::WriteModRM(int mod, int reg, int rm)
{
Write8((u8)((mod << 6) | ((reg & 7) << 3) | (rm & 7)));
}
void XEmitter::WriteSIB(int scale, int index, int base)
{
Write8((u8)((scale << 6) | ((index & 7) << 3) | (base & 7)));
}
void OpArg::WriteREX(XEmitter* emit, int opBits, int bits, int customOp) const
{
if (customOp == -1)
customOp = operandReg;
u8 op = 0x40;
// REX.W (whether operation is a 64-bit operation)
if (opBits == 64)
op |= 8;
// REX.R (whether ModR/M reg field refers to R8-R15.
if (customOp & 8)
op |= 4;
// REX.X (whether ModR/M SIB index field refers to R8-R15)
if (indexReg & 8)
op |= 2;
// REX.B (whether ModR/M rm or SIB base or opcode reg field refers to R8-R15)
if (offsetOrBaseReg & 8)
op |= 1;
// Write REX if wr have REX bits to write, or if the operation accesses
// SIL, DIL, BPL, or SPL.
if (op != 0x40 || (scale == SCALE_NONE && bits == 8 && (offsetOrBaseReg & 0x10c) == 4) ||
(opBits == 8 && (customOp & 0x10c) == 4))
{
emit->Write8(op);
// Check the operation doesn't access AH, BH, CH, or DH.
DEBUG_ASSERT((offsetOrBaseReg & 0x100) == 0);
DEBUG_ASSERT((customOp & 0x100) == 0);
}
}
void OpArg::WriteVEX(XEmitter* emit, X64Reg regOp1, X64Reg regOp2, int L, int pp, int mmmmm,
int W) const
{
int R = !(regOp1 & 8);
int X = !(indexReg & 8);
int B = !(offsetOrBaseReg & 8);
int vvvv = (regOp2 == X64Reg::INVALID_REG) ? 0xf : (regOp2 ^ 0xf);
// do we need any VEX fields that only appear in the three-byte form?
if (X == 1 && B == 1 && W == 0 && mmmmm == 1)
{
u8 RvvvvLpp = (R << 7) | (vvvv << 3) | (L << 2) | pp;
emit->Write8(0xC5);
emit->Write8(RvvvvLpp);
}
else
{
u8 RXBmmmmm = (R << 7) | (X << 6) | (B << 5) | mmmmm;
u8 WvvvvLpp = (W << 7) | (vvvv << 3) | (L << 2) | pp;
emit->Write8(0xC4);
emit->Write8(RXBmmmmm);
emit->Write8(WvvvvLpp);
}
}
void OpArg::WriteRest(XEmitter* emit, int extraBytes, X64Reg _operandReg,
bool warn_64bit_offset) const
{
if (_operandReg == INVALID_REG)
2018-04-12 14:18:04 +02:00
_operandReg = (X64Reg)this->operandReg;
int mod = 0;
int ireg = indexReg;
bool SIB = false;
int _offsetOrBaseReg = this->offsetOrBaseReg;
if (scale == SCALE_RIP) // Also, on 32-bit, just an immediate address
{
// Oh, RIP addressing.
_offsetOrBaseReg = 5;
emit->WriteModRM(0, _operandReg, _offsetOrBaseReg);
// TODO : add some checks
u64 ripAddr = (u64)emit->GetCodePtr() + 4 + extraBytes;
s64 distance = (s64)offset - (s64)ripAddr;
ASSERT_MSG(DYNA_REC,
(distance < 0x80000000LL && distance >= -0x80000000LL) || !warn_64bit_offset,
"WriteRest: op out of range (0x%" PRIx64 " uses 0x%" PRIx64 ")", ripAddr, offset);
s32 offs = (s32)distance;
emit->Write32((u32)offs);
return;
}
if (scale == SCALE_NONE)
{
// Oh, no memory, Just a reg.
mod = 3; // 11
}
else if (scale >= SCALE_NOBASE_2 && scale <= SCALE_NOBASE_8)
{
SIB = true;
mod = 0;
_offsetOrBaseReg = 5;
// Always has 32-bit displacement
}
else
{
if (scale != SCALE_ATREG)
{
SIB = true;
}
else if ((_offsetOrBaseReg & 7) == 4)
{
// Special case for which SCALE_ATREG needs SIB
SIB = true;
ireg = _offsetOrBaseReg;
}
// Okay, we're fine. Just disp encoding.
// We need displacement. Which size?
int ioff = (int)(s64)offset;
if (ioff == 0 && (_offsetOrBaseReg & 7) != 5)
{
mod = 0; // No displacement
}
else if (ioff >= -128 && ioff <= 127)
{
mod = 1; // 8-bit displacement
}
else
{
mod = 2; // 32-bit displacement
}
}
// Okay. Time to do the actual writing
// ModRM byte:
int oreg = _offsetOrBaseReg;
if (SIB)
oreg = 4;
emit->WriteModRM(mod, _operandReg & 7, oreg & 7);
if (SIB)
{
// SIB byte
int ss;
switch (scale)
{
case SCALE_NONE:
_offsetOrBaseReg = 4;
ss = 0;
break; // RSP
case SCALE_1:
ss = 0;
break;
case SCALE_2:
ss = 1;
break;
case SCALE_4:
ss = 2;
break;
case SCALE_8:
ss = 3;
break;
case SCALE_NOBASE_2:
ss = 1;
break;
case SCALE_NOBASE_4:
ss = 2;
break;
case SCALE_NOBASE_8:
ss = 3;
break;
case SCALE_ATREG:
ss = 0;
break;
default:
ASSERT_MSG(DYNA_REC, 0, "Invalid scale for SIB byte");
ss = 0;
break;
}
emit->Write8((u8)((ss << 6) | ((ireg & 7) << 3) | (_offsetOrBaseReg & 7)));
}
if (mod == 1) // 8-bit disp
{
emit->Write8((u8)(s8)(s32)offset);
}
else if (mod == 2 || (scale >= SCALE_NOBASE_2 && scale <= SCALE_NOBASE_8)) // 32-bit disp
{
emit->Write32((u32)offset);
}
}
// W = operand extended width (1 if 64-bit)
// R = register# upper bit
// X = scale amnt upper bit
// B = base register# upper bit
void XEmitter::Rex(int w, int r, int x, int b)
{
w = w ? 1 : 0;
r = r ? 1 : 0;
x = x ? 1 : 0;
b = b ? 1 : 0;
u8 rx = (u8)(0x40 | (w << 3) | (r << 2) | (x << 1) | (b));
if (rx != 0x40)
Write8(rx);
}
void XEmitter::JMP(const u8* addr, bool force5Bytes)
{
u64 fn = (u64)addr;
if (!force5Bytes)
{
s64 distance = (s64)(fn - ((u64)code + 2));
ASSERT_MSG(DYNA_REC, distance >= -0x80 && distance < 0x80,
"Jump target too far away, needs force5Bytes = true");
// 8 bits will do
Write8(0xEB);
Write8((u8)(s8)distance);
}
else
{
s64 distance = (s64)(fn - ((u64)code + 5));
ASSERT_MSG(DYNA_REC, distance >= -0x80000000LL && distance < 0x80000000LL,
"Jump target too far away, needs indirect register");
Write8(0xE9);
Write32((u32)(s32)distance);
}
}
void XEmitter::JMPptr(const OpArg& arg2)
{
OpArg arg = arg2;
if (arg.IsImm())
ASSERT_MSG(DYNA_REC, 0, "JMPptr - Imm argument");
arg.operandReg = 4;
arg.WriteREX(this, 0, 0);
Write8(0xFF);
arg.WriteRest(this);
}
// Can be used to trap other processors, before overwriting their code
// not used in Dolphin
void XEmitter::JMPself()
{
Write8(0xEB);
Write8(0xFE);
}
void XEmitter::CALLptr(OpArg arg)
{
if (arg.IsImm())
ASSERT_MSG(DYNA_REC, 0, "CALLptr - Imm argument");
arg.operandReg = 2;
arg.WriteREX(this, 0, 0);
Write8(0xFF);
arg.WriteRest(this);
}
void XEmitter::CALL(const void* fnptr)
{
u64 distance = u64(fnptr) - (u64(code) + 5);
ASSERT_MSG(DYNA_REC, distance < 0x0000000080000000ULL || distance >= 0xFFFFFFFF80000000ULL,
"CALL out of range (%p calls %p)", code, fnptr);
Write8(0xE8);
Write32(u32(distance));
}
2017-01-22 19:13:29 +01:00
FixupBranch XEmitter::CALL()
{
FixupBranch branch;
branch.type = FixupBranch::Type::Branch32Bit;
2017-01-22 19:13:29 +01:00
branch.ptr = code + 5;
Write8(0xE8);
Write32(0);
// If we couldn't write the full call instruction, indicate that in the returned FixupBranch by
// setting the branch's address to null. This will prevent a later SetJumpTarget() from writing to
// invalid memory.
if (HasWriteFailed())
branch.ptr = nullptr;
2017-01-22 19:13:29 +01:00
return branch;
}
FixupBranch XEmitter::J(bool force5bytes)
{
FixupBranch branch;
branch.type = force5bytes ? FixupBranch::Type::Branch32Bit : FixupBranch::Type::Branch8Bit;
branch.ptr = code + (force5bytes ? 5 : 2);
if (!force5bytes)
{
// 8 bits will do
Write8(0xEB);
Write8(0);
}
else
{
Write8(0xE9);
Write32(0);
}
// If we couldn't write the full jump instruction, indicate that in the returned FixupBranch by
// setting the branch's address to null. This will prevent a later SetJumpTarget() from writing to
// invalid memory.
if (HasWriteFailed())
branch.ptr = nullptr;
return branch;
}
FixupBranch XEmitter::J_CC(CCFlags conditionCode, bool force5bytes)
{
FixupBranch branch;
branch.type = force5bytes ? FixupBranch::Type::Branch32Bit : FixupBranch::Type::Branch8Bit;
branch.ptr = code + (force5bytes ? 6 : 2);
if (!force5bytes)
{
// 8 bits will do
Write8(0x70 + conditionCode);
Write8(0);
}
else
{
Write8(0x0F);
Write8(0x80 + conditionCode);
Write32(0);
}
// If we couldn't write the full jump instruction, indicate that in the returned FixupBranch by
// setting the branch's address to null. This will prevent a later SetJumpTarget() from writing to
// invalid memory.
if (HasWriteFailed())
branch.ptr = nullptr;
return branch;
}
void XEmitter::J_CC(CCFlags conditionCode, const u8* addr)
{
u64 fn = (u64)addr;
s64 distance = (s64)(fn - ((u64)code + 2));
if (distance < -0x80 || distance >= 0x80)
{
distance = (s64)(fn - ((u64)code + 6));
ASSERT_MSG(DYNA_REC, distance >= -0x80000000LL && distance < 0x80000000LL,
"Jump target too far away, needs indirect register");
Write8(0x0F);
Write8(0x80 + conditionCode);
Write32((u32)(s32)distance);
}
else
{
Write8(0x70 + conditionCode);
Write8((u8)(s8)distance);
}
}
void XEmitter::SetJumpTarget(const FixupBranch& branch)
{
if (!branch.ptr)
return;
if (branch.type == FixupBranch::Type::Branch8Bit)
{
s64 distance = (s64)(code - branch.ptr);
ASSERT_MSG(DYNA_REC, distance >= -0x80 && distance < 0x80,
"Jump target too far away, needs force5Bytes = true");
branch.ptr[-1] = (u8)(s8)distance;
}
else if (branch.type == FixupBranch::Type::Branch32Bit)
{
s64 distance = (s64)(code - branch.ptr);
ASSERT_MSG(DYNA_REC, distance >= -0x80000000LL && distance < 0x80000000LL,
"Jump target too far away, needs indirect register");
s32 valid_distance = static_cast<s32>(distance);
std::memcpy(&branch.ptr[-4], &valid_distance, sizeof(s32));
}
}
// Single byte opcodes
// There is no PUSHAD/POPAD in 64-bit mode.
void XEmitter::INT3()
{
Write8(0xCC);
}
void XEmitter::RET()
{
Write8(0xC3);
}
void XEmitter::RET_FAST()
{
Write8(0xF3);
Write8(0xC3);
} // two-byte return (rep ret) - recommended by AMD optimization manual for the case of jumping to
// a ret
2014-04-23 21:15:09 +02:00
// The first sign of decadence: optimized NOPs.
void XEmitter::NOP(size_t size)
{
DEBUG_ASSERT((int)size > 0);
while (true)
{
switch (size)
{
case 0:
return;
case 1:
Write8(0x90);
return;
case 2:
Write8(0x66);
Write8(0x90);
return;
case 3:
Write8(0x0F);
Write8(0x1F);
Write8(0x00);
return;
case 4:
Write8(0x0F);
Write8(0x1F);
Write8(0x40);
Write8(0x00);
return;
case 5:
Write8(0x0F);
Write8(0x1F);
Write8(0x44);
Write8(0x00);
Write8(0x00);
return;
case 6:
Write8(0x66);
Write8(0x0F);
Write8(0x1F);
Write8(0x44);
Write8(0x00);
Write8(0x00);
return;
case 7:
Write8(0x0F);
Write8(0x1F);
Write8(0x80);
Write8(0x00);
Write8(0x00);
Write8(0x00);
Write8(0x00);
return;
case 8:
Write8(0x0F);
Write8(0x1F);
Write8(0x84);
Write8(0x00);
Write8(0x00);
Write8(0x00);
Write8(0x00);
Write8(0x00);
return;
case 9:
Write8(0x66);
Write8(0x0F);
Write8(0x1F);
Write8(0x84);
Write8(0x00);
Write8(0x00);
Write8(0x00);
Write8(0x00);
Write8(0x00);
return;
case 10:
Write8(0x66);
Write8(0x66);
Write8(0x0F);
Write8(0x1F);
Write8(0x84);
Write8(0x00);
Write8(0x00);
Write8(0x00);
Write8(0x00);
Write8(0x00);
return;
default:
// Even though x86 instructions are allowed to be up to 15 bytes long,
// AMD advises against using NOPs longer than 11 bytes because they
// carry a performance penalty on CPUs older than AMD family 16h.
Write8(0x66);
Write8(0x66);
Write8(0x66);
Write8(0x0F);
Write8(0x1F);
Write8(0x84);
Write8(0x00);
Write8(0x00);
Write8(0x00);
Write8(0x00);
Write8(0x00);
size -= 11;
continue;
}
}
}
void XEmitter::PAUSE()
{
Write8(0xF3);
NOP();
} // use in tight spinloops for energy saving on some CPU
void XEmitter::CLC()
{
CheckFlags();
Write8(0xF8);
} // clear carry
void XEmitter::CMC()
{
CheckFlags();
Write8(0xF5);
} // flip carry
void XEmitter::STC()
{
CheckFlags();
Write8(0xF9);
} // set carry
// TODO: xchg ah, al ???
void XEmitter::XCHG_AHAL()
{
Write8(0x86);
Write8(0xe0);
// alt. 86 c4
}
// These two can not be executed on early Intel 64-bit CPU:s, only on AMD!
void XEmitter::LAHF()
{
Write8(0x9F);
}
void XEmitter::SAHF()
{
CheckFlags();
Write8(0x9E);
}
void XEmitter::PUSHF()
{
Write8(0x9C);
}
void XEmitter::POPF()
{
CheckFlags();
Write8(0x9D);
}
void XEmitter::LFENCE()
{
Write8(0x0F);
Write8(0xAE);
Write8(0xE8);
}
void XEmitter::MFENCE()
{
Write8(0x0F);
Write8(0xAE);
Write8(0xF0);
}
void XEmitter::SFENCE()
{
Write8(0x0F);
Write8(0xAE);
Write8(0xF8);
}
void XEmitter::WriteSimple1Byte(int bits, u8 byte, X64Reg reg)
{
if (bits == 16)
Write8(0x66);
Rex(bits == 64, 0, 0, (int)reg >> 3);
Write8(byte + ((int)reg & 7));
}
void XEmitter::WriteSimple2Byte(int bits, u8 byte1, u8 byte2, X64Reg reg)
{
if (bits == 16)
Write8(0x66);
Rex(bits == 64, 0, 0, (int)reg >> 3);
Write8(byte1);
Write8(byte2 + ((int)reg & 7));
}
void XEmitter::CWD(int bits)
{
if (bits == 16)
Write8(0x66);
Rex(bits == 64, 0, 0, 0);
Write8(0x99);
}
void XEmitter::CBW(int bits)
{
if (bits == 8)
Write8(0x66);
Rex(bits == 32, 0, 0, 0);
Write8(0x98);
}
// Simple opcodes
// push/pop do not need wide to be 64-bit
void XEmitter::PUSH(X64Reg reg)
{
WriteSimple1Byte(32, 0x50, reg);
}
void XEmitter::POP(X64Reg reg)
{
WriteSimple1Byte(32, 0x58, reg);
}
void XEmitter::PUSH(int bits, const OpArg& reg)
{
if (reg.IsSimpleReg())
PUSH(reg.GetSimpleReg());
else if (reg.IsImm())
{
switch (reg.GetImmBits())
{
case 8:
Write8(0x6A);
Write8((u8)(s8)reg.offset);
break;
case 16:
Write8(0x66);
Write8(0x68);
Write16((u16)(s16)(s32)reg.offset);
break;
case 32:
Write8(0x68);
Write32((u32)reg.offset);
break;
default:
ASSERT_MSG(DYNA_REC, 0, "PUSH - Bad imm bits");
break;
}
}
else
{
if (bits == 16)
Write8(0x66);
reg.WriteREX(this, bits, bits);
Write8(0xFF);
reg.WriteRest(this, 0, (X64Reg)6);
}
}
void XEmitter::POP(int /*bits*/, const OpArg& reg)
{
if (reg.IsSimpleReg())
POP(reg.GetSimpleReg());
else
ASSERT_MSG(DYNA_REC, 0, "POP - Unsupported encoding");
}
void XEmitter::BSWAP(int bits, X64Reg reg)
{
if (bits >= 32)
{
WriteSimple2Byte(bits, 0x0F, 0xC8, reg);
}
else if (bits == 16)
{
ROL(16, R(reg), Imm8(8));
}
else if (bits == 8)
{
// Do nothing - can't bswap a single byte...
}
else
{
ASSERT_MSG(DYNA_REC, 0, "BSWAP - Wrong number of bits");
}
}
// Undefined opcode - reserved
// If we ever need a way to always cause a non-breakpoint hard exception...
void XEmitter::UD2()
{
Write8(0x0F);
Write8(0x0B);
}
void XEmitter::PREFETCH(PrefetchLevel level, OpArg arg)
{
ASSERT_MSG(DYNA_REC, !arg.IsImm(), "PREFETCH - Imm argument");
arg.operandReg = (u8)level;
arg.WriteREX(this, 0, 0);
Write8(0x0F);
Write8(0x18);
arg.WriteRest(this);
}
void XEmitter::SETcc(CCFlags flag, OpArg dest)
{
ASSERT_MSG(DYNA_REC, !dest.IsImm(), "SETcc - Imm argument");
dest.operandReg = 0;
dest.WriteREX(this, 0, 8);
Write8(0x0F);
Write8(0x90 + (u8)flag);
dest.WriteRest(this);
}
void XEmitter::CMOVcc(int bits, X64Reg dest, OpArg src, CCFlags flag)
{
ASSERT_MSG(DYNA_REC, !src.IsImm(), "CMOVcc - Imm argument");
ASSERT_MSG(DYNA_REC, bits != 8, "CMOVcc - 8 bits unsupported");
if (bits == 16)
Write8(0x66);
src.operandReg = dest;
src.WriteREX(this, bits, bits);
Write8(0x0F);
Write8(0x40 + (u8)flag);
src.WriteRest(this);
}
void XEmitter::WriteMulDivType(int bits, OpArg src, int ext)
{
ASSERT_MSG(DYNA_REC, !src.IsImm(), "WriteMulDivType - Imm argument");
CheckFlags();
src.operandReg = ext;
if (bits == 16)
Write8(0x66);
src.WriteREX(this, bits, bits, 0);
if (bits == 8)
{
Write8(0xF6);
}
else
{
Write8(0xF7);
}
src.WriteRest(this);
}
void XEmitter::MUL(int bits, const OpArg& src)
{
WriteMulDivType(bits, src, 4);
}
void XEmitter::DIV(int bits, const OpArg& src)
{
WriteMulDivType(bits, src, 6);
}
void XEmitter::IMUL(int bits, const OpArg& src)
{
WriteMulDivType(bits, src, 5);
}
void XEmitter::IDIV(int bits, const OpArg& src)
{
WriteMulDivType(bits, src, 7);
}
void XEmitter::NEG(int bits, const OpArg& src)
{
WriteMulDivType(bits, src, 3);
}
void XEmitter::NOT(int bits, const OpArg& src)
{
WriteMulDivType(bits, src, 2);
}
void XEmitter::WriteBitSearchType(int bits, X64Reg dest, OpArg src, u8 byte2, bool rep)
{
ASSERT_MSG(DYNA_REC, !src.IsImm(), "WriteBitSearchType - Imm argument");
CheckFlags();
src.operandReg = (u8)dest;
if (bits == 16)
Write8(0x66);
if (rep)
Write8(0xF3);
src.WriteREX(this, bits, bits);
Write8(0x0F);
Write8(byte2);
src.WriteRest(this);
}
void XEmitter::MOVNTI(int bits, const OpArg& dest, X64Reg src)
{
if (bits <= 16)
ASSERT_MSG(DYNA_REC, 0, "MOVNTI - bits<=16");
WriteBitSearchType(bits, src, dest, 0xC3);
}
void XEmitter::BSF(int bits, X64Reg dest, const OpArg& src)
{
WriteBitSearchType(bits, dest, src, 0xBC);
} // Bottom bit to top bit
void XEmitter::BSR(int bits, X64Reg dest, const OpArg& src)
{
WriteBitSearchType(bits, dest, src, 0xBD);
} // Top bit to bottom bit
void XEmitter::TZCNT(int bits, X64Reg dest, const OpArg& src)
{
CheckFlags();
if (!cpu_info.bBMI1)
PanicAlertFmt("Trying to use BMI1 on a system that doesn't support it. Bad programmer.");
WriteBitSearchType(bits, dest, src, 0xBC, true);
}
void XEmitter::LZCNT(int bits, X64Reg dest, const OpArg& src)
{
CheckFlags();
if (!cpu_info.bLZCNT)
PanicAlertFmt("Trying to use LZCNT on a system that doesn't support it. Bad programmer.");
WriteBitSearchType(bits, dest, src, 0xBD, true);
}
void XEmitter::MOVSX(int dbits, int sbits, X64Reg dest, OpArg src)
{
ASSERT_MSG(DYNA_REC, !src.IsImm(), "MOVSX - Imm argument");
if (dbits == sbits)
{
MOV(dbits, R(dest), src);
return;
}
src.operandReg = (u8)dest;
if (dbits == 16)
Write8(0x66);
src.WriteREX(this, dbits, sbits);
if (sbits == 8)
{
Write8(0x0F);
Write8(0xBE);
}
else if (sbits == 16)
{
Write8(0x0F);
Write8(0xBF);
}
else if (sbits == 32 && dbits == 64)
{
Write8(0x63);
}
else
{
Crash();
}
src.WriteRest(this);
}
void XEmitter::MOVZX(int dbits, int sbits, X64Reg dest, OpArg src)
{
ASSERT_MSG(DYNA_REC, !src.IsImm(), "MOVZX - Imm argument");
if (dbits == sbits)
{
MOV(dbits, R(dest), src);
return;
}
src.operandReg = (u8)dest;
if (dbits == 16)
Write8(0x66);
// the 32bit result is automatically zero extended to 64bit
src.WriteREX(this, dbits == 64 ? 32 : dbits, sbits);
if (sbits == 8)
{
Write8(0x0F);
Write8(0xB6);
}
else if (sbits == 16)
{
Write8(0x0F);
Write8(0xB7);
}
else if (sbits == 32 && dbits == 64)
{
Write8(0x8B);
}
else
{
ASSERT_MSG(DYNA_REC, 0, "MOVZX - Invalid size");
}
src.WriteRest(this);
}
void XEmitter::WriteMOVBE(int bits, u8 op, X64Reg reg, const OpArg& arg)
2014-03-16 03:43:12 +01:00
{
ASSERT_MSG(DYNA_REC, cpu_info.bMOVBE, "Generating MOVBE on a system that does not support it.");
if (bits == 8)
{
MOV(8, op & 1 ? arg : R(reg), op & 1 ? R(reg) : arg);
return;
}
if (bits == 16)
Write8(0x66);
ASSERT_MSG(DYNA_REC, !arg.IsSimpleReg() && !arg.IsImm(), "MOVBE: need r<-m or m<-r!");
arg.WriteREX(this, bits, bits, reg);
Write8(0x0F);
Write8(0x38);
Write8(op);
arg.WriteRest(this, 0, reg);
}
void XEmitter::MOVBE(int bits, X64Reg dest, const OpArg& src)
{
WriteMOVBE(bits, 0xF0, dest, src);
}
void XEmitter::MOVBE(int bits, const OpArg& dest, X64Reg src)
{
WriteMOVBE(bits, 0xF1, src, dest);
}
void XEmitter::LoadAndSwap(int size, X64Reg dst, const OpArg& src, bool sign_extend, MovInfo* info)
{
if (info)
{
info->address = GetWritableCodePtr();
info->nonAtomicSwapStore = false;
}
switch (size)
{
case 8:
if (sign_extend)
MOVSX(32, 8, dst, src);
else
MOVZX(32, 8, dst, src);
break;
case 16:
MOVZX(32, 16, dst, src);
if (sign_extend)
{
BSWAP(32, dst);
SAR(32, R(dst), Imm8(16));
}
else
{
ROL(16, R(dst), Imm8(8));
}
break;
case 32:
case 64:
if (cpu_info.bMOVBE)
{
MOVBE(size, dst, src);
}
else
{
MOV(size, R(dst), src);
BSWAP(size, dst);
}
break;
}
}
void XEmitter::SwapAndStore(int size, const OpArg& dst, X64Reg src, MovInfo* info)
{
if (cpu_info.bMOVBE)
{
if (info)
{
info->address = GetWritableCodePtr();
info->nonAtomicSwapStore = false;
}
MOVBE(size, dst, src);
}
else
{
BSWAP(size, src);
if (info)
{
info->address = GetWritableCodePtr();
info->nonAtomicSwapStore = true;
info->nonAtomicSwapStoreSrc = src;
}
MOV(size, dst, R(src));
}
}
void XEmitter::LEA(int bits, X64Reg dest, OpArg src)
{
ASSERT_MSG(DYNA_REC, !src.IsImm(), "LEA - Imm argument");
src.operandReg = (u8)dest;
if (bits == 16)
Write8(0x66); // TODO: performance warning
src.WriteREX(this, bits, bits);
Write8(0x8D);
src.WriteRest(this, 0, INVALID_REG, bits == 64);
}
// shift can be either imm8 or cl
void XEmitter::WriteShift(int bits, OpArg dest, const OpArg& shift, int ext)
{
CheckFlags();
bool writeImm = false;
if (dest.IsImm())
{
ASSERT_MSG(DYNA_REC, 0, "WriteShift - can't shift imms");
}
if ((shift.IsSimpleReg() && shift.GetSimpleReg() != ECX) ||
(shift.IsImm() && shift.GetImmBits() != 8))
{
ASSERT_MSG(DYNA_REC, 0, "WriteShift - illegal argument");
}
dest.operandReg = ext;
if (bits == 16)
Write8(0x66);
dest.WriteREX(this, bits, bits, 0);
if (shift.GetImmBits() == 8)
{
// ok an imm
u8 imm = (u8)shift.offset;
if (imm == 1)
{
Write8(bits == 8 ? 0xD0 : 0xD1);
}
else
{
writeImm = true;
Write8(bits == 8 ? 0xC0 : 0xC1);
}
}
else
{
Write8(bits == 8 ? 0xD2 : 0xD3);
}
dest.WriteRest(this, writeImm ? 1 : 0);
if (writeImm)
Write8((u8)shift.offset);
}
// large rotates and shift are slower on Intel than AMD
// Intel likes to rotate by 1, and the op is smaller too
void XEmitter::ROL(int bits, const OpArg& dest, const OpArg& shift)
{
WriteShift(bits, dest, shift, 0);
}
void XEmitter::ROR(int bits, const OpArg& dest, const OpArg& shift)
{
WriteShift(bits, dest, shift, 1);
}
void XEmitter::RCL(int bits, const OpArg& dest, const OpArg& shift)
{
WriteShift(bits, dest, shift, 2);
}
void XEmitter::RCR(int bits, const OpArg& dest, const OpArg& shift)
{
WriteShift(bits, dest, shift, 3);
}
void XEmitter::SHL(int bits, const OpArg& dest, const OpArg& shift)
{
WriteShift(bits, dest, shift, 4);
}
void XEmitter::SHR(int bits, const OpArg& dest, const OpArg& shift)
{
WriteShift(bits, dest, shift, 5);
}
void XEmitter::SAR(int bits, const OpArg& dest, const OpArg& shift)
{
WriteShift(bits, dest, shift, 7);
}
// index can be either imm8 or register, don't use memory destination because it's slow
void XEmitter::WriteBitTest(int bits, const OpArg& dest, const OpArg& index, int ext)
{
CheckFlags();
if (dest.IsImm())
{
ASSERT_MSG(DYNA_REC, 0, "WriteBitTest - can't test imms");
}
if ((index.IsImm() && index.GetImmBits() != 8))
{
ASSERT_MSG(DYNA_REC, 0, "WriteBitTest - illegal argument");
}
if (bits == 16)
Write8(0x66);
if (index.IsImm())
{
dest.WriteREX(this, bits, bits);
Write8(0x0F);
Write8(0xBA);
dest.WriteRest(this, 1, (X64Reg)ext);
Write8((u8)index.offset);
}
else
{
X64Reg operand = index.GetSimpleReg();
dest.WriteREX(this, bits, bits, operand);
Write8(0x0F);
Write8(0x83 + 8 * ext);
dest.WriteRest(this, 1, operand);
}
}
void XEmitter::BT(int bits, const OpArg& dest, const OpArg& index)
{
WriteBitTest(bits, dest, index, 4);
}
void XEmitter::BTS(int bits, const OpArg& dest, const OpArg& index)
{
WriteBitTest(bits, dest, index, 5);
}
void XEmitter::BTR(int bits, const OpArg& dest, const OpArg& index)
{
WriteBitTest(bits, dest, index, 6);
}
void XEmitter::BTC(int bits, const OpArg& dest, const OpArg& index)
{
WriteBitTest(bits, dest, index, 7);
}
// shift can be either imm8 or cl
void XEmitter::SHRD(int bits, const OpArg& dest, const OpArg& src, const OpArg& shift)
{
CheckFlags();
if (dest.IsImm())
{
ASSERT_MSG(DYNA_REC, 0, "SHRD - can't use imms as destination");
}
if (!src.IsSimpleReg())
{
ASSERT_MSG(DYNA_REC, 0, "SHRD - must use simple register as source");
}
if ((shift.IsSimpleReg() && shift.GetSimpleReg() != ECX) ||
(shift.IsImm() && shift.GetImmBits() != 8))
{
ASSERT_MSG(DYNA_REC, 0, "SHRD - illegal shift");
}
if (bits == 16)
Write8(0x66);
X64Reg operand = src.GetSimpleReg();
dest.WriteREX(this, bits, bits, operand);
if (shift.GetImmBits() == 8)
{
Write8(0x0F);
Write8(0xAC);
dest.WriteRest(this, 1, operand);
Write8((u8)shift.offset);
}
else
{
Write8(0x0F);
Write8(0xAD);
dest.WriteRest(this, 0, operand);
}
}
void XEmitter::SHLD(int bits, const OpArg& dest, const OpArg& src, const OpArg& shift)
{
CheckFlags();
if (dest.IsImm())
{
ASSERT_MSG(DYNA_REC, 0, "SHLD - can't use imms as destination");
}
if (!src.IsSimpleReg())
{
ASSERT_MSG(DYNA_REC, 0, "SHLD - must use simple register as source");
}
if ((shift.IsSimpleReg() && shift.GetSimpleReg() != ECX) ||
(shift.IsImm() && shift.GetImmBits() != 8))
{
ASSERT_MSG(DYNA_REC, 0, "SHLD - illegal shift");
}
if (bits == 16)
Write8(0x66);
X64Reg operand = src.GetSimpleReg();
dest.WriteREX(this, bits, bits, operand);
if (shift.GetImmBits() == 8)
{
Write8(0x0F);
Write8(0xA4);
dest.WriteRest(this, 1, operand);
Write8((u8)shift.offset);
}
else
{
Write8(0x0F);
Write8(0xA5);
dest.WriteRest(this, 0, operand);
}
}
void OpArg::WriteSingleByteOp(XEmitter* emit, u8 op, X64Reg _operandReg, int bits)
{
if (bits == 16)
emit->Write8(0x66);
this->operandReg = (u8)_operandReg;
WriteREX(emit, bits, bits);
emit->Write8(op);
WriteRest(emit);
}
// operand can either be immediate or register
void OpArg::WriteNormalOp(XEmitter* emit, bool toRM, NormalOp op, const OpArg& operand,
int bits) const
{
X64Reg _operandReg;
if (IsImm())
{
ASSERT_MSG(DYNA_REC, 0, "WriteNormalOp - Imm argument, wrong order");
}
if (bits == 16)
emit->Write8(0x66);
int immToWrite = 0;
const NormalOpDef& op_def = normalops[static_cast<int>(op)];
if (operand.IsImm())
{
WriteREX(emit, bits, bits);
if (!toRM)
{
ASSERT_MSG(DYNA_REC, 0, "WriteNormalOp - Writing to Imm (!toRM)");
}
if (operand.scale == SCALE_IMM8 && bits == 8)
{
// op al, imm8
if (!scale && offsetOrBaseReg == AL && op_def.eaximm8 != 0xCC)
{
emit->Write8(op_def.eaximm8);
emit->Write8((u8)operand.offset);
return;
}
// mov reg, imm8
if (!scale && op == NormalOp::MOV)
{
emit->Write8(0xB0 + (offsetOrBaseReg & 7));
emit->Write8((u8)operand.offset);
return;
}
// op r/m8, imm8
emit->Write8(op_def.imm8);
immToWrite = 8;
}
else if ((operand.scale == SCALE_IMM16 && bits == 16) ||
(operand.scale == SCALE_IMM32 && bits == 32) ||
(operand.scale == SCALE_IMM32 && bits == 64))
{
// Try to save immediate size if we can, but first check to see
// if the instruction supports simm8.
// op r/m, imm8
if (op_def.simm8 != 0xCC &&
((operand.scale == SCALE_IMM16 && (s16)operand.offset == (s8)operand.offset) ||
(operand.scale == SCALE_IMM32 && (s32)operand.offset == (s8)operand.offset)))
{
emit->Write8(op_def.simm8);
immToWrite = 8;
}
else
{
// mov reg, imm
if (!scale && op == NormalOp::MOV && bits != 64)
{
emit->Write8(0xB8 + (offsetOrBaseReg & 7));
if (bits == 16)
emit->Write16((u16)operand.offset);
else
emit->Write32((u32)operand.offset);
return;
}
// op eax, imm
if (!scale && offsetOrBaseReg == EAX && op_def.eaximm32 != 0xCC)
{
emit->Write8(op_def.eaximm32);
if (bits == 16)
emit->Write16((u16)operand.offset);
else
emit->Write32((u32)operand.offset);
return;
}
// op r/m, imm
emit->Write8(op_def.imm32);
immToWrite = bits == 16 ? 16 : 32;
}
}
else if ((operand.scale == SCALE_IMM8 && bits == 16) ||
(operand.scale == SCALE_IMM8 && bits == 32) ||
(operand.scale == SCALE_IMM8 && bits == 64))
{
// op r/m, imm8
emit->Write8(op_def.simm8);
immToWrite = 8;
}
else if (operand.scale == SCALE_IMM64 && bits == 64)
{
if (scale)
{
ASSERT_MSG(DYNA_REC, 0,
"WriteNormalOp - MOV with 64-bit imm requires register destination");
}
// mov reg64, imm64
else if (op == NormalOp::MOV)
{
// movabs reg64, imm64 (10 bytes)
if (static_cast<s64>(operand.offset) != static_cast<s32>(operand.offset))
{
emit->Write8(0xB8 + (offsetOrBaseReg & 7));
emit->Write64(operand.offset);
return;
}
// mov reg64, simm32 (7 bytes)
emit->Write8(op_def.imm32);
immToWrite = 32;
}
else
{
ASSERT_MSG(DYNA_REC, 0, "WriteNormalOp - Only MOV can take 64-bit imm");
}
}
else
{
ASSERT_MSG(DYNA_REC, 0, "WriteNormalOp - Unhandled case %d %d", operand.scale, bits);
}
// pass extension in REG of ModRM
_operandReg = static_cast<X64Reg>(op_def.ext);
}
else
{
_operandReg = (X64Reg)operand.offsetOrBaseReg;
WriteREX(emit, bits, bits, _operandReg);
// op r/m, reg
if (toRM)
{
emit->Write8(bits == 8 ? op_def.toRm8 : op_def.toRm32);
}
// op reg, r/m
else
{
emit->Write8(bits == 8 ? op_def.fromRm8 : op_def.fromRm32);
}
}
WriteRest(emit, immToWrite >> 3, _operandReg);
switch (immToWrite)
{
case 0:
break;
case 8:
emit->Write8((u8)operand.offset);
break;
case 16:
emit->Write16((u16)operand.offset);
break;
case 32:
emit->Write32((u32)operand.offset);
break;
default:
ASSERT_MSG(DYNA_REC, 0, "WriteNormalOp - Unhandled case");
}
}
void XEmitter::WriteNormalOp(int bits, NormalOp op, const OpArg& a1, const OpArg& a2)
{
if (a1.IsImm())
{
// Booh! Can't write to an imm
ASSERT_MSG(DYNA_REC, 0, "WriteNormalOp - a1 cannot be imm");
return;
}
if (a2.IsImm())
{
a1.WriteNormalOp(this, true, op, a2, bits);
}
else
{
if (a1.IsSimpleReg())
{
a2.WriteNormalOp(this, false, op, a1, bits);
}
else
{
ASSERT_MSG(DYNA_REC, a2.IsSimpleReg() || a2.IsImm(),
"WriteNormalOp - a1 and a2 cannot both be memory");
a1.WriteNormalOp(this, true, op, a2, bits);
}
}
}
void XEmitter::ADD(int bits, const OpArg& a1, const OpArg& a2)
{
CheckFlags();
WriteNormalOp(bits, NormalOp::ADD, a1, a2);
}
void XEmitter::ADC(int bits, const OpArg& a1, const OpArg& a2)
{
CheckFlags();
WriteNormalOp(bits, NormalOp::ADC, a1, a2);
}
void XEmitter::SUB(int bits, const OpArg& a1, const OpArg& a2)
{
CheckFlags();
WriteNormalOp(bits, NormalOp::SUB, a1, a2);
}
void XEmitter::SBB(int bits, const OpArg& a1, const OpArg& a2)
{
CheckFlags();
WriteNormalOp(bits, NormalOp::SBB, a1, a2);
}
void XEmitter::AND(int bits, const OpArg& a1, const OpArg& a2)
{
CheckFlags();
WriteNormalOp(bits, NormalOp::AND, a1, a2);
}
void XEmitter::OR(int bits, const OpArg& a1, const OpArg& a2)
{
CheckFlags();
WriteNormalOp(bits, NormalOp::OR, a1, a2);
}
void XEmitter::XOR(int bits, const OpArg& a1, const OpArg& a2)
{
CheckFlags();
WriteNormalOp(bits, NormalOp::XOR, a1, a2);
}
void XEmitter::MOV(int bits, const OpArg& a1, const OpArg& a2)
{
if (bits == 64 && a1.IsSimpleReg() &&
((a2.scale == SCALE_IMM64 && a2.offset == static_cast<u32>(a2.offset)) ||
(a2.scale == SCALE_IMM32 && static_cast<s32>(a2.offset) >= 0)))
{
WriteNormalOp(32, NormalOp::MOV, a1, a2.AsImm32());
return;
}
if (a1.IsSimpleReg() && a2.IsSimpleReg() && a1.GetSimpleReg() == a2.GetSimpleReg())
ERROR_LOG_FMT(DYNA_REC, "Redundant MOV @ {} - bug in JIT?", fmt::ptr(code));
WriteNormalOp(bits, NormalOp::MOV, a1, a2);
}
void XEmitter::TEST(int bits, const OpArg& a1, const OpArg& a2)
{
CheckFlags();
WriteNormalOp(bits, NormalOp::TEST, a1, a2);
}
void XEmitter::CMP(int bits, const OpArg& a1, const OpArg& a2)
{
CheckFlags();
WriteNormalOp(bits, NormalOp::CMP, a1, a2);
}
void XEmitter::XCHG(int bits, const OpArg& a1, const OpArg& a2)
{
WriteNormalOp(bits, NormalOp::XCHG, a1, a2);
}
void XEmitter::CMP_or_TEST(int bits, const OpArg& a1, const OpArg& a2)
{
CheckFlags();
if (a1.IsSimpleReg() && a2.IsZero()) // turn 'CMP reg, 0' into shorter 'TEST reg, reg'
{
WriteNormalOp(bits, NormalOp::TEST, a1, a1);
}
else
{
WriteNormalOp(bits, NormalOp::CMP, a1, a2);
}
}
void XEmitter::MOV_sum(int bits, X64Reg dest, const OpArg& a1, const OpArg& a2)
{
// This stomps on flags, so ensure they aren't locked
DEBUG_ASSERT(!flags_locked);
// Zero shortcuts (note that this can generate no code in the case where a1 == dest && a2 == zero
// or a2 == dest && a1 == zero)
if (a1.IsZero())
{
if (!a2.IsSimpleReg() || a2.GetSimpleReg() != dest)
{
MOV(bits, R(dest), a2);
}
return;
}
if (a2.IsZero())
{
if (!a1.IsSimpleReg() || a1.GetSimpleReg() != dest)
{
MOV(bits, R(dest), a1);
}
return;
}
// If dest == a1 or dest == a2 we can simplify this
if (a1.IsSimpleReg() && a1.GetSimpleReg() == dest)
{
ADD(bits, R(dest), a2);
return;
}
if (a2.IsSimpleReg() && a2.GetSimpleReg() == dest)
{
ADD(bits, R(dest), a1);
return;
}
// TODO: 32-bit optimizations may apply to other bit sizes (confirm)
if (bits == 32)
{
if (a1.IsImm() && a2.IsImm())
{
MOV(32, R(dest), Imm32(a1.Imm32() + a2.Imm32()));
return;
}
if (a1.IsSimpleReg() && a2.IsSimpleReg())
{
LEA(32, dest, MRegSum(a1.GetSimpleReg(), a2.GetSimpleReg()));
return;
}
if (a1.IsSimpleReg() && a2.IsImm())
{
LEA(32, dest, MDisp(a1.GetSimpleReg(), a2.Imm32()));
return;
}
if (a1.IsImm() && a2.IsSimpleReg())
{
LEA(32, dest, MDisp(a2.GetSimpleReg(), a1.Imm32()));
return;
}
}
// Fallback
MOV(bits, R(dest), a1);
ADD(bits, R(dest), a2);
}
void XEmitter::IMUL(int bits, X64Reg regOp, const OpArg& a1, const OpArg& a2)
{
CheckFlags();
if (bits == 8)
{
ASSERT_MSG(DYNA_REC, 0, "IMUL - illegal bit size!");
return;
}
if (a1.IsImm())
{
ASSERT_MSG(DYNA_REC, 0, "IMUL - second arg cannot be imm!");
return;
}
if (!a2.IsImm())
{
ASSERT_MSG(DYNA_REC, 0, "IMUL - third arg must be imm!");
return;
}
if (bits == 16)
Write8(0x66);
a1.WriteREX(this, bits, bits, regOp);
if (a2.GetImmBits() == 8 || (a2.GetImmBits() == 16 && (s8)a2.offset == (s16)a2.offset) ||
(a2.GetImmBits() == 32 && (s8)a2.offset == (s32)a2.offset))
{
Write8(0x6B);
a1.WriteRest(this, 1, regOp);
Write8((u8)a2.offset);
}
else
{
Write8(0x69);
if (a2.GetImmBits() == 16 && bits == 16)
{
a1.WriteRest(this, 2, regOp);
Write16((u16)a2.offset);
}
else if (a2.GetImmBits() == 32 && (bits == 32 || bits == 64))
{
a1.WriteRest(this, 4, regOp);
Write32((u32)a2.offset);
}
else
{
ASSERT_MSG(DYNA_REC, 0, "IMUL - unhandled case!");
}
}
}
void XEmitter::IMUL(int bits, X64Reg regOp, const OpArg& a)
{
CheckFlags();
if (bits == 8)
{
ASSERT_MSG(DYNA_REC, 0, "IMUL - illegal bit size!");
return;
}
2014-08-30 16:14:56 -04:00
if (a.IsImm())
{
IMUL(bits, regOp, R(regOp), a);
return;
}
if (bits == 16)
Write8(0x66);
a.WriteREX(this, bits, bits, regOp);
Write8(0x0F);
Write8(0xAF);
a.WriteRest(this, 0, regOp);
}
void XEmitter::WriteSSEOp(u8 opPrefix, u16 op, X64Reg regOp, OpArg arg, int extrabytes)
{
if (opPrefix)
Write8(opPrefix);
arg.operandReg = regOp;
arg.WriteREX(this, 0, 0);
Write8(0x0F);
if (op > 0xFF)
Write8((op >> 8) & 0xFF);
Write8(op & 0xFF);
arg.WriteRest(this, extrabytes);
}
static int GetVEXmmmmm(u16 op)
{
// Currently, only 0x38 and 0x3A are used as secondary escape byte.
if ((op >> 8) == 0x3A)
return 3;
else if ((op >> 8) == 0x38)
return 2;
else
return 1;
}
static int GetVEXpp(u8 opPrefix)
{
if (opPrefix == 0x66)
return 1;
else if (opPrefix == 0xF3)
return 2;
else if (opPrefix == 0xF2)
return 3;
else
return 0;
}
void XEmitter::WriteVEXOp(u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg,
int W, int extrabytes)
{
int mmmmm = GetVEXmmmmm(op);
int pp = GetVEXpp(opPrefix);
// FIXME: we currently don't support 256-bit instructions, and "size" is not the vector size here
arg.WriteVEX(this, regOp1, regOp2, 0, pp, mmmmm, W);
Write8(op & 0xFF);
arg.WriteRest(this, extrabytes, regOp1);
}
void XEmitter::WriteVEXOp4(u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg,
X64Reg regOp3, int W)
{
WriteVEXOp(opPrefix, op, regOp1, regOp2, arg, W, 1);
Write8((u8)regOp3 << 4);
}
void XEmitter::WriteAVXOp(u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg,
int W, int extrabytes)
{
if (!cpu_info.bAVX)
PanicAlertFmt("Trying to use AVX on a system that doesn't support it. Bad programmer.");
WriteVEXOp(opPrefix, op, regOp1, regOp2, arg, W, extrabytes);
}
void XEmitter::WriteAVXOp4(u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg,
X64Reg regOp3, int W)
{
if (!cpu_info.bAVX)
PanicAlertFmt("Trying to use AVX on a system that doesn't support it. Bad programmer.");
WriteVEXOp4(opPrefix, op, regOp1, regOp2, arg, regOp3, W);
}
void XEmitter::WriteFMA3Op(u8 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg, int W)
{
if (!cpu_info.bFMA)
{
PanicAlertFmt(
"Trying to use FMA3 on a system that doesn't support it. Computer is v. f'n madd.");
}
WriteVEXOp(0x66, 0x3800 | op, regOp1, regOp2, arg, W);
}
void XEmitter::WriteFMA4Op(u8 op, X64Reg dest, X64Reg regOp1, X64Reg regOp2, const OpArg& arg,
int W)
2015-05-17 09:20:29 +02:00
{
if (!cpu_info.bFMA4)
{
PanicAlertFmt(
"Trying to use FMA4 on a system that doesn't support it. Computer is v. f'n madd.");
}
WriteVEXOp4(0x66, 0x3A00 | op, dest, regOp1, arg, regOp2, W);
2015-05-17 09:20:29 +02:00
}
void XEmitter::WriteBMIOp(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2,
const OpArg& arg, int extrabytes)
{
if (arg.IsImm())
PanicAlertFmt("BMI1/2 instructions don't support immediate operands.");
if (size != 32 && size != 64)
PanicAlertFmt("BMI1/2 instructions only support 32-bit and 64-bit modes!");
const int W = size == 64;
WriteVEXOp(opPrefix, op, regOp1, regOp2, arg, W, extrabytes);
}
void XEmitter::WriteBMI1Op(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2,
const OpArg& arg, int extrabytes)
{
CheckFlags();
if (!cpu_info.bBMI1)
PanicAlertFmt("Trying to use BMI1 on a system that doesn't support it. Bad programmer.");
WriteBMIOp(size, opPrefix, op, regOp1, regOp2, arg, extrabytes);
}
void XEmitter::WriteBMI2Op(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2,
const OpArg& arg, int extrabytes)
{
if (!cpu_info.bBMI2)
PanicAlertFmt("Trying to use BMI2 on a system that doesn't support it. Bad programmer.");
WriteBMIOp(size, opPrefix, op, regOp1, regOp2, arg, extrabytes);
}
void XEmitter::MOVD_xmm(X64Reg dest, const OpArg& arg)
{
WriteSSEOp(0x66, 0x6E, dest, arg, 0);
}
void XEmitter::MOVD_xmm(const OpArg& arg, X64Reg src)
{
WriteSSEOp(0x66, 0x7E, src, arg, 0);
}
2014-08-30 16:14:56 -04:00
void XEmitter::MOVQ_xmm(X64Reg dest, OpArg arg)
{
// Alternate encoding
// This does not display correctly in MSVC's debugger, it thinks it's a MOVD
arg.operandReg = dest;
Write8(0x66);
arg.WriteREX(this, 64, 0);
Write8(0x0f);
Write8(0x6E);
arg.WriteRest(this, 0);
}
2014-08-30 16:14:56 -04:00
void XEmitter::MOVQ_xmm(OpArg arg, X64Reg src)
{
if (src > 7 || arg.IsSimpleReg())
{
// Alternate encoding
// This does not display correctly in MSVC's debugger, it thinks it's a MOVD
arg.operandReg = src;
Write8(0x66);
arg.WriteREX(this, 64, 0);
Write8(0x0f);
Write8(0x7E);
arg.WriteRest(this, 0);
}
else
{
arg.operandReg = src;
arg.WriteREX(this, 0, 0);
Write8(0x66);
Write8(0x0f);
Write8(0xD6);
arg.WriteRest(this, 0);
}
}
void XEmitter::WriteMXCSR(OpArg arg, int ext)
{
if (arg.IsImm() || arg.IsSimpleReg())
ASSERT_MSG(DYNA_REC, 0, "MXCSR - invalid operand");
arg.operandReg = ext;
arg.WriteREX(this, 0, 0);
Write8(0x0F);
Write8(0xAE);
arg.WriteRest(this);
2015-08-04 23:22:13 +02:00
}
void XEmitter::STMXCSR(const OpArg& memloc)
2015-08-04 23:22:13 +02:00
{
WriteMXCSR(memloc, 3);
2015-08-04 23:22:13 +02:00
}
void XEmitter::LDMXCSR(const OpArg& memloc)
{
WriteMXCSR(memloc, 2);
}
void XEmitter::MOVNTDQ(const OpArg& arg, X64Reg regOp)
2014-08-30 16:14:56 -04:00
{
WriteSSEOp(0x66, sseMOVNTDQ, regOp, arg);
}
void XEmitter::MOVNTPS(const OpArg& arg, X64Reg regOp)
2014-08-30 16:14:56 -04:00
{
WriteSSEOp(0x00, sseMOVNTP, regOp, arg);
}
void XEmitter::MOVNTPD(const OpArg& arg, X64Reg regOp)
2014-08-30 16:14:56 -04:00
{
WriteSSEOp(0x66, sseMOVNTP, regOp, arg);
}
void XEmitter::ADDSS(X64Reg regOp, const OpArg& arg)
2014-08-30 16:14:56 -04:00
{
WriteSSEOp(0xF3, sseADD, regOp, arg);
}
void XEmitter::ADDSD(X64Reg regOp, const OpArg& arg)
2014-10-10 22:34:03 +02:00
{
WriteSSEOp(0xF2, sseADD, regOp, arg);
}
void XEmitter::SUBSS(X64Reg regOp, const OpArg& arg)
2014-08-30 16:14:56 -04:00
{
WriteSSEOp(0xF3, sseSUB, regOp, arg);
}
void XEmitter::SUBSD(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0xF2, sseSUB, regOp, arg);
}
void XEmitter::CMPSS(X64Reg regOp, const OpArg& arg, u8 compare)
{
WriteSSEOp(0xF3, sseCMP, regOp, arg, 1);
Write8(compare);
}
void XEmitter::CMPSD(X64Reg regOp, const OpArg& arg, u8 compare)
{
WriteSSEOp(0xF2, sseCMP, regOp, arg, 1);
Write8(compare);
}
void XEmitter::MULSS(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0xF3, sseMUL, regOp, arg);
}
void XEmitter::MULSD(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0xF2, sseMUL, regOp, arg);
}
void XEmitter::DIVSS(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0xF3, sseDIV, regOp, arg);
}
void XEmitter::DIVSD(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0xF2, sseDIV, regOp, arg);
}
void XEmitter::MINSS(X64Reg regOp, const OpArg& arg)
2014-08-30 16:14:56 -04:00
{
WriteSSEOp(0xF3, sseMIN, regOp, arg);
}
void XEmitter::MINSD(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0xF2, sseMIN, regOp, arg);
}
void XEmitter::MAXSS(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0xF3, sseMAX, regOp, arg);
}
void XEmitter::MAXSD(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0xF2, sseMAX, regOp, arg);
}
void XEmitter::SQRTSS(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0xF3, sseSQRT, regOp, arg);
}
void XEmitter::SQRTSD(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0xF2, sseSQRT, regOp, arg);
}
void XEmitter::RCPSS(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0xF3, sseRCP, regOp, arg);
}
void XEmitter::RSQRTSS(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0xF3, sseRSQRT, regOp, arg);
}
void XEmitter::ADDPS(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0x00, sseADD, regOp, arg);
}
void XEmitter::ADDPD(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0x66, sseADD, regOp, arg);
}
void XEmitter::SUBPS(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0x00, sseSUB, regOp, arg);
}
void XEmitter::SUBPD(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0x66, sseSUB, regOp, arg);
}
void XEmitter::CMPPS(X64Reg regOp, const OpArg& arg, u8 compare)
{
WriteSSEOp(0x00, sseCMP, regOp, arg, 1);
Write8(compare);
}
void XEmitter::CMPPD(X64Reg regOp, const OpArg& arg, u8 compare)
{
WriteSSEOp(0x66, sseCMP, regOp, arg, 1);
Write8(compare);
}
void XEmitter::ANDPS(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0x00, sseAND, regOp, arg);
}
void XEmitter::ANDPD(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0x66, sseAND, regOp, arg);
}
void XEmitter::ANDNPS(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0x00, sseANDN, regOp, arg);
}
void XEmitter::ANDNPD(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0x66, sseANDN, regOp, arg);
}
void XEmitter::ORPS(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0x00, sseOR, regOp, arg);
}
void XEmitter::ORPD(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0x66, sseOR, regOp, arg);
}
void XEmitter::XORPS(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0x00, sseXOR, regOp, arg);
}
void XEmitter::XORPD(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0x66, sseXOR, regOp, arg);
}
void XEmitter::MULPS(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0x00, sseMUL, regOp, arg);
}
void XEmitter::MULPD(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0x66, sseMUL, regOp, arg);
}
void XEmitter::DIVPS(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0x00, sseDIV, regOp, arg);
}
void XEmitter::DIVPD(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0x66, sseDIV, regOp, arg);
}
void XEmitter::MINPS(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0x00, sseMIN, regOp, arg);
}
void XEmitter::MINPD(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0x66, sseMIN, regOp, arg);
}
void XEmitter::MAXPS(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0x00, sseMAX, regOp, arg);
}
void XEmitter::MAXPD(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0x66, sseMAX, regOp, arg);
}
void XEmitter::SQRTPS(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0x00, sseSQRT, regOp, arg);
}
void XEmitter::SQRTPD(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0x66, sseSQRT, regOp, arg);
}
void XEmitter::RCPPS(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0x00, sseRCP, regOp, arg);
}
void XEmitter::RSQRTPS(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0x00, sseRSQRT, regOp, arg);
}
void XEmitter::SHUFPS(X64Reg regOp, const OpArg& arg, u8 shuffle)
{
WriteSSEOp(0x00, sseSHUF, regOp, arg, 1);
Write8(shuffle);
}
void XEmitter::SHUFPD(X64Reg regOp, const OpArg& arg, u8 shuffle)
2014-08-30 16:14:56 -04:00
{
WriteSSEOp(0x66, sseSHUF, regOp, arg, 1);
Write8(shuffle);
}
void XEmitter::COMISS(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0x00, sseCOMIS, regOp, arg);
} // weird that these should be packed
void XEmitter::COMISD(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0x66, sseCOMIS, regOp, arg);
} // ordered
void XEmitter::UCOMISS(X64Reg regOp, const OpArg& arg)
2014-10-10 22:34:03 +02:00
{
WriteSSEOp(0x00, sseUCOMIS, regOp, arg);
} // unordered
void XEmitter::UCOMISD(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0x66, sseUCOMIS, regOp, arg);
}
void XEmitter::MOVAPS(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0x00, sseMOVAPfromRM, regOp, arg);
}
void XEmitter::MOVAPD(X64Reg regOp, const OpArg& arg)
{
// Prefer MOVAPS to MOVAPD as there is no reason to use MOVAPD over MOVAPS:
// - They have equivalent functionality.
// - There has never been a microarchitecture with separate single and double domains.
// - MOVAPD is one byte longer than MOVAPS.
MOVAPS(regOp, arg);
}
void XEmitter::MOVAPS(const OpArg& arg, X64Reg regOp)
{
WriteSSEOp(0x00, sseMOVAPtoRM, regOp, arg);
}
void XEmitter::MOVAPD(const OpArg& arg, X64Reg regOp)
{
MOVAPS(arg, regOp);
}
void XEmitter::MOVUPS(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0x00, sseMOVUPfromRM, regOp, arg);
}
void XEmitter::MOVUPD(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0x66, sseMOVUPfromRM, regOp, arg);
}
void XEmitter::MOVUPS(const OpArg& arg, X64Reg regOp)
{
WriteSSEOp(0x00, sseMOVUPtoRM, regOp, arg);
}
void XEmitter::MOVUPD(const OpArg& arg, X64Reg regOp)
2014-08-30 16:14:56 -04:00
{
WriteSSEOp(0x66, sseMOVUPtoRM, regOp, arg);
}
void XEmitter::MOVDQA(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0x66, sseMOVDQfromRM, regOp, arg);
}
void XEmitter::MOVDQA(const OpArg& arg, X64Reg regOp)
{
WriteSSEOp(0x66, sseMOVDQtoRM, regOp, arg);
}
void XEmitter::MOVDQU(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0xF3, sseMOVDQfromRM, regOp, arg);
}
void XEmitter::MOVDQU(const OpArg& arg, X64Reg regOp)
2014-08-30 16:14:56 -04:00
{
WriteSSEOp(0xF3, sseMOVDQtoRM, regOp, arg);
}
void XEmitter::MOVSS(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0xF3, sseMOVUPfromRM, regOp, arg);
}
void XEmitter::MOVSD(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0xF2, sseMOVUPfromRM, regOp, arg);
}
void XEmitter::MOVSS(const OpArg& arg, X64Reg regOp)
{
WriteSSEOp(0xF3, sseMOVUPtoRM, regOp, arg);
}
void XEmitter::MOVSD(const OpArg& arg, X64Reg regOp)
{
WriteSSEOp(0xF2, sseMOVUPtoRM, regOp, arg);
}
void XEmitter::MOVLPS(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0x00, sseMOVLPfromRM, regOp, arg);
}
void XEmitter::MOVLPD(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0x66, sseMOVLPfromRM, regOp, arg);
}
void XEmitter::MOVLPS(const OpArg& arg, X64Reg regOp)
{
WriteSSEOp(0x00, sseMOVLPtoRM, regOp, arg);
}
void XEmitter::MOVLPD(const OpArg& arg, X64Reg regOp)
{
WriteSSEOp(0x66, sseMOVLPtoRM, regOp, arg);
}
void XEmitter::MOVHPS(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0x00, sseMOVHPfromRM, regOp, arg);
}
void XEmitter::MOVHPD(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0x66, sseMOVHPfromRM, regOp, arg);
}
void XEmitter::MOVHPS(const OpArg& arg, X64Reg regOp)
{
WriteSSEOp(0x00, sseMOVHPtoRM, regOp, arg);
}
void XEmitter::MOVHPD(const OpArg& arg, X64Reg regOp)
{
WriteSSEOp(0x66, sseMOVHPtoRM, regOp, arg);
}
void XEmitter::MOVHLPS(X64Reg regOp1, X64Reg regOp2)
{
WriteSSEOp(0x00, sseMOVHLPS, regOp1, R(regOp2));
}
void XEmitter::MOVLHPS(X64Reg regOp1, X64Reg regOp2)
{
WriteSSEOp(0x00, sseMOVLHPS, regOp1, R(regOp2));
}
void XEmitter::CVTPS2PD(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0x00, 0x5A, regOp, arg);
}
void XEmitter::CVTPD2PS(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0x66, 0x5A, regOp, arg);
}
void XEmitter::CVTSD2SS(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0xF2, 0x5A, regOp, arg);
}
void XEmitter::CVTSS2SD(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0xF3, 0x5A, regOp, arg);
}
void XEmitter::CVTSD2SI(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0xF2, 0x2D, regOp, arg);
}
void XEmitter::CVTSS2SI(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0xF3, 0x2D, regOp, arg);
}
void XEmitter::CVTSI2SD(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0xF2, 0x2A, regOp, arg);
}
void XEmitter::CVTSI2SS(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0xF3, 0x2A, regOp, arg);
}
void XEmitter::CVTDQ2PD(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0xF3, 0xE6, regOp, arg);
}
void XEmitter::CVTDQ2PS(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0x00, 0x5B, regOp, arg);
}
void XEmitter::CVTPD2DQ(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0xF2, 0xE6, regOp, arg);
}
void XEmitter::CVTPS2DQ(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0x66, 0x5B, regOp, arg);
}
void XEmitter::CVTTSD2SI(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0xF2, 0x2C, regOp, arg);
}
void XEmitter::CVTTSS2SI(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0xF3, 0x2C, regOp, arg);
}
void XEmitter::CVTTPS2DQ(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0xF3, 0x5B, regOp, arg);
}
void XEmitter::CVTTPD2DQ(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0x66, 0xE6, regOp, arg);
}
void XEmitter::MASKMOVDQU(X64Reg dest, X64Reg src)
{
WriteSSEOp(0x66, sseMASKMOVDQU, dest, R(src));
}
void XEmitter::MOVMSKPS(X64Reg dest, const OpArg& arg)
{
WriteSSEOp(0x00, 0x50, dest, arg);
}
void XEmitter::MOVMSKPD(X64Reg dest, const OpArg& arg)
{
WriteSSEOp(0x66, 0x50, dest, arg);
}
void XEmitter::LDDQU(X64Reg dest, const OpArg& arg)
{
WriteSSEOp(0xF2, sseLDDQU, dest, arg);
} // For integer data only
void XEmitter::UNPCKLPS(X64Reg dest, const OpArg& arg)
{
WriteSSEOp(0x00, 0x14, dest, arg);
}
void XEmitter::UNPCKHPS(X64Reg dest, const OpArg& arg)
{
WriteSSEOp(0x00, 0x15, dest, arg);
}
void XEmitter::UNPCKLPD(X64Reg dest, const OpArg& arg)
{
WriteSSEOp(0x66, 0x14, dest, arg);
}
void XEmitter::UNPCKHPD(X64Reg dest, const OpArg& arg)
{
WriteSSEOp(0x66, 0x15, dest, arg);
}
// Pretty much every x86 CPU nowadays supports SSE3,
// but the SSE2 fallbacks are easy.
void XEmitter::MOVSLDUP(X64Reg regOp, const OpArg& arg)
{
if (cpu_info.bSSE3)
{
WriteSSEOp(0xF3, 0x12, regOp, arg);
}
else
{
if (!arg.IsSimpleReg(regOp))
MOVAPD(regOp, arg);
UNPCKLPS(regOp, R(regOp));
}
}
void XEmitter::MOVSHDUP(X64Reg regOp, const OpArg& arg)
{
if (cpu_info.bSSE3)
{
WriteSSEOp(0xF3, 0x16, regOp, arg);
}
else
{
if (!arg.IsSimpleReg(regOp))
MOVAPD(regOp, arg);
UNPCKHPS(regOp, R(regOp));
}
}
void XEmitter::MOVDDUP(X64Reg regOp, const OpArg& arg)
{
if (cpu_info.bSSE3)
{
WriteSSEOp(0xF2, 0x12, regOp, arg);
}
else
{
if (!arg.IsSimpleReg())
{
MOVSD(regOp, arg);
}
else if (regOp != arg.GetSimpleReg())
{
MOVAPD(regOp, arg);
}
UNPCKLPD(regOp, R(regOp));
}
}
// There are a few more left
// Also some integer instructions are missing
void XEmitter::PACKSSDW(X64Reg dest, const OpArg& arg)
{
WriteSSEOp(0x66, 0x6B, dest, arg);
}
void XEmitter::PACKSSWB(X64Reg dest, const OpArg& arg)
{
WriteSSEOp(0x66, 0x63, dest, arg);
}
void XEmitter::PACKUSWB(X64Reg dest, const OpArg& arg)
{
WriteSSEOp(0x66, 0x67, dest, arg);
}
void XEmitter::PUNPCKLBW(X64Reg dest, const OpArg& arg)
{
WriteSSEOp(0x66, 0x60, dest, arg);
}
void XEmitter::PUNPCKLWD(X64Reg dest, const OpArg& arg)
{
WriteSSEOp(0x66, 0x61, dest, arg);
}
void XEmitter::PUNPCKLDQ(X64Reg dest, const OpArg& arg)
{
WriteSSEOp(0x66, 0x62, dest, arg);
}
void XEmitter::PUNPCKLQDQ(X64Reg dest, const OpArg& arg)
{
WriteSSEOp(0x66, 0x6C, dest, arg);
}
void XEmitter::PSRLW(X64Reg reg, int shift)
{
WriteSSEOp(0x66, 0x71, (X64Reg)2, R(reg));
Write8(shift);
}
void XEmitter::PSRLD(X64Reg reg, int shift)
{
WriteSSEOp(0x66, 0x72, (X64Reg)2, R(reg));
Write8(shift);
}
void XEmitter::PSRLQ(X64Reg reg, int shift)
{
WriteSSEOp(0x66, 0x73, (X64Reg)2, R(reg));
Write8(shift);
}
void XEmitter::PSRLQ(X64Reg reg, const OpArg& arg)
{
WriteSSEOp(0x66, 0xd3, reg, arg);
}
void XEmitter::PSRLDQ(X64Reg reg, int shift)
{
WriteSSEOp(0x66, 0x73, (X64Reg)3, R(reg));
Write8(shift);
}
void XEmitter::PSLLW(X64Reg reg, int shift)
{
WriteSSEOp(0x66, 0x71, (X64Reg)6, R(reg));
Write8(shift);
}
void XEmitter::PSLLD(X64Reg reg, int shift)
{
WriteSSEOp(0x66, 0x72, (X64Reg)6, R(reg));
Write8(shift);
}
void XEmitter::PSLLQ(X64Reg reg, int shift)
{
WriteSSEOp(0x66, 0x73, (X64Reg)6, R(reg));
Write8(shift);
}
void XEmitter::PSLLDQ(X64Reg reg, int shift)
{
WriteSSEOp(0x66, 0x73, (X64Reg)7, R(reg));
Write8(shift);
}
// WARNING not REX compatible
void XEmitter::PSRAW(X64Reg reg, int shift)
{
if (reg > 7)
PanicAlertFmt("The PSRAW-emitter does not support regs above 7");
Write8(0x66);
Write8(0x0f);
Write8(0x71);
Write8(0xE0 | reg);
Write8(shift);
}
// WARNING not REX compatible
void XEmitter::PSRAD(X64Reg reg, int shift)
{
if (reg > 7)
PanicAlertFmt("The PSRAD-emitter does not support regs above 7");
Write8(0x66);
Write8(0x0f);
Write8(0x72);
Write8(0xE0 | reg);
Write8(shift);
}
void XEmitter::WriteSSSE3Op(u8 opPrefix, u16 op, X64Reg regOp, const OpArg& arg, int extrabytes)
{
if (!cpu_info.bSSSE3)
PanicAlertFmt("Trying to use SSSE3 on a system that doesn't support it. Bad programmer.");
WriteSSEOp(opPrefix, op, regOp, arg, extrabytes);
}
void XEmitter::WriteSSE41Op(u8 opPrefix, u16 op, X64Reg regOp, const OpArg& arg, int extrabytes)
{
if (!cpu_info.bSSE4_1)
PanicAlertFmt("Trying to use SSE4.1 on a system that doesn't support it. Bad programmer.");
WriteSSEOp(opPrefix, op, regOp, arg, extrabytes);
}
void XEmitter::PSHUFB(X64Reg dest, const OpArg& arg)
{
WriteSSSE3Op(0x66, 0x3800, dest, arg);
}
void XEmitter::PTEST(X64Reg dest, const OpArg& arg)
{
WriteSSE41Op(0x66, 0x3817, dest, arg);
}
void XEmitter::PACKUSDW(X64Reg dest, const OpArg& arg)
{
WriteSSE41Op(0x66, 0x382b, dest, arg);
}
void XEmitter::PMOVSXBW(X64Reg dest, const OpArg& arg)
{
WriteSSE41Op(0x66, 0x3820, dest, arg);
}
void XEmitter::PMOVSXBD(X64Reg dest, const OpArg& arg)
{
WriteSSE41Op(0x66, 0x3821, dest, arg);
}
void XEmitter::PMOVSXBQ(X64Reg dest, const OpArg& arg)
{
WriteSSE41Op(0x66, 0x3822, dest, arg);
}
void XEmitter::PMOVSXWD(X64Reg dest, const OpArg& arg)
{
WriteSSE41Op(0x66, 0x3823, dest, arg);
}
void XEmitter::PMOVSXWQ(X64Reg dest, const OpArg& arg)
{
WriteSSE41Op(0x66, 0x3824, dest, arg);
}
void XEmitter::PMOVSXDQ(X64Reg dest, const OpArg& arg)
{
WriteSSE41Op(0x66, 0x3825, dest, arg);
}
void XEmitter::PMOVZXBW(X64Reg dest, const OpArg& arg)
{
WriteSSE41Op(0x66, 0x3830, dest, arg);
}
void XEmitter::PMOVZXBD(X64Reg dest, const OpArg& arg)
{
WriteSSE41Op(0x66, 0x3831, dest, arg);
}
void XEmitter::PMOVZXBQ(X64Reg dest, const OpArg& arg)
{
WriteSSE41Op(0x66, 0x3832, dest, arg);
}
void XEmitter::PMOVZXWD(X64Reg dest, const OpArg& arg)
{
WriteSSE41Op(0x66, 0x3833, dest, arg);
}
void XEmitter::PMOVZXWQ(X64Reg dest, const OpArg& arg)
{
WriteSSE41Op(0x66, 0x3834, dest, arg);
}
void XEmitter::PMOVZXDQ(X64Reg dest, const OpArg& arg)
{
WriteSSE41Op(0x66, 0x3835, dest, arg);
}
void XEmitter::PBLENDVB(X64Reg dest, const OpArg& arg)
{
WriteSSE41Op(0x66, 0x3810, dest, arg);
}
void XEmitter::BLENDVPS(X64Reg dest, const OpArg& arg)
{
WriteSSE41Op(0x66, 0x3814, dest, arg);
}
void XEmitter::BLENDVPD(X64Reg dest, const OpArg& arg)
{
WriteSSE41Op(0x66, 0x3815, dest, arg);
}
void XEmitter::BLENDPS(X64Reg dest, const OpArg& arg, u8 blend)
{
WriteSSE41Op(0x66, 0x3A0C, dest, arg, 1);
Write8(blend);
}
void XEmitter::BLENDPD(X64Reg dest, const OpArg& arg, u8 blend)
{
WriteSSE41Op(0x66, 0x3A0D, dest, arg, 1);
Write8(blend);
}
void XEmitter::PAND(X64Reg dest, const OpArg& arg)
{
WriteSSEOp(0x66, 0xDB, dest, arg);
}
void XEmitter::PANDN(X64Reg dest, const OpArg& arg)
{
WriteSSEOp(0x66, 0xDF, dest, arg);
}
void XEmitter::PXOR(X64Reg dest, const OpArg& arg)
{
WriteSSEOp(0x66, 0xEF, dest, arg);
}
void XEmitter::POR(X64Reg dest, const OpArg& arg)
{
WriteSSEOp(0x66, 0xEB, dest, arg);
}
void XEmitter::PADDB(X64Reg dest, const OpArg& arg)
{
WriteSSEOp(0x66, 0xFC, dest, arg);
}
void XEmitter::PADDW(X64Reg dest, const OpArg& arg)
{
WriteSSEOp(0x66, 0xFD, dest, arg);
}
void XEmitter::PADDD(X64Reg dest, const OpArg& arg)
{
WriteSSEOp(0x66, 0xFE, dest, arg);
}
void XEmitter::PADDQ(X64Reg dest, const OpArg& arg)
{
WriteSSEOp(0x66, 0xD4, dest, arg);
}
void XEmitter::PADDSB(X64Reg dest, const OpArg& arg)
{
WriteSSEOp(0x66, 0xEC, dest, arg);
}
void XEmitter::PADDSW(X64Reg dest, const OpArg& arg)
{
WriteSSEOp(0x66, 0xED, dest, arg);
}
void XEmitter::PADDUSB(X64Reg dest, const OpArg& arg)
{
WriteSSEOp(0x66, 0xDC, dest, arg);
}
void XEmitter::PADDUSW(X64Reg dest, const OpArg& arg)
{
WriteSSEOp(0x66, 0xDD, dest, arg);
}
void XEmitter::PSUBB(X64Reg dest, const OpArg& arg)
{
WriteSSEOp(0x66, 0xF8, dest, arg);
}
void XEmitter::PSUBW(X64Reg dest, const OpArg& arg)
{
WriteSSEOp(0x66, 0xF9, dest, arg);
}
void XEmitter::PSUBD(X64Reg dest, const OpArg& arg)
{
WriteSSEOp(0x66, 0xFA, dest, arg);
}
void XEmitter::PSUBQ(X64Reg dest, const OpArg& arg)
{
WriteSSEOp(0x66, 0xFB, dest, arg);
}
void XEmitter::PSUBSB(X64Reg dest, const OpArg& arg)
{
WriteSSEOp(0x66, 0xE8, dest, arg);
}
void XEmitter::PSUBSW(X64Reg dest, const OpArg& arg)
{
WriteSSEOp(0x66, 0xE9, dest, arg);
}
void XEmitter::PSUBUSB(X64Reg dest, const OpArg& arg)
{
WriteSSEOp(0x66, 0xD8, dest, arg);
}
void XEmitter::PSUBUSW(X64Reg dest, const OpArg& arg)
{
WriteSSEOp(0x66, 0xD9, dest, arg);
}
void XEmitter::PAVGB(X64Reg dest, const OpArg& arg)
{
WriteSSEOp(0x66, 0xE0, dest, arg);
}
void XEmitter::PAVGW(X64Reg dest, const OpArg& arg)
{
WriteSSEOp(0x66, 0xE3, dest, arg);
}
void XEmitter::PCMPEQB(X64Reg dest, const OpArg& arg)
{
WriteSSEOp(0x66, 0x74, dest, arg);
}
void XEmitter::PCMPEQW(X64Reg dest, const OpArg& arg)
{
WriteSSEOp(0x66, 0x75, dest, arg);
}
void XEmitter::PCMPEQD(X64Reg dest, const OpArg& arg)
{
WriteSSEOp(0x66, 0x76, dest, arg);
}
void XEmitter::PCMPGTB(X64Reg dest, const OpArg& arg)
{
WriteSSEOp(0x66, 0x64, dest, arg);
}
void XEmitter::PCMPGTW(X64Reg dest, const OpArg& arg)
{
WriteSSEOp(0x66, 0x65, dest, arg);
}
void XEmitter::PCMPGTD(X64Reg dest, const OpArg& arg)
{
WriteSSEOp(0x66, 0x66, dest, arg);
}
void XEmitter::PEXTRW(X64Reg dest, const OpArg& arg, u8 subreg)
{
WriteSSEOp(0x66, 0xC5, dest, arg);
Write8(subreg);
}
void XEmitter::PINSRW(X64Reg dest, const OpArg& arg, u8 subreg)
{
WriteSSEOp(0x66, 0xC4, dest, arg);
Write8(subreg);
}
void XEmitter::PINSRD(X64Reg dest, const OpArg& arg, u8 subreg)
{
WriteSSE41Op(0x66, 0x3A22, dest, arg);
Write8(subreg);
}
void XEmitter::PMADDWD(X64Reg dest, const OpArg& arg)
{
WriteSSEOp(0x66, 0xF5, dest, arg);
}
void XEmitter::PSADBW(X64Reg dest, const OpArg& arg)
{
WriteSSEOp(0x66, 0xF6, dest, arg);
}
void XEmitter::PMAXSW(X64Reg dest, const OpArg& arg)
{
WriteSSEOp(0x66, 0xEE, dest, arg);
}
void XEmitter::PMAXUB(X64Reg dest, const OpArg& arg)
{
WriteSSEOp(0x66, 0xDE, dest, arg);
}
void XEmitter::PMINSW(X64Reg dest, const OpArg& arg)
{
WriteSSEOp(0x66, 0xEA, dest, arg);
}
void XEmitter::PMINUB(X64Reg dest, const OpArg& arg)
{
WriteSSEOp(0x66, 0xDA, dest, arg);
}
void XEmitter::PMOVMSKB(X64Reg dest, const OpArg& arg)
{
WriteSSEOp(0x66, 0xD7, dest, arg);
}
void XEmitter::PSHUFD(X64Reg regOp, const OpArg& arg, u8 shuffle)
{
WriteSSEOp(0x66, 0x70, regOp, arg, 1);
Write8(shuffle);
}
void XEmitter::PSHUFLW(X64Reg regOp, const OpArg& arg, u8 shuffle)
{
WriteSSEOp(0xF2, 0x70, regOp, arg, 1);
Write8(shuffle);
}
void XEmitter::PSHUFHW(X64Reg regOp, const OpArg& arg, u8 shuffle)
{
WriteSSEOp(0xF3, 0x70, regOp, arg, 1);
Write8(shuffle);
}
// VEX
void XEmitter::VADDSS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteAVXOp(0xF3, sseADD, regOp1, regOp2, arg);
}
void XEmitter::VSUBSS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteAVXOp(0xF3, sseSUB, regOp1, regOp2, arg);
}
void XEmitter::VMULSS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteAVXOp(0xF3, sseMUL, regOp1, regOp2, arg);
}
void XEmitter::VDIVSS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteAVXOp(0xF3, sseDIV, regOp1, regOp2, arg);
}
void XEmitter::VADDPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteAVXOp(0x00, sseADD, regOp1, regOp2, arg);
}
void XEmitter::VSUBPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteAVXOp(0x00, sseSUB, regOp1, regOp2, arg);
}
void XEmitter::VMULPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteAVXOp(0x00, sseMUL, regOp1, regOp2, arg);
}
void XEmitter::VDIVPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteAVXOp(0x00, sseDIV, regOp1, regOp2, arg);
}
void XEmitter::VADDSD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteAVXOp(0xF2, sseADD, regOp1, regOp2, arg);
}
void XEmitter::VSUBSD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteAVXOp(0xF2, sseSUB, regOp1, regOp2, arg);
}
void XEmitter::VMULSD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteAVXOp(0xF2, sseMUL, regOp1, regOp2, arg);
}
void XEmitter::VDIVSD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteAVXOp(0xF2, sseDIV, regOp1, regOp2, arg);
}
void XEmitter::VADDPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteAVXOp(0x66, sseADD, regOp1, regOp2, arg);
}
void XEmitter::VSUBPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteAVXOp(0x66, sseSUB, regOp1, regOp2, arg);
}
void XEmitter::VMULPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteAVXOp(0x66, sseMUL, regOp1, regOp2, arg);
}
void XEmitter::VDIVPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteAVXOp(0x66, sseDIV, regOp1, regOp2, arg);
}
void XEmitter::VSQRTSD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteAVXOp(0xF2, sseSQRT, regOp1, regOp2, arg);
}
void XEmitter::VCMPPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg, u8 compare)
{
WriteAVXOp(0x66, sseCMP, regOp1, regOp2, arg, 0, 1);
Write8(compare);
}
void XEmitter::VSHUFPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg, u8 shuffle)
{
WriteAVXOp(0x00, sseSHUF, regOp1, regOp2, arg, 0, 1);
Write8(shuffle);
}
void XEmitter::VSHUFPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg, u8 shuffle)
{
WriteAVXOp(0x66, sseSHUF, regOp1, regOp2, arg, 0, 1);
Write8(shuffle);
}
void XEmitter::VUNPCKLPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteAVXOp(0x00, 0x14, regOp1, regOp2, arg);
}
void XEmitter::VUNPCKLPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteAVXOp(0x66, 0x14, regOp1, regOp2, arg);
}
void XEmitter::VUNPCKHPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteAVXOp(0x66, 0x15, regOp1, regOp2, arg);
}
void XEmitter::VBLENDVPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg, X64Reg regOp3)
{
WriteAVXOp4(0x66, 0x3A4B, regOp1, regOp2, arg, regOp3);
}
void XEmitter::VBLENDPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg, u8 blend)
{
WriteAVXOp(0x66, 0x3A0C, regOp1, regOp2, arg, 0, 1);
Write8(blend);
}
void XEmitter::VBLENDPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg, u8 blend)
{
WriteAVXOp(0x66, 0x3A0D, regOp1, regOp2, arg, 0, 1);
Write8(blend);
}
void XEmitter::VANDPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteAVXOp(0x00, sseAND, regOp1, regOp2, arg);
}
void XEmitter::VANDPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteAVXOp(0x66, sseAND, regOp1, regOp2, arg);
}
void XEmitter::VANDNPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteAVXOp(0x00, sseANDN, regOp1, regOp2, arg);
}
void XEmitter::VANDNPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteAVXOp(0x66, sseANDN, regOp1, regOp2, arg);
}
void XEmitter::VORPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteAVXOp(0x00, sseOR, regOp1, regOp2, arg);
}
void XEmitter::VORPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteAVXOp(0x66, sseOR, regOp1, regOp2, arg);
}
void XEmitter::VXORPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteAVXOp(0x00, sseXOR, regOp1, regOp2, arg);
}
void XEmitter::VXORPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteAVXOp(0x66, sseXOR, regOp1, regOp2, arg);
}
void XEmitter::VPAND(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteAVXOp(0x66, 0xDB, regOp1, regOp2, arg);
}
void XEmitter::VPANDN(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteAVXOp(0x66, 0xDF, regOp1, regOp2, arg);
}
void XEmitter::VPOR(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteAVXOp(0x66, 0xEB, regOp1, regOp2, arg);
}
void XEmitter::VPXOR(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteAVXOp(0x66, 0xEF, regOp1, regOp2, arg);
}
void XEmitter::VFMADD132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0x98, regOp1, regOp2, arg);
}
void XEmitter::VFMADD213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0xA8, regOp1, regOp2, arg);
}
void XEmitter::VFMADD231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0xB8, regOp1, regOp2, arg);
}
void XEmitter::VFMADD132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0x98, regOp1, regOp2, arg, 1);
}
void XEmitter::VFMADD213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0xA8, regOp1, regOp2, arg, 1);
}
void XEmitter::VFMADD231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0xB8, regOp1, regOp2, arg, 1);
}
void XEmitter::VFMADD132SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0x99, regOp1, regOp2, arg);
}
void XEmitter::VFMADD213SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0xA9, regOp1, regOp2, arg);
}
void XEmitter::VFMADD231SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0xB9, regOp1, regOp2, arg);
}
void XEmitter::VFMADD132SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0x99, regOp1, regOp2, arg, 1);
}
void XEmitter::VFMADD213SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0xA9, regOp1, regOp2, arg, 1);
}
void XEmitter::VFMADD231SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0xB9, regOp1, regOp2, arg, 1);
}
void XEmitter::VFMSUB132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0x9A, regOp1, regOp2, arg);
}
void XEmitter::VFMSUB213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0xAA, regOp1, regOp2, arg);
}
void XEmitter::VFMSUB231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0xBA, regOp1, regOp2, arg);
}
void XEmitter::VFMSUB132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0x9A, regOp1, regOp2, arg, 1);
}
void XEmitter::VFMSUB213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0xAA, regOp1, regOp2, arg, 1);
}
void XEmitter::VFMSUB231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0xBA, regOp1, regOp2, arg, 1);
}
void XEmitter::VFMSUB132SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0x9B, regOp1, regOp2, arg);
}
void XEmitter::VFMSUB213SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0xAB, regOp1, regOp2, arg);
}
void XEmitter::VFMSUB231SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0xBB, regOp1, regOp2, arg);
}
void XEmitter::VFMSUB132SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0x9B, regOp1, regOp2, arg, 1);
}
void XEmitter::VFMSUB213SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0xAB, regOp1, regOp2, arg, 1);
}
void XEmitter::VFMSUB231SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0xBB, regOp1, regOp2, arg, 1);
}
void XEmitter::VFNMADD132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0x9C, regOp1, regOp2, arg);
}
void XEmitter::VFNMADD213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0xAC, regOp1, regOp2, arg);
}
void XEmitter::VFNMADD231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0xBC, regOp1, regOp2, arg);
}
void XEmitter::VFNMADD132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0x9C, regOp1, regOp2, arg, 1);
}
void XEmitter::VFNMADD213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0xAC, regOp1, regOp2, arg, 1);
}
void XEmitter::VFNMADD231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0xBC, regOp1, regOp2, arg, 1);
}
void XEmitter::VFNMADD132SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0x9D, regOp1, regOp2, arg);
}
void XEmitter::VFNMADD213SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0xAD, regOp1, regOp2, arg);
}
void XEmitter::VFNMADD231SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0xBD, regOp1, regOp2, arg);
}
void XEmitter::VFNMADD132SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0x9D, regOp1, regOp2, arg, 1);
}
void XEmitter::VFNMADD213SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0xAD, regOp1, regOp2, arg, 1);
}
void XEmitter::VFNMADD231SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0xBD, regOp1, regOp2, arg, 1);
}
void XEmitter::VFNMSUB132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0x9E, regOp1, regOp2, arg);
}
void XEmitter::VFNMSUB213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0xAE, regOp1, regOp2, arg);
}
void XEmitter::VFNMSUB231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0xBE, regOp1, regOp2, arg);
}
void XEmitter::VFNMSUB132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0x9E, regOp1, regOp2, arg, 1);
}
void XEmitter::VFNMSUB213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0xAE, regOp1, regOp2, arg, 1);
}
void XEmitter::VFNMSUB231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0xBE, regOp1, regOp2, arg, 1);
}
void XEmitter::VFNMSUB132SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0x9F, regOp1, regOp2, arg);
}
void XEmitter::VFNMSUB213SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0xAF, regOp1, regOp2, arg);
}
void XEmitter::VFNMSUB231SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0xBF, regOp1, regOp2, arg);
}
void XEmitter::VFNMSUB132SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0x9F, regOp1, regOp2, arg, 1);
}
void XEmitter::VFNMSUB213SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0xAF, regOp1, regOp2, arg, 1);
}
void XEmitter::VFNMSUB231SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0xBF, regOp1, regOp2, arg, 1);
}
void XEmitter::VFMADDSUB132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0x96, regOp1, regOp2, arg);
}
void XEmitter::VFMADDSUB213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0xA6, regOp1, regOp2, arg);
}
void XEmitter::VFMADDSUB231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0xB6, regOp1, regOp2, arg);
}
void XEmitter::VFMADDSUB132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0x96, regOp1, regOp2, arg, 1);
}
void XEmitter::VFMADDSUB213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0xA6, regOp1, regOp2, arg, 1);
}
void XEmitter::VFMADDSUB231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0xB6, regOp1, regOp2, arg, 1);
}
void XEmitter::VFMSUBADD132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0x97, regOp1, regOp2, arg);
}
void XEmitter::VFMSUBADD213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0xA7, regOp1, regOp2, arg);
}
void XEmitter::VFMSUBADD231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0xB7, regOp1, regOp2, arg);
}
void XEmitter::VFMSUBADD132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0x97, regOp1, regOp2, arg, 1);
}
void XEmitter::VFMSUBADD213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0xA7, regOp1, regOp2, arg, 1);
}
void XEmitter::VFMSUBADD231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0xB7, regOp1, regOp2, arg, 1);
}
#define FMA4(name, op) \
void XEmitter::name(X64Reg dest, X64Reg regOp1, X64Reg regOp2, const OpArg& arg) \
{ \
WriteFMA4Op(op, dest, regOp1, regOp2, arg, 1); \
} \
void XEmitter::name(X64Reg dest, X64Reg regOp1, const OpArg& arg, X64Reg regOp2) \
{ \
WriteFMA4Op(op, dest, regOp1, regOp2, arg, 0); \
}
2015-05-17 09:20:29 +02:00
FMA4(VFMADDSUBPS, 0x5C)
FMA4(VFMADDSUBPD, 0x5D)
FMA4(VFMSUBADDPS, 0x5E)
FMA4(VFMSUBADDPD, 0x5F)
FMA4(VFMADDPS, 0x68)
FMA4(VFMADDPD, 0x69)
FMA4(VFMADDSS, 0x6A)
FMA4(VFMADDSD, 0x6B)
FMA4(VFMSUBPS, 0x6C)
FMA4(VFMSUBPD, 0x6D)
FMA4(VFMSUBSS, 0x6E)
FMA4(VFMSUBSD, 0x6F)
FMA4(VFNMADDPS, 0x78)
FMA4(VFNMADDPD, 0x79)
FMA4(VFNMADDSS, 0x7A)
FMA4(VFNMADDSD, 0x7B)
FMA4(VFNMSUBPS, 0x7C)
FMA4(VFNMSUBPD, 0x7D)
FMA4(VFNMSUBSS, 0x7E)
FMA4(VFNMSUBSD, 0x7F)
#undef FMA4
void XEmitter::SARX(int bits, X64Reg regOp1, const OpArg& arg, X64Reg regOp2)
{
WriteBMI2Op(bits, 0xF3, 0x38F7, regOp1, regOp2, arg);
}
void XEmitter::SHLX(int bits, X64Reg regOp1, const OpArg& arg, X64Reg regOp2)
{
WriteBMI2Op(bits, 0x66, 0x38F7, regOp1, regOp2, arg);
}
void XEmitter::SHRX(int bits, X64Reg regOp1, const OpArg& arg, X64Reg regOp2)
{
WriteBMI2Op(bits, 0xF2, 0x38F7, regOp1, regOp2, arg);
}
void XEmitter::RORX(int bits, X64Reg regOp, const OpArg& arg, u8 rotate)
{
WriteBMI2Op(bits, 0xF2, 0x3AF0, regOp, INVALID_REG, arg, 1);
Write8(rotate);
}
void XEmitter::PEXT(int bits, X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteBMI2Op(bits, 0xF3, 0x38F5, regOp1, regOp2, arg);
}
void XEmitter::PDEP(int bits, X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteBMI2Op(bits, 0xF2, 0x38F5, regOp1, regOp2, arg);
}
void XEmitter::MULX(int bits, X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteBMI2Op(bits, 0xF2, 0x38F6, regOp2, regOp1, arg);
}
void XEmitter::BZHI(int bits, X64Reg regOp1, const OpArg& arg, X64Reg regOp2)
{
CheckFlags();
WriteBMI2Op(bits, 0x00, 0x38F5, regOp1, regOp2, arg);
}
void XEmitter::BLSR(int bits, X64Reg regOp, const OpArg& arg)
{
WriteBMI1Op(bits, 0x00, 0x38F3, (X64Reg)0x1, regOp, arg);
}
void XEmitter::BLSMSK(int bits, X64Reg regOp, const OpArg& arg)
{
WriteBMI1Op(bits, 0x00, 0x38F3, (X64Reg)0x2, regOp, arg);
}
void XEmitter::BLSI(int bits, X64Reg regOp, const OpArg& arg)
{
WriteBMI1Op(bits, 0x00, 0x38F3, (X64Reg)0x3, regOp, arg);
}
void XEmitter::BEXTR(int bits, X64Reg regOp1, const OpArg& arg, X64Reg regOp2)
{
WriteBMI1Op(bits, 0x00, 0x38F7, regOp1, regOp2, arg);
}
void XEmitter::ANDN(int bits, X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteBMI1Op(bits, 0x00, 0x38F2, regOp1, regOp2, arg);
}
// Prefixes
void XEmitter::LOCK()
{
Write8(0xF0);
}
void XEmitter::REP()
{
Write8(0xF3);
}
void XEmitter::REPNE()
{
Write8(0xF2);
}
void XEmitter::FSOverride()
{
Write8(0x64);
}
void XEmitter::GSOverride()
{
Write8(0x65);
}
void XEmitter::RDTSC()
{
Write8(0x0F);
Write8(0x31);
}
} // namespace Gen