This sends arbitrary packets in chunks to be reassembled at the other
end, allowing large data transfers to be speed-limited and interleaved
with other packets being sent. It also enables tracking the progress of
large data transfers.
Its usage was inconsistent, confusing, and buggy, so I opted to just
remove it entirely. It has been replaced with PadIndex for the
appropriate instances (mainly networking), and inappropriate usages
(where it was really just a player ID) have been replaced with the
PlayerId type. The definition of "no mapping" has been changed from -1
to 0 to match the defintion of "no player", as -1 (255 unsigned) is
actually a valid player ID.
The bugs never manifested because it only occurs with a full lobby of
255 players, at which point the last player's ID collides with the "no
mapping" definition and some undefined behavior occurs. Nevertheless, I
thought it best to fix it anyways as the usage of PadMapping was
confusing.
Adds a tickbox to the server's window to syncronize codes. Codes
are temporarily sent to each client and are used for the duration of the
session.
Saves the "sync codes" tickbox as per PR Netplay: Properly save hosting
settings #7483
Currently, each player buffers their own inputs and sends them to the
host. The host then relays those inputs to everyone else. Every player
waits on inputs from all players to be buffered before continuing. What
this means is all clients run in lockstep, and the total latency of
inputs cannot be lower than the sum of the 2 highest client ping times
in the game (in 3+ player sessions with people across the world, the
latency can be very high).
Host input authority mode changes it so players no longer buffer their
own inputs, and only send them to the host. The host stores only the
most recent input received from a player. The host then sends inputs
for all pads at the SI poll interval, similar to the existing code. If
a player sends inputs to slowly, their last received input is simply
sent again. If they send too quickly, inputs are dropped. This means
that the host has full control over what inputs are actually read by
the game, hence the name of the mode. Also, because the rate at which
inputs are received by SI is decoupled from the rate at which players
are sending inputs, clients are no longer dependent on each other. They
only care what the host is doing. This means that they can set their
buffer individually based on their latency to the host, rather than the
highest latency between any 2 players, allowing someone with lower ping
to the host to have less latency than someone else.
This is a catch to this: as a necessity of how the host's input sending
works, the host has 0 latency. There isn't a good way to fix this, as
input delay is now solely dependent on the real latency to the host's
server. Having differing latency between players would be considered
unfair for competitive play, but for casual play we don't really care.
For this reason though, combined with the potential for a few inputs to
be dropped on a bad connection, the old mode will remain and this new
mode is entirely optional.
also did these things
fixed crash from joining user that isn't hosting via a direct connection
current game stat can now pass to override the current game in config
uses ip endpoint from dolphin.org
Behaviorally, this belongs within the netplay client. The server will
always transmit a known RTC value, so it doesn't even need a global for
this. Given the client receives the packet containing said RTC value, we can
store it as a member variable and provide an accessor for reading that
value.
This removes another global variable within the netplay code.
This adds the functionality of sending the host's save data (raw memory
cards, as well as GCI files and Wii saves with a matching GameID) to
all other clients. The data is compressed using LZO1X to greatly reduce
its size while keeping compression/decompression fast. Save
synchronization is enabled by default, and toggleable with a checkbox
in the NetPlay dialog.
On clicking start, if the option is enabled, game boot will be delayed
until all players have received the save data sent by the host. If any
player fails to receive it properly, boot will be cancelled to prevent
desyncs.
This is only ever read from externally, so we can expose a getter that ensures that
immutability, while making the actual instance internal. Given the
filling out of these settings depends on packets received by the client
instance, it makes more sense to make it a part of the client itself.
This trims off one lingering global.
Previously there was only one function under the NetPlay namespace,
which is kind of silly considering we have all of these other types
and functions existing outside of the namespace.
This moves the rest of them into the namespace.
This gets some general names, like Player, for example, out of the global namespace.
Since all queues are FIFO data structures, the name wasn't informative
as to why you'd use it over a normal queue. I originally thought it had
something to do with the hardware graphics FIFO.
This renames it using the common acronym SPSC, which stands for
single-producer single-consumer, and is most commonly used to talk about
lock-free data structures, both of which this is.
Using u8 as indexers is kind of silly, since the rest of the public API
essentially uses int for this sort of thing. Changing these to int also
gets rid of quite a few implicit truncations.
This also allows for getting rid of similar silliness in the netplay API.
Replaces old and simple usages of std::atomic<bool> with Common::Flag
(which was introduced after the initial usage), so it's clear that
the variable is a flag and because Common::Flag is well tested.
This also replaces the ready logic in WiimoteReal with Common::Event
since it was basically just unnecessarily reimplementing Common::Event.
Instead of sleeping in NetPlayClient::GetNetPads and NetPlayClient::WiimoteUpdate,
now use std::condition_variable. This allows for finer control over these blocking
areas.
* Focus "Hash Code" / "IP address" text box by default in "Connect"
* Focus game list in "Host" tab
* RETURN keypress now host/join depending on selected tab
* Remember last hosted game
* Remove PanicAlertT:
* Simply log message to netplay window
* Remove them when they are useless
* Show some netplay message in OSD
* Chat messages
* Pad buffer changes
* Desync alerts
* Stop the game consistently when another player disconnects / crashes
* Prettify chat textbox
* Log netplay ping to OSD
Join scenario:
* Copy netplay code
* Open netplay
* Paste code
* Press enter
Host scenario:
* Open netplay
* Go to host tab
* Press enter
The old implementation always polled the local 1st Wiimote and used that as input for the Wiimote that is mapped to the player. But the reporting mode for Wiimotes can be different, even when using the same extensions. So an input for Wiimote 1 with a data size 4 could be used for Wiimote 2, which actually requires data size 7 at that time for example.
The 2nd problem was that the code added a dummy input into the buffer, when the reporting mode changed. But when the data from the other player hasn't arrived yet, the data in the buffer is out of order. Well, i think this is the problem, i'm not 100% sure, because i don't fully understand how the buffer works. But on the other hand, i'm pretty sure this will just force sync the players on reporting mode changes, instead of allowing them to be apart.
Pros:
- No more desyncs caused by big bugs in the code.
- Can use different extensions for different players.
Cons:
- Higher latency, because instead of polling 1 controller per player at once, all controllers are polled in order, send to the other players, before the next is processed.
- Have to setup the Wiimote, which the player is going to use, instead of the 1st one.
Now, if the controller config could temporarily be overridden with the one from another slot, the 2nd problem could be fixed. But at the same time, we would lose the ability to use different extensions. (unless we hack around it somehow, or properly send the used extension to the other players)
A static var is not a good idea, when the value needs to be reset for every session. Also, the variable holds the data size, so it makes sense to set the data size, where the data is added.
On master, when polling the 1st in-game controller, Dolphin would poll all the 1st local controllers. With the 1st commit, each client waits its turn, which would dramatically increase the lag.
Now with this commit, it even polls all local controllers at once, so it should have even less latency than master in a few setups. Like one player with 3 controllers and the 2nd one with just one controller.
This is only queried, there's no need to expose it for writing.
Even if it was written to, a data member shouldn't be part of
your public API unless its part of a dumb object or trivial struct.