Keep a copy of the old TIC entry and view even after purge caches and use the execution number to check validity instead, if that doesn't match then just memcmp can be used as opposed to a full hash and map lookup.
When profiling SMO, it became obvious that the constant locking of textures and buffers in SyncDescriptors took up a large amount of CPU time (3-5%), a precious resource in intensive areas like Metro. This commit implements somewhat of a workaround to avoid constant relocking, if a buffer is frequently attached on the GPU and almost never used on the CPU we can keep the lock held between executions. Of course it's not that simple though, if the guest tries to lock a texture for the first time which has already been locked as preserve on the GPFIFO we need to avoid a deadlock. This is acheived through a combination of two things: first we periodically clear the locked attachments every 2*SlotCount submissions, preventing a complete deadlock on the CPU (just a long wait instead) and meaning that the next time the resource is attached on the GPU it will not be marked for preservation due to having been locked on the guest before; second, we always need to unlock everything when the GPU thread runs out of work, as the perioding clearing will not execute in this case which would otherwise leave the textures locked on the GPFIFO thread forever (if guest was waiting on a lock to submit work). It should be noted that we don't clear preserve attached resources in the latter scenario, only unlock them and then relock when more work is available.
Avoids one race where we would end up hogging all the locks of chained cycles and ourself when waiting for submission of previous cycles and prevent any forward progress due to another thread locking one of the chained cycles.
For the upcoming preserve attachment optimisation, which will keep buffers/textures locked on the GPU between executions, we don't want to preserve any which are frequently locked on the CPU as that would result in lots of needless waiting for a resource to be unlocked by the GPU when it occasionally frees all preserve attachments when it could have been done much sooner. By checking if a resource has ever been locked on the CPU and using that to choose whether we preserve it we can avoid such waiting.
Allowing for parallel execution of channels never really benefitted many games and prevented optimisations such as keeping frequently used resources always locked to avoid the constant overhead of locking on the hot path.
Ontop of the TIC cache from previous code a simple index based lookup has been added which vastly speeds things up by avoding the need to hash the TIC structure every time.
Introducing async record resulted in breaking the assumption that any work submitted through command scheduler would be submitted in order with graphics submits. Since async record now unlocks the texture before it's submitted a seperate mechanism is needed to ensure ordering of submits. This is achieved by building support into fence cycle itself, with a conditional variable that is waited on for submission before any fence waits occur.