gpu-new will use a monolithic pipeline object for each pipeline to store state, keyed by the PackedPipelineState contents. This allows for a greater level of per-pipeline optimisations and a reduction in the overall number of lookups in a draw compared to the previous system.
Caching here was deemed unnecessary since it will be done implicitly by the pipeline cache and creates issues with the legacy attribute conversion pass. It now purely serves as a frontend for Hades.
It was determined that a general purpose Vulkan pipeline cache isn't viable for the significant performance reqs of Draw(), by using a Maxwell 3D specific key we can shrink state significantly more than if we used Vulkan structs.
Removes all usage of graphics_context.h from the codebase, exclusively using the new interconnect and its dirty tracking system. While porting the code a number of bugs were discovered such as not respecting the base instance or primitive type override, which have all been fixed. Currently only clears and constant buffer updates are implemented but due to the dirty state system allowing register handling on the interconnect end there shouldn't end up being many more changes.
This mainly distributes operations down to activeState and pipelineState, aside from clears which are implemented in-place. The exposed interface is much reduced as opposed to the previous GraphicsContext system due to the newly introduced dirty system, this should hopefully make the code more maintainable and keep actual rendering operations seperate from primitive restart state or whatever. Currently draws are unimplemented and the only full implemented things are clears and constant buffer operations.
Active state encapsulates all state that isn't part of a pipeline and can be set dynamically with Vulkan calls. This includes both dynamic state like stencil faces, and command buffer state like vertex buffer bindings.
Simililarly to the last commit, the main goal of this is to reduce the number of redundant work done per draw by employing dirty state as much as possible. Without using dirty state for this every active state operation would need to be performed every draw, which gets very expensive when things like buffer lookups end up being reqiored. Code has also been heavily cleaned up as is described in the previous commit.
The main goal of this is to reduce the number of redundant lookups and work done per draw as much as possible, this is mainly achived through heavy used of dirty tracking though other optimisations like heavily using the linear allocator are also in play. In addition to the goal of performance, the code has been cleaned up and abstracted significantly from its state in graphics_context, hopefully making the GPU interconnect code much more maintainable in the future and reducing the boilerplace needed to add even simple functionality. This commit includes partial pipeline state, enough for implementing clears + a slight bit extra.
Adepted from the previous code to use dirty state tracking. The cache has also been removed since with the new buffer view and GMMU optimisations it actually ended up slowing lookups down, another result of the buffer view optimisations is that raw pointers are no longer used for buffer views since destruction is now much cheaper.
This common code will be used across the entirety of the 3D rewrite, it also includes a stub for StateUpdateBuilder, which will be used by active state code to apply state updates.
All the names are directly translated from Nvidia docs, with minimal conversions to enums/structs when appropriate. Not all registers have been rewritten, only those that are needed to implement clears and dynamic state, the rest will be added as they are used in the GPU rework.
This will be heavily used by the upcoming GPU rework. It provides an intuitive way to track dirtiness based on using the underlying pointers of objects, as opposed to other methods which often need an enum entry per dirty state and don't support overlaps. Wrappers for dirty state objects are also provided to abstract as much of the dirty tracking as possible from user code. The pointer based mechanism also serves to avoid having to handle dirty bindings on the user side of the dirty resources, allowing them to bind things internally instead.
Constant buffer updates result in a barrage of std::mutex calls that take a lot of time even under no contention (around 5%). Using a custom spinlock in cases like these allows inlining locking code reducing the cost of locks under no contention to almost 0.
This can be inlined by the compiler much easier which helps perf a fair bit due to the number of times buffers are looked up, also avoids the need for small vector construction that was done in the previous fast-path.
This isn't a guarantee provided by actual HW so we don't need to provide it either, the sync can be skipped once the buffer already been synced at least once within the execution.
Constructing the GPU copy callback in `ConstantBuffers::Load()` ended up taking a fair amount of time despite it almost never being used in practice. By making it optional it can be skipped most of the time and only done when it's actually neccessary by calling `Write()` again if the initial call returned true.
Buffer views creation was a significant pain point, requiring several layers of caching to reduce the number of creations that introduced a lot of complexity. By reworking delegates to be per-buffer rather than per-view and then linearly allocating delegates (without ever freeing) views can be reduced to just {delegatePtr, offset, size}, avoiding the need for any allocations or set operations in GetView. The one difficulty with this is the need to support buffer recreation, which is achived by allowing delegates to be chained - during recreation all source buffers have their delegates modified to point to the newly created buffer's delegate. Upon accessing a view with such a chained delegate the view will be modified to point directly to the end delegate with offset being updated accordingly, skipping the need to traverse the chain for future accesses.
In the upcoming GPU code each state member will hold a reference to its corresponding Maxwell 3D regs, this helper is needed to allow easy transformation from the the main 3D register struct into them.
Example:
```c++
struct Regs {
std::array<View, 10> viewRegs;
u32 enable;
} regs;
struct ViewState {
const View &view;
const u32 &enable;
size_t index;
};
std::array<ViewState, 10> viewStates{MergeInto<ViewState, 10>(regs.viewRegs, regs.enable, IncrementingT{})
```
Useful for cases where allocations are guaranteed to be unused by the time `Reset()` is called and calling `Free()` would be difficult or add extra performance cost due to how the allocation is used.
In some games performing the binary search in `TranslateRange()` ended up taking a fairly large (~8%) proportion of GPFIFO time. By using a segment table for O(1) lookups this is reduced to <2% for non-split mappings at the cost of slightly increased memory usage (2GiB in the absolute worse case but more like 50MiB in real world situations).
In addition to adapting `TranslateRange()` to use the segment table, a new function `LookupBlock()` for cases where only a single mapping would ever be looked up so the small_vector handling and fallback paths can be skipped and the entire lookup be inlined.