VI/IHOSBinder suffered from major inaccuracies in their function due to being quickly thrown together initially with little concern for accuracy, this has now been fixed with them being substantially more accurate now.
`ENUM_STRING` now has a unified implementation in <common/macros.h> with a documented format and can be used throughout the codebase.
A major performance regression was added in the Host1X Syncpoint revamp as it did a syscall if there were any waiters during `Increment` even if they would just be woken up and go back to sleep as the threshold wasn't hit. It has now been optimized to only do a wake if any waiting thread needs to be awoken.
There was also a bug concerning increment where it would perform actions corresponding to the previous increment rather than the current one which has also been fixed.
We used instantaneous values for FPS previously which led to a lot of variation in it and the inability to determine a proper FPS value due to constant fluctuations. All FPS values are now averaged to allow reading out a stable value and a deviation statistic has been added for the frame-time to judge judder and frame-pacing which allows for a significantly better measure of overall performance. The formatting for all the floating-point numbers is now fixed-point to prevent shifting of position due to decimal digits becoming 0.
Support for the following parameters was added to `QueueBuffer`:
* Earliest Present Timestamp
* Swap Interval
* Crop
* Scaling Mode
* Transform
* Frame ID (Not returned to guest yet)
We utilize ANativeWindow APIs directly to achieve all of this in an efficient manner since HWC will be used directly for it, we do plan to introduce Vulkan equivalents for all of these operations later down the line for a port to non-Android platforms.
We had issues when combining host and guest presentation since certain configurations in guest presentation such as double buffering were very unoptimal for the host and would significantly affect the FPS. As a result of this, we've now made host presentation have its own presentation textures which are copied into from the guest at presentation time, allowing us to change parameters of the host presentation independently of the guest.
We've implemented the infrastructure for this which includes being able to create images from host GPU memory using VMA, an optimized linear texture sync and a method to do on-GPU texture-to-texture copies.
We've also moved to driving the V-Sync event using AChoreographer on its on thread in this PR, which more accurately encapsulates HOS behavior and allows games such as ARMS to boot as they depend on the V-Sync event being signalled even when the game isn't presenting.
This commit reworks the `Texture` class to include a Vulkan Image backing that can be optionally owning or non-owning and swapped in with consideration for Vulkan image layout, it also adds CPU-sided synchronization for the texture objects with FenceCycle. It also makes the appropriate changes to `PresentationEngine` and `GraphicBufferProducer` to work with the new `Texture` class while setting the groundwork for supporting swapchain recreation. It also fixes a log in `IpcResponse` and improves the display mode selection algorithm by further weighing refresh rate.
Implements a wrapper over fences to track a single cycle of activation, implement a Vulkan memory manager that wraps the Vulkan-Memory-Allocator library and a command scheduler for scheduling Vulkan command buffers
This commit makes GraphicBufferProducer significantly more accurate by matching the behavior of AOSP alongside mirroring the tweaks made by Nintendo.
It eliminates a lot of the magic structures and enumerations used prior and replaces them with the correct values from AOSP or HOS.
There was a lot of functional inaccuracy as well which was fixed, we emulate the exact subset of HOS behavior that we need to. A lot of the intermediate layers such as GraphicBufferConsumer or Gralloc/Sync are not emulated as they're pointless abstractions here.
This commit adds in VkSurface/VkSwapchain initialization and recreation. It also adapts GraphicsBuffferProducer and Texture to fit in with those changes but it doesn't yet implement presenting those buffers nor uploading guest buffers onto the host.
Vulkan Device initialization is handled now, it supports required extensions but support for optional extensions/features/properties will come in later when we require those. In addition, we now correctly report the version of Skyline to Vulkan which can be accessed from debugging tools.
There's also a minor change regarding the search pattern for `SkylineLibraries` which now only searches in headers of libraries and it also explicitly excludes the redundant `vulkan.hpp` from the `Vulkan-Headers` repository.
The GPU class has been extended in this for Vulkan initialization, this is done to the point of initializing the instance alongside loading in `VK_LAYER_KHRONOS_validation` which is also now packed into all Debug APKs for Skyline. In addition, `VK_EXT_debug_report` is also initialized and it's output is piped directly into the Logger.
A minor change regarding the type of the `Fps` and `Frametime` globals was changed to `skyline::i32`s which is a more suitable type due to those having a smaller chance of overflowing while being signed as Java doesn't have unsigned integral types.
As both of these are in the same memory segment they have no individual
alignment requirements, this created a bug in
にゃんらぶ~私の恋の見つけ方~ where the data segment would be larger
than the game expected and invalid command line arguments would be read.
armed.
It was discovered during testing of 'Hatsune Miku Project DIVA: Mega Mix'
that if a thread was starting while preemption was being enabled a NULL
pointer dereference could occur in the timer_settime call as
timer_create may not have been called yet.
This is used by games before calling into nvdec in order to clock up the
HW module, it can also be used to request a RAM frequency. Since we
obviously don't emulate the hardware down to this level a basic stub
that provides the correct reponses is enough.
Fixes a crash on first level of Super Mario Odyssey.
We used a custom version of Vulkan-Hpp which split the files a lot prior to avoid any developers needing to manually set IDE settings for IntelliJ to work but this wasn't practical due to how it required modifications to Vulkan-Hpp's generator which would make maintenance extremely difficult. It was determined that we should just add the requirement for changing the IDE settings and use Vulkan-Hpp directly.
An RAII scoped trace was used for SvcWaitSynchronization but it was placed within a condition scope which led to an incorrect lifetime for the traces. Minor changes regarding the CR not affecting functionality were made aside from that.
We decided to restructure Skyline to draw a layer of separation between guest and host GPU. We're reserving the `gpu` namespace and directory for purely host GPU and creating a new `soc` directory and namespace for emulation of parts of the X1 SoC which is currently limited to guest GPU but will be expanded to contain components like the audio DSP down the line.
This fixes audio stuttering which occurred on certain BT audio devices by requesting an exclusive stream from Oboe alongside a low-latency stream.
Co-authored-by: Billy Laws <blaws05@gmail.com>
Add Tracing for SVCs, Services, NVDRV, and Synchronization Primitives. In addition, fix `TRACE_EVENT_END("guest")` being emitted when a signal is received while being in the guest rather than host which would cause an exception. This commit also disables warnings for the Perfetto library as we do not control fixing them.
This extend a descriptor table for the SVCs with names for every SVC alongside their function pointer. The names are then used for logging and eventually tracing.
This moves from using std::function with a this pointer binding (which would likely cause a heap allocation) to returning the this pointer in a structure which implements operator() to do the call with it. It also moves to using const char* for strings from std::string_view which was pointless in this scenario due to it's usage being limited to being a C-string for the most part, it also integrates the class name directly into the string which allows us to avoid runtime string concatenation in libfmt and RTTI for finding the class name.
* Improve KMemory Comments
* Add parameter prefix 'p-' to `KPrivateMemory::UpdatePermission`
* Fix the missing trailing double quote in missing service prints, this was due to `stringName` being padded with extra 0s
Mainly just adapts the rest of time to add some things missed in the
initial commit as they required TZ, everything else is just renames from
switchbrew and comments.
This serves as an extension to the initial time commit and combined
they provide a complete implementation of everything application facing
in time.
psc:ITimeZoneService and glue:ITimeZoneService are used to convert
between POSIX and calendar times according to the device location.
Timezone binaries are used during the conversion, details of them can
be read about in the previous commit.
This is based off my own glue RE and Thog's time RE.
This reimplements our time backend to be significantly more accurate to
the real PSC and provides complete implementations for every time IPC
allowing many newer games to work properly.
Time is unique in its use of glue services, the core sysmodule is fully
isolated and doesn't interface with any other services. Glue is instead
used where that is needed (e.g. for fetching settings), this distinction
is also present in our implementation.
Another unique feature of time is its global state, as time is
calibrated from the start of the service its state cannot be lost as
that would result in the application offsetting time incorrectly
whenever it closed a session.
A large proportion of this is based off of Thog's 9.0.0 PSC reversing.
These are used for timezone conversions between POSIX and calander time.
Tzdata is in exactly the same format as HOS to allow loading sysarchives
in the future if needed. See its README for more info.
Details on tzcode can be found in its own repo, there are several
changes done Vs the base release to allow for HOS compat.
These only implement the subset of VFS needed for time, implementing
more is difficult due to some issues in the AAsset API which make
support quite ugly. The abstract asset filesystem can be accessed by
services through the OS class allowing other implementations to be used
in the future.
There was a mistake in the code-style refactor where the signature in the instruction encoding of `MRS` was set to `0xD54` instead of `0xD53` which would cause a SIGILL (Illegal Instruction) for devices which had their HW timer frequency equivalent to the Switch (19.2MHz) as a modified `MRS` would be deployed there. This issue should not affect devices which perform clock rescaling as the `MRS` instruction there is encoded by the assembler.
Many users of VFS didn't check for nullptr or 0 results leading to
various potential issues, to mitigate this introduce error checking to
VFS by default. The original variants can still be used through the
*Unchecked family of functions.
This allows better validation and simplified default argument handling.
Could also be useful in the future when we switch to proper VFS error
reporting.
* Pushbuffer data is now stored in a member buffer to avoid reallocating
it for each pushbuffer which hampered performance before.
* Don't prefetch pushbuffers as it puts unnecessary load on the guest
thread that is better suited for the GPFIFO thread.
* Clean up some misc code to avoid pointless casts of a 4 byte object
and handle GPFIFO control opcodes.
NvHostEvents were renamed to SyncpointEvents which is a much clearer
name that more accurately describes them. Locking is needed as IOCTLs
can be called asynchronously and so event registration and signalling
can race.
The following scheduler bugs were fixed:
* It was assumed that all non-cooperative `Rotate` calls were from a preemptive yield and changed the state of `KThread::isPreempted` incorrectly which could lead to UB, an example of a scenario with it would be:
* * Preemptive thread A gets a signal to yield from cooperative thread B due to it being ready to schedule and higher priority
* * A complies with this request but there's an assumption that the signal was actually from it's preemption timer therefore it doesn't reset it (As it isn't required if the timer was responsible for the signal)
* * A receives the actual preemption signal a while later, causing UB as the signal handler is invoked twice
* `Scheduler::UpdatePriority`
* * A check for `currentIt == core->queue.begin()` existed which caused an incorrect early return
* * The preemption timer was armed correctly when a priority transition from cooperative priority -> preemption priority occurred but not disarmed when a transition from preemption priority -> cooperative priority occurred
* * The timer was unnecessarily disarmed in the case of updating the priority of a non-running thread, this isn't as much a bug as it is just pointless
* Priority inheritance in `KProcess::MutexLock` is fundamentally broken as it performs UB with `waitThread` being accessed prior to being assigned
* When a thread sets its own priority using `SvcSetThreadCoreMask` and its current core is no longer in the affinity mask, it wouldn't actually move to the new thread until the next time the thread is load balanced
This addresses all CR comments including more codebase-wide changes arising from certain review comments like proper usage of its/it's and consistent contraction of it is into it's.
An overhaul was made to the presentation and formatting of `KThread.h` and `LoadBalance` works has been superseded by `GetOptimalCoreForThread` which can be used alongside `InsertThread` or `MigrateToCore`. It makes the API far more atomic and neater. This was a major point of contention for the design prior, it's simplified some code and potentially improved performance.
The case of a thread not being in the core queue during a non-cooperative core affinity change would break things as the thread was non-conditionally removed and inserted, this has been fixed by adding a check to see if the thread exists in the core's queue prior to migration. In addition, `yieldWithCoreMigration` was broken by the previous commit as the fallthrough was intentional and removing it cause core migration without a yield which led to breakage in certain circumstances. The mutex locking logic was also improved in `ConditionalVariableWait` to use atomics in a more effective manner with less atomic operations being performed overall.
The code region's size was previously set at the same value as it is for 36-bit ASes, this value is inadequate for certain larger games and needed to be expanded. We've chosen 4GiB as the new value which should easily encompass all Switch games.
The SVCs improvements are as follows:
* Make SVC logs more concise for:
* * `SleepThread`
* * `ClearEvent`
* * `CloseHandle`
* * `ResetSignal`
* * `WaitSynchronization` (Special case for single handle)
* * `ArbitrateLock`
* * `ArbitrateUnlock`
* * `WaitProcessWideKeyAtomic`
* * `SignalProcessWideKey`
* Fix unintentional fallthrough into `yieldWithoutCoreMigration` from `yieldWithCoreMigration` in `SleepThread`
* Return `result::InvalidState` when an unsignalled handle is reset in `ResetSignal`
* Return `Result{}` (Success) in `CancelSynchronization`
* Do not return `result::InvalidCurrentMemory` in `ArbitrateLock` as it's not a failure condition
* Make `count` in `WaitProcessWideKeyAtomic` a `i32` from a `u32`, zero and all negative values result in waking all waiters
The entirety of the address arbiter is implemented in this commit, all three arbitration types: `WaitIfLessThan`, `DecrementAndWaitIfLessThan` and `WaitIfEqual`, and all three signal types: `Signal`, `SignalAndIncrementIfEqual` and `SignalAndModifyBasedOnWaitingThreadCountIfEqual` have been implemented.
This allows any application which uses levent (Light Events) to function which includes titles such as ARMS.
We did not support migration of threads which were running in a non-cooperative manner, this was partially due to the dependence on per-core conditional variables rather than per-thread which made this harder to do programmatically. This has been fixed by moving to per-thread cvars and therefore the limitation can be removed, this feature is used by Unity games.
SvcClearEvent previously set the `signalled` flag directly rather than
calling `ResetSignal`, which skipped the locking necessary to make it
globally visible. Switch it to use `ResetSignal` to fix this.
We've moved to using RS and GS from ASCII as delimiters rather than
'\n' and '|', this allows more robust parsing and increases the
readability of the log files
This prevents a race where two threads could read at the same time and
end up using the wrong IV leading to garbage data being read. This
caused crashes in several games including Celeste.
This was causing a significant amount of sched thrashing and pinning a
core to 100% as games constantly updated audren, now change it to only
signal on buffer release.
This caused the menus in Sonic Mania to be nonfunctional, futhermore,
default init is not ran for the input structs so the default max
definition in CommonHeader never actually applied.
CircularQueue was looping around too early resulting in the wrong
pushbuffers being used. The debug logging is useful for interpreting the
GPU method call logs.
Exefs loading was changed to check if an NSO exists before trying to
read it, preventing exceptions that get annoying while debugging.
* 'Fix' memory accounting to not measure reserved regions
* Fix some copy bugs introduced by switch to span
* Correct remap the behaviour of Modify so it actually works
An exceptional signal handler allows us to convert an OS signal into a C++ exception, this allows us to alleviate a lot of crashes that would otherwise occur from signals being thrown during execution of games and be able to handle them gracefully.
* Fix alignment handling in NvHostAsGpu::AllocSpace
* Implement Ioctl{2,3} ioctls
These were added in HOS 3.0.0 in order to ease handling ioctl buffers.
* Introduce support for GPU address space remapping
* Fix nvdrv and am service bugs
Syncpoints are supposed to be allocated from ID 1, they were allocated
at 0 before. The ioctl functions were also missing from the service map
* Fix friend:u service name
* Stub NVGPU_IOCTL_CHANNEL_SET_TIMESLICE
* Stub IManagerForApplication::CheckAvailability
* Add OsFileSystem Directory support and add a size field to directory entries
The size field will be needed by the incoming HOS IDirectory support.
* Implement support for IDirectory
This is used by applications to list the contents of a directory.
* Address feedback
This patch reduces the burden of adding services significantly, rather
than having to create an enum entry and add strings in the constructor
it will all be determined at runtime through RTTI. A macro is also used
in the service creation case to reduce clutter.
* Fix NvHostCtrl:EventSignal event ID parsing
* Divide the audout buffer length by the sample size
* Correct audout channel quantity handling
* A few bugfixes for audio tracks
* * Correctly lock in CheckReleasedBuffers and only call the callback once
* * Check if the identifier queue is empty before accessing it's iterator
* Refactor audio to better fit the codestyle
* Explictly specify reference when using GetReference
* Fix CheckReleasedBuffers
This commit significantly increases the accuracy of the prior HID code due to testing on the Switch. It is now fully accurate in all supported scenarios, them being assignment mode, orientation, color writes and system properties. In addition, review comments were addressed and fixed in the PR.
This fixes a Joy-Con Pair bug which caused a crash when a partner device was set to none while being set as a partner. In addition, the following HID service functions were implemented:
* GetSupportedNpadStyleSet
* ActivateNpadWithRevision
* GetNpadJoyHoldType
* AcquireNpadStyleSetUpdateEventHandle
This commit adds support to the C++ end of things for controller configuration. It isn't targeting being 1:1 to HOS for controller assignment but is rather based on intuition of how things should be.
This commit adds in the UI for Controller Configuration to Settings, in addition to introducing the storage and loading of aforementioned configurations to a file that can be saved/loaded at runtime. This commit also fixes updating of individual fields in Settings when changed from an external activity.
This commit focuses on making the UI completely usable using a controller so that a user won't have to switch between their device's touch screen and a controller constantly.
This commit refactors the C++ end of Input so it'll be in line with the rest of the codebase and be ready for the extension with multiple players and controller configuration.
This commit contains the Kotlin side of the initial Input implementation, this is based on the work done in the `hid` branch in `bylaws/skyline`.
Co-authored-by: ◱ PixelyIon <pixelyion@protonmail.com>
This commit contains the C++ side of the initial Input implementation, this is based on the work done in the `hid` branch in `bylaws/skyline`.
Co-authored-by: ◱ PixelyIon <pixelyion@protonmail.com>
interpreter.
The Maxwell 3D engine handles all 3D rendering, currently only non
rendering related methods are implemented. Macros are small pieces of
code that run on the GPU and allow methods to be quickly called for
things like instanced drawing.
These are used to allow the CPU to synchronise with the GPU as it
reaches specific points in its command stream.
Also fixes an nvmap bug where a struct was incorrect.
bugs
An engine is effectively a HW block in the GPU, the main one is the
Maxwell 3D which is used for 3D graphics. Engines can be bound to
individual subchannels and then methods within them can be called
through pushbuffers.
The engine side of the GPFIO is also included, it currently does nothing
but will need to be extended in the future with semaphores.
* Rework VFS to support creating and writing files and introduce OsFileSystem
OsFileSystem abstracts a directory on the device using the filesystem API.
This also introduces GetEntryType and changes FileExists to use it.
* Implement the Horizon FileSystem APIs using our VFS framework
Horizon provides access to files through its IFileSystem class, we can
closely map this to our vfs::FileSystem class.
* Add support for creating application savedata
This implements basic savedata creation using the OsFileSystem API. The
data is stored in Skyline's private directory is stored in the same
format as yuzu.
* Make sure icons have a 1:1 ratio
* Use recyclerview padding to increase grid edge margins
* Fix race condition in searching roms
* Use notify insert for adapter
The GPU has it's own seperate address space to the CPU. It is able to
address 40 bit addresses and accesses the system memory. A sorted vector
has been used to store blocks as insertions are not very frequent.
unmapped regions
svcQueryMemory will return a valid descriptor for anything in the
address space, from 0 to 1 << addrSpaceBits, this was handled
incorrectly before and we were only returning descriptors if the
address was in a mapped region.
If an address in an unmapped region is requested then the extents of the
unmapped region up to the address space end are returned. If the address
requested is outside of the address space then the extents of the
inaccessible address space are returned.
To facilitate this support was added to MemoryManager::Get for
generating the extents of unmapped regions using the chunk list.
As the stack is automatically mapped in the guest by `clone` we do not
need to explicitly map it. This adds a flag to solve the issue.
Also mark the stack as stack rather than reserved.
Not zeroing the sample buffer causes issues when a voice is started but
is playing no samples. The system event handling was also reworked
according to Thog's info.
This fixes two bugs in IPC that were discovered when running Puyo Puyo
Tetris.
The CloneCurrentObject control IPC will now correctly return the handle
of the newly created object through move handles, rather than pushing it
as a result.
The size array of u16s with the sizes of each C buffer is now taken into
account when reading them. Before this change C buffers were entirely
broken.
This implements the base account service and stubs
InitializeApplicationInfoV0 which is used by Puyo Puyo Tetris. Support
for the entirety of account services will be added in the future.
lm is used by applications to print messages to the system log. Log
messages are made up of a header and then several fields containing
metadata or string messages.
In the case of am, IStorage is used to exchange buffers of data such
as application launch parameters or an applets result. It has no
relation to fsp-srv's IStorage.
Fonts are stored in an array of TTF data with an 8 byte header
containing a magic and an XOR'd length. Instead of requiring users to
provide original Nintendo fonts we pack open source replacements.
They are generated with the scripts here
https://github.com/FearlessTobi/yuzu_system_archives. All the fonts are
licenced under the Open Font or Apache 2 License so we can include them
all freely.
An NSP (Nintendo Submission Package) is effectively a PFS0 containing
NCAs, there are also tickets and a CNMT file which contains metadata
about updates. The current implementation is very basic and only
support Control and Program NCAs which is enough for loading games.
Support for updates and dlc will be added at a later date.
Nintendo Content Archives are used to store the assets, executables
and updates of applications. They support holding either a PFS0 or a
RomFS.
An NCA's ExeFS can be loaded by placing each NSO sequentially into
memory, starting with rtld which will link them together.
Currently only decrypted NCAs are supported, encryption and BKTR
handling will be added at a later time.
RomFS is a hierarchial filesystem where each level is made up of a
linked list of files and child directories. It is used in NCAs to store
the applications icon as well as by applications themselves for
accessing assets.
Partition FS encapsulates both the HFS0 found in XCIs and the PFS0 used
for ExeFS images and NSPs, it is purely file based and has no support at
all for directories aside from the root.
Mapping and writing segments into memory is now handled by a common
function that can be shared between all loaders. All they need to do now
is to pack each segment into a common struct.
* Correctly handle -WithContext IPC Requests
They should be treated the same as the non WithContext variants.
* Only send domain data on non-control IPC responses
Control IPC doesn't make use of domains so we shouldn't send extra data
in the response.
* Add the IStorage implementation to CMakeLists
This commit adds support for reading the RomFS data from an NRO and
obtaining an IStorage handle to it through 'OpenDataStorageByCurrentProcess'.
There is currently only support for reading and no support
for enlarging or writing.
Also fixup a few capitalisation issues.
- The backing system provides a flexible way to access a a region of
abstract memory.
- It is currently barebones and only has support for reading data but
this will be expanded as necessary.
The current implementations are:
- OsBacking - A backing that abstracts a linux file descriptor
- RegionBacking - A backing that creates a region from a portion of an
existing one
This commit makes a few improvements to the UI/UX:
* Crop Game Icons to ImageView
* Controller Support for Game List
* EmulationActivity is fullscreen now
This commit does some minor renaming/reordering in IPC and adds support for strings to IPC Push/Pop. It also fixes a tiny regression with the frametime display.
This commit mainly finishes up refactor by fixing everything brought up in the CR + Improving NCE somewhat and actually killing the child processes properly now.
We earlier moved to LGPLv3.0 or Later. This was a mistake as what we wanted was being able to link to proprietary libraries but LGPL is the opposite and it allows linking proprietary libraries to libskyline instead. After further consideration, we've moved to MPL-2.0, it allows linking to proprietary libraries and is a standardized license as compared to adding an exception to GPL.
This commit mainly fixes the issue with `AppDialog` where it didn't expand fully in landscape leading to UX issues. In addition, a race condition was fixed in `MainActivity::addEntries`, in regards to `foundCurrent` being returned incorrectly. The text in the performance counters were also made yellow and much more opaque.
This commit mainly fixes the problem with process leakage before where the guest process wouldn't be killed. In addition, it clears up the problem with naming differences with PID/TID where purely PID was used before but that term is generally used to refer to the PGID. So, `KProcess` has a `pid` member but `KThread` has a `tid` member.
This commit fixes a lot of style errors throughout the project by letting the Android Studio Formatter fix them. This commit also splits the Circular Buffer into it's own file.
This commit adds performance statistics to the emulator that can be toggled in preferences. The layout of `EmulationActivity` was also changed from `ConstraintLayout` to `RelativeLayout` due to poor performance of the former.
This optimizes a lot of audio by using a circular buffer rather than queues. In addition to handling device disconnection using oboe callbacks and fix bugs in regards to audio saturation.
This commit adds mutexes to the logger so they produce a valid log file rather than breaking due to a race condition. It also introduced `util::MakeMagic` so the magic functions are far more clear. A small refactor of IPC was also done which cleared up some of the for loops.